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Abstract: Interior permanent magnet synchronous machines (IPMSMs) are well-suited for high-
performance applications, such as traction drives in hybrid and electric vehicles. Yet a major challenge
to fully exploit their potential is the fact that their self and cross-coupling inductances vary significantly
across the operation range. In addition, this variation is difficult to characterize and complicates the
design of provably stabilizing and robust controls. Motivated by this, by using an IPMSM model with
current dependant inductances together with the internal model principle, a nonlinear current control
scheme is derived that renders the equilibrium point of the closed-loop system exponentially stable. Both
the control and the stability result only require the knowledge of an upper bound of the gradient of the
inductances as well as lower and upper bounds on the inductance values themselves, while their actual
evolution can be completely unknown. This is a major advantage compared to existing (PI-based) current
control approaches, as it makes costly practices to determine the inductance variations unnecessary. The
efficacy of the proposed control scheme is demonstrated in a simulation example.

Keywords: Permanent
magnet motors, Two-axis machine model, Electric machines, Internal model principle, Robustness

1. INTRODUCTION

Hybrid electric vehicles as well as electric vehicles represent
a highly promising alternative to conventional automobiles on
the path to a carbon-free society (Mou et al., 2019). Hence,
electric machines tend to replace traditional internal combustion
engines in the near future. In these emerging applications, an
efficient and compact electric machine is needed in order to
increase the autonomy of the vehicles. A machine type which
is of particular interest in this setting is the interior permanent
magnet synchronous machine (IPMSM) (Sulaiman et al., 2011).
Compared to conventional induction and switched-reluctance
machines, IPMSMs offer a series of advantageous characteristics,
such as high efficiency, high-torque/power density, high torque-
to-inertia ratio and absence of rotor losses (Zhu and Howe, 2007;
Zaky, 2011; Chan and Chau, 2001; Momoh and Omoigui, 2009).
These properties paired with the urgent need to decarbonize
the transportation sector have led to great interest in the
improvement of the IPMSM operation and control (Carpiuc
et al., 2011; Zaky, 2011; Liu et al., 2018).

An inherent property of the IPMSM is its significant degree
of saliency compared to the surface mounted permanent magnet
synchronous machine (SPMSM). This saliency allows to use
the reluctance torque (Blaschke, 1972), which is not possible
in the SPMSM, and enables the possibility of operating the
machine at higher speeds by using the field weakening method
(Blaschke, 1972).

However, a major difficulty in the control of the IPMSM
is the significant variation of the machine inductances over
different operation regions. For instance, it has been reported in
(Stumberger et al., 2003) that the cross-coupling inductances can
reach up to 40% of the nominal value of the self-inductance in

both axes, making these variations nonnegligible. An additional
challenge is that the variation of the inductances is very difficult
to characterize (Liang et al., 2016). These facts complicate the
full exploitation of the machine’s capabilities (Liang et al., 2016).

A common way to approach this issue is by performing
extensive tests on the machines, in order to build look-up-tables
(LUTs) that are then used for the control implementation
(Wallscheid et al., 2012; Yu et al., 2017). A different approach
is to obtain the machine parameters via numerical simulations
based on the finite element method (FEM) (Meessen et al.,
2008; Gyu-Hong Kang et al., 2000). Yet, both approaches have
severe drawbacks in common. The characterization has to be
done machine-wise, which is time consuming and expensive in
the case of the experiments. In addition, the parameters may
change during the machine’s lifetime.

These parameter variations are of particular relevance in
the standard dq-based current control scheme, which uses an
inductance-dependant feed-forward term to eliminate the cross-
couplings between the machine axes (Du and Yu, 2007; Liu et al.,
2018). Clearly, this feed-forward decoupling is very sensitive to in-
ductance variations. As a consequence, it is highly desirable to de-
velop a control law that requires minimal information on the ma-
chine parameters. This problem is tackled in the present paper.

At the core of the proposed approach is the observation that
- while the standard model of the IPMSM relates the cross-
coupling terms in the machine dynamics directly to the machine
inductances - any model derived from first-principles, see e.g.
(Stumberger et al., 2003), shows that this term in fact depends
on the flux-linkage. By recognizing and using this relation, the
present paper contains the following three contributions:
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(1) Based on the internal model principle (Francis and Wonham,
1976; Jie Huang and Ching-Fang Lin, 1993), a nonlinear
current control is proposed, which includes a dynamical
compensator for the flux-linkage dependant cross-coupling
term. As a consequence its implementation does not require
any knowledge on the inductances nor their variations
during the operation.

(2) Local exponential stability of the resulting closed-loop
equilibrium as well as robustness with respect to unknown
and varying inductances is established. The latter is a direct
consequence of using the internal model principle in the con-
trol design. In addition, it is shown that the region for which
the convergence of the error is ensured, can be estimated by
a ball, whose radius increases inversely proportional to the
rate of change of the machine inductances. Hence, for the
nominal scenario with constant machine inductances even
global stability is guaranteed. To establish these results, the
inductance matrix merely has to satisfy some qualitative
properties, i.e., it has to be symmetric, positive definite and
uniformly bounded. All these properties are fulfilled in any
practical scenario.

(3) A comparison between the tracking performance of the
proposed control and the conventional PI-control is provided
via numerical simulation.

In summary, under the abovementioned mild conditions and
unlike previous approaches in the literature (Carpiuc et al.,
2011; Lemmens et al., 2015), the proposed controller ensures
exponential tracking of constant current references without
having any precise knowledge of the machine inductances.

The structure of the paper is as follows. In Section 2, the model
of the IPMSM is introduced together with the control design
based on the internal model principle. The main properties of
the proposed control are established in Section 3. In Section
4, a simulation example is provided to illustrate the properties
of the proposed control and its performance is compared with
that of the standard PI approach (Du and Yu, 2007; Liu et al.,
2018). Finally, the proofs of the claims made in Section 3 are
given in Appendix A.

Notation: Along the note, R denotes the set of real numbers,
Rn the real n-dimensional Euclidean space and Rn×m the set
of real matrices. In∈Rn×n denotes the identity matrix. Also,
J∈R2 denotes the matrix imaginary unit

[
0 1
−1 0

]
. For symmetric

matrices A∈Rn×n and B∈Rn×n, A>B (A≥B) means that
A−B is positive (semi)definite. For v ∈Rn, ‖v‖= (v>v)1/2

denotes the Euclidean norm and for B∈Rm×n, ‖B‖ denotes
the induced Euclidean norm of B, defined as sup‖x‖=1‖Bx‖.

2. IPMSM MODEL AND CONTROL DESIGN

2.1 IPMSM Model

The dynamical model of the electrical part of the IPMSM in
dq-coordinates is given in terms of the flux linkage λdq(t)∈R2

by (Pillay and Krishnan, 1988; Schröder, 2015)

λ̇dq(t)=udq(t)−rsidq(t)+ωel(t)Jλdq(t), (1)

where rs > 0 represents the stator resistance, udq(t) ∈ R2

represents the motor voltage, i.e., the control signal, and
idq(t)∈R2 represents the motor current, whereas ωel(t)∈R
represents the electrical angular velocity. Since almost any
machine is fitted with a proper cooling system, assuming the
resistance rs to be constant is reasonable (Gai et al., 2018).

The dynamics of the IPMSM’s mechanical part is given by

J
d

dt
ωmech(t)=TE(t)−TL(t)−βωmech(t). (2)

Here, TE(t)∈R denotes the electrical torque defined as

TE(t)=
3p

2

(
λdq(t)×idq(t)

)
, (3)

where × denotes the vector cross product and p>1 represents
the number of poles. Furthermore, TL(t)∈R is the load torque,
J>0 is the rotor moment of inertia, β>0 is the viscous friction
coefficient and ωmech(t) ∈ R corresponds to the mechanical
angular velocity, which is related to the electrical angular velocity
by pωmech(t)=ωel(t).

The model (1) contains two variables, namely λdq(t) and
idq(t). However, it is common practice to have a model just in
terms of the current (Schröder, 2015). Obtaining such model is
possible since there is an algebraic relation that links λdq(t) to
idq(t) (Pillay and Krishnan, 1988; Schröder, 2015). The usual
way of establishing the latter is by assuming a linear relation
between the variables plus a bias term, which represents the
flux linkage established by the permanent magnets (Carpiuc
et al., 2011; Ortega et al., 2018):

λdq(t)=Ldqidq(t)+λ. (4)

It is important to stress that the inductance matrix Ldq∈R2×2

and the bias term λ ∈ R2 are assumed to be constant.
Furthermore, the inductance matrix is usually assumed to
be symmetric and positive definite, i.e., Ldq=L>dq>0, with

Ldq=
[
`dd `dq
`qd `qq

]
,

where `dd>0 and `qq>0 denote the self inductances and `dq≥0
and `qd≥0 denote the cross-coupling inductances.

By combining (1) and (4) one obtains the electrical IPMSM
dynamics purely in terms of the current, i.e.,

Ldq
d

dt
idq(t)=udq(t)−rsidq(t)

+ωel(t)J(Ldqidq(t)+λ ).
(5)

The model (5) is accurate enough, when the IPMSM works
locally around a specific operation point. However, phenomena
like anisotropy and saturation require to use different values of
Ldq for different operation points. This problematic has been
widely recognized for the IPMSM (Li et al., 2017; Kim et al.,
2018; Sun et al., 2018).

Experimentally it has been shown that the flux linkage can be
represented as a smooth function of the machine currents (Stum-
berger et al., 2003). Let φ :R2→R2 denote this function, then

λdq=φ
(
idq
)
, φ>(idq)=

[
φ1(idq)φ2(idq)

]
. (6)

By using this function, the inductances of the machine can be
defined on the basis of the work in (Stumberger et al., 2003;
Li et al., 2017) as follows:

`dd(idq)=
∂φ1
∂id

(
idq
)
, `dq(idq)=

∂φ1
∂iq

(
idq
)
,

`qd(idq)=
∂φ2
∂id

(
idq
)
, `qq(idq)=

∂φ2
∂iq

(
idq
)
.

Clearly the Jacobian matrix of φ plays the role of the inductance
matrix, i.e.,

Ldq(idq)=
∂φ

∂idq

(
idq
)
. (7)

Common assumptions on Ldq(idq) are that it is symmetric,
positive definite and bounded for all idq(t) (Gyu-Hong Kang
et al., 2000; Lee et al., 2019), as stated in the assumption below.

Assumption 1. The inductance matrix Ldq(idq) given in (7)
satisfies Ldq(idq)=L>dq(idq) and α1I2≥Ldq(idq)≥α2I2>0, for

some positive constants α1≥α2>0 and for all idq∈R2.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14387



By replacing λdq with φ(idq) in (1), one obtains the model

Ldq(idq(t))
d

dt
idq(t)=udq(t)−rsidq(t)

+ωel(t)Jφ(idq(t)),
(8)

which forms the basis for the control design in the present paper
and compared to (5) takes the variation of the inductances
explicitly into account.

2.2 An Internal Model Approach to Robust Current Control
Design for the IPMSM

For speed regulation in synchronous motors, it is common
practice to have a cascade control (Choi et al., 2019; Hosseini and
Tabatabaei, 2017), where the outer-loop regulates the machine
speed and generates references for the currents, which have to
be tracked by the controller in the inner-loop. By following this
standard paradigm, in the present paper the focus is on the
design of a robust inner-loop current control for the IPMSM
in the presence of varying and unknown inductances. This
objective is formalized below.
Problem 2. Consider the system (8) with Assumption 1. As-
sume that the electrical angular frequency ωel(t) is measured.
Let irefdq ∈R2 be a constant vector. Design a control law for the

input udq(t) that guarantees

lim
t→∞
‖irefdq −idq(t)‖=0.

Remark 3. For a constant inductance matrix, a PI-control can
be used as current controller (Du and Yu, 2007; Liu et al.,
2018). This typically involves a feed-forward term to cancel
the influence of the cross-coupling term ωel(t)J(Ldqidq(t)+λ)
in (5). However, the implementation of this term requires
precise knowledge of Ldq and λ. Furthermore, as illustrated via
simulation in Section 4, in the presence of a varying inductance
matrix this type of PI-based-control will exhibit a steady-state
error when trying to solve Problem 2 as soon as the inductance
matrix deviates from its nominal value.

A similar feed-forward approach could be used, if an accurate
characterization of φ(idq) was available. However, obtaining
such characterization involves intensive testing on the machine,
and even after this, there is no guarantee that φ will not change
during the operation of the machine.

Therefore, instead of further characterizing φ, we propose to
understand it as a disturbance, for which a dynamical model
is available, i.e., (1). By recognizing this fact and by using the
internal model principle, we propose a dynamic state feedback
controller of the form

udq(t)=−k1e1(t)+rsi
ref
dq −ωel(t)Jz(t), (9)

ż(t)=udq(t)−rsidq(t)+ωel(t)Jz(t)+ϕ
(
e1(t)

)
, (10)

where e1(t) represents the reference tracking error, i.e.,
e1(t)=idq(t)−irefdq .

The function ϕ in (10) is introduced to establish closed-
loop stability and specified next. Furthermore, we define the
dynamical compensation error as

e2(t)=φ(idq(t))−z(t),
and the error vector as

e>(t)=[e>1 (t),e>2 (t)].
When (9) and (10) are used to control the system, they yield
the error dynamics 1

ė1(t)=−L−1dq (t)
((
rs+k1

)
e1(t)−ωel(t)Je2(t)

)
,

ė2(t)=−ϕ(e1(t))+ωel(t)Je2(t).
(11)

The error system (11) possesses an inherent skew-symmet-
ric structure. In order to keep this structure, we propose to
1 To simplify the notation and whenever clear from the context, the
explicit dependance of the inductance matrix Ldq on the motor currents
idq is omitted in the sequel.

choose ϕ as a nonlinear feedback term of the form ϕ(e1(t))=
k2ωel(t)J

>e1(t) with k2>0. With this definition, the proposed
controller (9) results in

udq(t)=−k1e1(t)+rsi
ref
dq −ωel(t)Jz(t),

ż(t)=udq(t)−rsidq(t)+ωel(t)Jz(t)

+k2ωel(t)J
>e1(t).

(12)

Furthermore, with this choice of ϕ, the error dynamics can be
written as

ė(t)=A(t)e(t),

A(t)=

[
−L−1dq (t)(rs+k1) ωel(t)L

−1
dq (t)J

−k2ωel(t)J> ωel(t)J

]
.

(13)

Clearly, e(t)≡0 is an equilibrium point of the dynamics (13).
Hence, it is shown in the next section that the proposed control
(12) provides a solution to Problem 2 by establishing exponential
stability of the origin of the error system (13).

3. STABILITY AND ROBUSTNESS
PROPERTIES OF THE PROPOSED CONTROLLER

The controller proposed in (12) does not require explicit
knowledge of the inductances. Instead of a precise character-
ization of the flux linkage in terms of the current, the controller
in (12) uses a dynamic compensator to cancel the effect of the
cross-coupling term ωel(t)Jφ(idq(t)). This, in turn, grants the
controller with robustness against variations in the inductances,
a claim which is rigorously established in Theorem 7 below and
also illustrated in Section 4 via simulation.

To prove this important property the inductances may
not change arbitrarily fast. This requirement is reflected in
Assumption 4, which implies that the inductances change
smoothly with the current, something that can be expected in
an IPMSM (Stumberger et al., 2003; Li et al., 2017).

Assumption 4. The gradient with respect to the current of
the inductances `ij(idq), with i, j denoting either d or q, is
uniformly bounded by a constant, i.e.,∥∥∥∥∂`ij∂idq

∥∥∥∥≤¯̀, ¯̀≥0 ∀idq∈R2.

Another relevant aspect is the effect of ωel(t) in the controller
(12) and in the error dynamics (13). For ωel(t)=0, the error
of the dynamic compensator e2(t) is constant and does not
converge to zero. Nonetheless, its convergence is not needed
since in this scenario, the cross-coupling term does not affect
the dynamics of the regulation error e1(t). Therefore, the
important case is when ωel(t) does not stay in zero. From
a formal perspective, due to the employed method of proof, we
need to exclude the cases where ωel(t) crosses zero or where
it converges asymptotically to this value. This restriction is
formulated in Assumption 5. We remark that from a practical
perspective this assumption is very reasonable, since a zero
crossing represents a change in the direction of rotation.

Assumption 5. There exist positive constants ωmax≥ωmin>0
such that ωmax≥|ωel(t)|≥ωmin for all t≥0.

To establish our main stability result, we introduce the
Lyapunov function candidate

V (e,t)=e>P(t)e, (14)
with

P(t)=

 p1Ldq(t) −
1

(rs+k1)k2
Ldq(t)J

−
1

(rs+k1)k2
J>Ldq(t)

p1

k2
I2

, (15)

where p1 > 0 is a design parameter and k1 > 0 as well as
k2>0 are the gains of the control law in (12). Some important
properties of V are given in the next lemma, whose proof is
given in Appendix A.
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Table 1. Parameters of the IPMSM

Parameter Value
Rated power (Pn) 0.676 kW

Rated phase current (Is) 1.49 A
Number of poles (2p) 4

Rated speed (nr) 2000 rev/min
Moment of inertia (J) 0.01 kg·m2

Viscous friction coefficient (β) 0.007 kg·m2/s
Nominal stator resistance (rs) 1 Ω

Nominal flux linkage established by PM (λ>) [0.15, 0] Vs

Lemma 6. For every positive k1 and k2 and Ldq(idq) satisfying
Assumption 1, there exist a large enough p1>0, such that the
function V defined in (14) satisfies the bounds ρ2‖e‖2≥V (e,t)≥
ρ1‖e‖2 for all e∈R4 and t≥0 for some constants ρ2≥ρ1>0.

We are now in the position to show that the control law in
(12) provides a solution to Problem 2 for any positive controller
gains k1 and k2.

Theorem 7. Consider Problem 2, the proposed controller in
(12) and the error dynamics (13). Under Assumptions 4 and
5 and for any positive controller gains k1 and k2, the origin
of the system (13) is locally uniformly exponentially stable.
Furthermore, consider the ball defined by

Br(0)=

{
e∈R4,‖e‖≤r=

ρ1
¯̀ρ2

c
(
k1,k2

)}
, (16)

where the constants ρ1 as well as ρ2 are given in Lemma 6 and
c is a positive constant that depends on the controller gains.
Then, any error trajectory starting in Br(0) converges to zero
exponentially fast.

Corollary 8. Consider Problem 2 with the controller proposed
in (12) and the error dynamics (13). Under Assumption 5
and Assumption 4 with ¯̀=0 for all idq∈R2, i.e. assuming a
constant inductance matrix Ldq, e(t)=0 is globally uniformly
exponentially stable for any k1>0 and k2>0.

Theorem 7 shows that despite the variations in the induc-
tances and that the controller (12) does not possess information
about them, exponential tracking of the reference can be
achieved. This is true even for non-constant ωel(t). Another
important point is that the radius r of the ball Br(0) is inversely
proportional to the upper bound ¯̀ on the size of the gradients
of the inductances with respect to the current. For example, if
the machine is operated close to the saturation region of the
machine iron, a small parameter ¯̀ and, hence, a large radius
r of the ball Br(0) can be expected.

Furthermore, for constant inductances the region of attraction
becomes the full error space, as is shown in Corollary 8 below.
This represents a significant advantage even in the nominal
case, since for implementing the controller in (12), the values
of the inductances are not needed.

The proofs of Lemma 6, Theorem 7 and Corollary 8 are given
in Appendix A.

4. SIMULATION EXAMPLE

In order to illustrate the advantages of the proposed control,
we compare it with the standard PI-control, see (Du and Yu,
2007; Liu et al., 2018), in simulation. To provide a realistic sce-
nario, the values given for the flux linkages and the inductances
in (Stumberger et al., 2003) (Figures 9, 14, 18, 21, 24, 27) are
used and evaluated in LUTs in the software Matlab/Simulink.
Further model parameters were chosen in order to represent re-
alistic values based on (Stumberger et al., 2003; Zaky, 2011; Tar-
czewski et al., 2018; Carpiuc et al., 2011) and are given in Table 1.
To generate ωel(t), the dynamical model (2) is used with ωel(0)=
200 [rad/s] and TL=0.3 [Nm]. With respect to the controllers,
the gains of the proposed one (12) were selected as k1 =300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t [s]

0

0.5

1

1.5
Proposed Control
PI-Control
Reference

Fig. 1. Tracking of the d component of the current in per unit
by the proposed algorithm (12) and the PI-control.

and k2=5. In the case of the PI-control combined with the feed-

forward term, the gains were selected as ki=
[
0.0011 0

0 0.0011

]
to guarantee a phase margin of the open-loop systems of around
60◦ at a crossover frequency of ωc=1500 [rad/sec] as well as

a correspond kp=
[
220 0
0 400

]
. The parameters of the controllers

were chosen with keeping a realistic physical high voltage limit
(ISO 6469-3) of the power supply in mind. Given that the
PI-control requires the nominal values of the inductances, their
values at zero current were used. This corresponds to

Ldq=
[
0.174 0.002
0.008 0.31

]
[H].

Finally, as a reference for the currents, the following piecewise
constant function is selected:

(
irefdq
)>

[A]=


[−1.5,1.5] t∈ [0,0.04)[s]
[−0.5,0.5] t∈ [0.04,0.08)[s]
[−2,2] t∈ [0.08,0.12)[s]
[−0.5,0.5] t∈ [0.12,0.16)[s]
[−1,1] t∈ [0.16,∞)[s]

.

The results of the simulation are shown in Figures 1 - 6 and the
corresponding variation of the inductances during the tracking
process of the currents with the proposed algorithm (12) are
given in Figures 7 - 8. In the simulation also the case of a short
overload operation is included, which means that iq/Is > 1
and −id/Is > 1. As can be seen from Figures 1 - 4, the
proposed controller (12) achieves the correct tracking of the
constant references, while the PI-control exhibits a steady-state
error. In Figures 5 - 6 it can be seen that, compared to the
PI-control, the proposed controller is also able to completely
compensate the negative influence of the flux-linkage dependant
cross-coupling term. In this context it is important to remark
that for implementing the proposed controller, there is no need
to have any information about the values of the inductances. In
the case of the PI-control, the steady-state error goes up to 6%
of the commanded current reference in the d-axis and up to 17%
for the q-axis. This was expected since the feed-forward term is
incorrect as soon as the inductances do not correspond to their
nominal values. This mismatch is further amplified by ωel(t).
Thus, the performance of the PI-control deteriorates when the
machine is operated at higher speeds. All these drawbacks are
avoided with the proposed controller, demonstrating its superior
properties compared to the usual PI-control scheme.

5. CONCLUSIONS

In this paper the problem of current control of IPMSMs is
addressed. In those machines it is highly necessary to explicitly
consider the variations of the machine inductances across the
whole operation range in order to ensure a well-performing
control. Motivated by this, a new current control on the basis
of the internal model principle is presented, which guarantees
exponential tracking of the current references without requiring
precise knowledge of the varying machine inductances. This
is possible, because it is recognized that the main disturbance
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t [s]

0
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1.5 Proposed Control
PI-Control
Reference

Fig. 2. Tracking of the q component of the current in per unit
by the proposed algorithm (12) and the PI-control.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t [s]

-0.2

-0.1

0

0.1

0.2

Proposed Control
PI-Control

Fig. 3. Tracking error of the d component of the current in per
unit by the proposed algorithm (12) and the PI-control.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t [s]

-0.2

-0.1

0

0.1

0.2
Proposed Control
PI-Control

Fig. 4. Tracking error of the q component of the current in per
unit by the proposed algorithm (12) and the PI-control.

to the system follows a dynamical model, which is then used
to design a dynamic compensator. The stability analysis of
the resulting closed-loop system is carried out using standard
Lyapunov stability theory. In addition, it is shown that the region
for which the convergence of the regulation error is ensured,
can be estimated by a ball, whose radius increases inversely
proportional to the rate of change of the machine inductances
under some reasonable assumptions. In contrast, it is shown
in simulation that the inductance variations have a significant
impact on the performance of the usual PI-based current control,
which uses an inductance-dependant feed-forward term to
eliminate the cross-couplings between the machine axes. Hence,
slight deviations from the nominal inductance values result in a
steady-state error in the tracking of the current references. On
the contrary, when using the proposed control algorithm, the
closed-loop system is rendered insensitive against variations in
the machine inductances, which is a major advantage compared
to the PI-based current control. This property makes costly
practices to determine the inductance variations unnecessary.

In future work, the effect of zero crossings of ωel(t) on
the closed-loop stability will be analyzed. Another interesting
direction of research is to investigate the behavior of the

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t [s]

-1

-0.5

0

0.5 Proposed Control
PI-Control

Fig. 5. Dynamical compensation error of the d component of
the flux-linkage by the proposed algorithm (12) and the
PI-control.
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t [s]
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-0.2

0
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0.4

0.6

Proposed Control
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Fig. 6. Dynamical compensation error of the q component of
the flux-linkage by the proposed algorithm (12) and the
PI-control.
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Fig. 7. Variation of the self inductances in per unit during
the tracking process of the currents with the proposed
algorithm (12).

proposed control, when it is connected to the outer speed
control loop, since the current references are usually coming
from an optimization task done in the superordinate loop.

Appendix A. PROOF OF THE CLAIMS

A.1 Proof of Lemma 6

In order to show that the bounds over V hold, it will be
shown that the matrix P(t) satisfies ρ2I4≥P(t)≥ρ1I4>0 for
all t≥0. First, using the Schur complement of P(t), it can be
shown that for any p1>η1, P(t)>0 with

η1=
α1

(k1+rs)
√
α2k2

,

and α1 and α2 given in Assumption 1. Now, for any fixed p1
satisfying the previous condition, a lower bound of the form
P(t)−ρ1I4≥0 can be determined with the help of the Schur
complement
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Fig. 8. Variation of the cross-coupling inductances in per
unit during the tracking process of the currents with the
proposed algorithm (12).

χρ1 =p1Ldq(t)−ρ1I2−
1

k2(p1−k2ρ1)(k1+rs)2
L2
dq(t)

≥
(
p1α2−ρ1−

α2
1

k2(p1−k2ρ1)(k1+rs)2

)
I2.

Then, χρ1 is positive for any

0<ρ1≤
p1(1+α2k2)

2k2
−

√
(p1(1+α2k2))2

4k22
+

α2
1

k22(k1+r2)
2
−
α2p21
k2

,

showing the existence of the lower bound P(t)≥ ρ1I4. In
the case of the upper bound, it is easy to see that for every
fixed p1, an appropriate ρ2 exists, since Ldq(t) is bounded by
Assumption 1. This upper bound can be determined with the
Schur complement of the difference ρ2I4−P(t)≥0

χρ2 =ρ2I2−p1Ldq(t)−
L2
dq(t)

(ρ2k2−p1)(rs+k1)2k2
,

≥
(
ρ2−p1α1−

α2
1

(ρ2k2−p1)(rs+k1)2k2

)
I2.

In this case, χρ2 is positive for

ρ2≥
p1(1+α1k2)

2k2
+

√
(p1(1+α1k2))2

4k22
+

α2
1

k22(k1+rs)
2
−
α1p21
k2

>0.

Therefore, positive constants ρ1 and ρ2 that bound V (e,t) exist.

A.2 Proof of Theorem 7

With the result from Lemma 6, it is clear that V (t,e) in (14)
can be taken as a Lyapunov function candidate. Its derivative
along the trajectories of (13) results in

V̇ (t)≤−e>(t)
(
Q(t)−Ṗ(t)

)
e(t), (A.1)

with −Q(t)=P(t)A(t)+A>(t)P(t), A(t) as in (13) and Q(t)
given by

Q(t)=

[
Q11(t) Q12(t)
Q>12(t) Q22(t)

]
,

Q11(t)=2p1(rs+k1)I2−2
|ωel(t)|

(rs+k1)
Ldq(t),

Q12(t)=− |ωel(t)|
(rs+k1)k2

Ldq(t)−
1

k2
J,

Q22(t)=2
|ωel(t)|

(rs+k1)k2
I2.

(A.2)

The time derivative of P(t) can be computed as

Ṗ(t)=

 p1L̇dq(t) − 1

(rs+k1)k2
L̇dq(t)J

− 1

(rs+k1)k2
J>L̇dq(t) 0

.

To show the negative definiteness of V̇ (t), it can be seen from

(A.1) that bounds over Q(t) and Ṗ(t) are needed. These are
derived next.

Let q∈ (0,2ωmin/(k2(rs+k1))), then Q(t)−qI4≥0 can be
ensured if the Schur complement

χQ=2p1(rs+k1)I2−
2|ωel(t)|
(rs+k1)

Ldq(t)−qI2

− k2(rs+k1)

2|ωel(t)|−qk2(rs+k1)
Q12(t)Q

>
12(t)

≥

(
2p1
(
rs+k1

)
− 2ωmaxα1

(rs+k1)
−q

− 2k2(rs+k1)

2ωmin−qk2(rs+k1)

(
ω2
maxα

2
1

k22(rs+k1)2
+

1

k22

))
I2

is positive. This happens for p1≥η2 with

η2=
2α1ωmax+q(k1+rs)

2(k1+rs)2
+

α2
1ω

2
max+(k1+rs)2

k2(k1+rs)2(2ωmin−qk2(k1+rs))
.

To bound Ṗ(t), we need to bound L̇dq(t) first. This can be
done by analysing the time derivative of each of its components,
i.e.,

‖ ˙̀ij(t)‖≤¯̀‖ė1(t)‖≤¯̀max{k1,ωmax}
α2

‖e(t)‖.

Define κ=max{k1,ωmax}/α2. Then, it follows that ‖L̇dq(t)‖≤
2¯̀κ‖e(t)‖. To continue, the bound for Ṗ (t) can be developed by

finding a scalar function r(e), such that r(e)I4−Ṗ (t)≥0. This
is done with the help of the Schur complement of the difference

χṖ =r(e)I2−p1L̇dq(t)−
1

r(e)(rs+k1)2k22
L̇2
dq(t),

≥
(
r(e)−2¯̀κp1‖e(t)‖−

4¯̀2κ2‖e(t)‖2

r(e)(rs+k1)2k22

)
I2.

From here, it follows that χṖ ≥0 if

r(e)≥

(
p1
2

+

√
p21
4

+
1

(rs+k1)2k22

)
2¯̀κ‖e(t)‖. (A.3)

With the bounds for Q(t) and Ṗ(t) in mind, the time
derivative of V can be bounded as

V̇ (t)≤−q‖e(t)‖2+r(e)‖e(t)‖2.
Select r(e) as

r(e)=2¯̀κ

(
p1+

1

k2(k1+rs)

)
‖e(t)‖,

which satisfies (A.3). Then V̇ (t)<0 for

‖e(t)‖≤ c(k1,k2)¯̀ =
qk2(k1+rs)

2¯̀κ(1+p1k2(k1+r2))

=
qα2k2(k1+rs)

2¯̀max{k1,ωmax}(1+p1k2(k1+r2))
, (A.4)

proving that e(t)=0 is a locally uniformly exponentially stable
equilibrium point (Khalil, 2002)[Theo. 4.10]. Furthermore, in
light of (Khalil, 2002)[Theo. 4.9] and the bounds over V in
Lemma 6, any error trajectory starting in the ball Br(0) given
in (16) will converge to zero.

A.3 Proof of Corollary 8

Under the assumptions in the corollary, Ldq is a constant,

positive definite matrix. Thus, Ṗ(t)=0 in (A.1). A lower and
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constant bound for the resulting matrix Q(t) can be found in a
similar manner as done in Appendix A.2. Then Q(t)≥qI4, and

V̇ (t)≤−q‖e(t)‖2<0,
showing that e(t)=0 is globally uniformly exponentially stable
(Khalil, 2002)[Theo. 4.10].
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