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Abstract: How to effectively predict social influence is an essential issue in social network
analysis. Almost all reported methods for social influence prediction are mainly concerned
with estimating influence probabilities for each linking edge. However, all of this past work
cannot accurately predict influence probabilities for all edges due to the problem of data
sparsity. Unlike conventional approaches, this work focuses on exploring a cross problem for
multiple network embeddings and social influence prediction. This study developed a new
end-to-end approach, Multi-Influor, that learns multiple influence vectors for each user in
social networks, instead of estimating influence probabilities for each edge. The multiple
network embeddings consider multi-dimensional influence factors that incorporate pairwise node
interactions, network structures, and global similarity comparisons. Moreover, this study solves
the problem of influence evaluation caused by sparse observations. Extensive comparisons based
on large-scale datasets indicate that the Multi-Influor approach outperforms several state-of-
the-art baselines, and the experimental results demonstrate that the Multi-Influor approach is
more practical on real-world social networks.
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1. INTRODUCTION

The rapid development of online social networks (OSNs)
lays a foundation for spreading users’ ideas and messages.
The related work of social network analysis has found
that users’ friends or neighbors greatly affect these users’
behaviors or opinions from a perspective of psychology
[Aslay, et al. (2018)]. Thus, this study defines social in-
fluence as a user’s ability that users’ actions (behaviors
or opinions) affect their neighbors in OSNs. The exten-
sive researches in social influence analysis pave the way
for various applications, such as resource recommendation
[Zhang, et al. (2018)], community detection [Al-Garadi, et
al. (2018)], and viral marketing [Yang, et al. (2017)].

One essential problem in social influence analysis is to
estimate influence probabilities based on action logs, and
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extensive works have been done on this problem [Pal, et
al. (2014); Aslay, et al. (2018); Sun, et al. (2018)]. Almost
all previously related work aims at calculating influence
parameters for each edge in OSNs. However, since the
problem of sparse observations for influence spreads, the
previous works cannot accurately learn edge parameters to
predict influence probabilities, especially for edges with-
out sufficient diffusion data. Moreover, these conventional
edge-based approaches cannot consider other influence
factors (such as network structure and preference similar-
ity) or detect hidden influence relationships between users
(high-order influence spreads). Thus they perform poorly
on the predictions of influence probabilities.

This work focuses on exploring a cross problem for mul-
tiple network embeddings and social influence prediction.
Inspired by the research of network representation learn-
ing [Bai, et al. (2019); Grover, et al. (2018)], this study
directly learns multiple latent vectors for each user to
capture social influences, instead of estimating influence
probabilities for each edge. Moreover, this work alleviates
the challenge of sparse observation data via latent vectors.
To our knowledge, this may be the first study of social
influence prediction that jointly captures influence spreads
and multiple network embeddings.
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To address the above challenges, this study developed a
new end-to-end approach, Multiple Influence-to-vector
(Multi-Influor), that learns multiple influence vectors for
each user in social networks. The first key step to predict-
ing social influence is how to generate multiple influence
learning contexts. This work devised a new method of gen-
erating multiple influence contexts, which includes node-
level, subnetwork-level, and global graph-level influence
contexts. Then, the Multi-Influor method learns node-
level and graph-level latent vectors based on the generated
contexts (details in Section 3). Therefore, the multiple net-
work embeddings incorporate multi-dimensional influence
factors for pairwise node interactions, network structures,
and global similarity comparisons.

In this study, we conducted extensive comparisons based
on four large-scale datasets. The comparison results illus-
trate that the Multi-Influor approach outperforms several
state-of-the-art baselines. Moreover, the experimental re-
sults demonstrate that the Multi-Influor approach is more
practical on real-world social networks.

2. PROBLEM STATEMENT

2.1 Preliminaries

In this study, we model each social network as a graph
G = (V,E), where V denotes a user set and E denotes
a set of linking edges between users. The linking edge
(u, v) denotes that user u is a neighbor of user v. In
addition, this study obtains diffusion episodes from action
logs. The action logs contain sets of tuples in the form of
(u, i, tiu) that denotes user u performed an action related
to item i at time tiu. Each item i (such as information,
idea and opinion) corresponds to one diffusion episode
Di = {(u, tiu), · · · , (v, tiv)}, which denotes users in Di adopt
to perform action i in a chronological order.

Definition 2.1. (User Social Action). A binary action
state for user u, siu ∈ {0, 1}, is calculated based on action
logs A, where siu = 0 denotes user u has not performed
the action i at time tiu, and siu = 1 denotes user u has
performed the action i before or at time tiu.

Definition 2.2. (Social Influence Spread). Based on a
social network G = (V,E) and diffusion episodes Di, a
social influence spreads from user u to user v if it satisfies:
(1) user u ∈ V and v ∈ V ; (2) edge (u, v) ∈ E; (3) action
time tiu < tiv.

2.2 Problem Definition

This study aims to transfer each user’s representation
into a low-dimensional latent vector for social influence
prediction. In general, this study attempts to learn mul-
tiple representations for |V | users based on a given social
network and action logs, which are used to evaluate the
influence probabilities for |E| edges.

Multiple Network Embeddings Problem. Based on
a social network G = (V,E) and action logs, this work
aims to learn multiple social influence representations for
each user: node-level vector V ecu and graph-level vectors

Iu, Su, bu, b̂u.

3. THE DEVELOPED METHOD: MULTI-INFLUOR

In this section, we proceed to detail the newly devel-
oped Multiple Influence-to-vector (Multi-Influor) method,
which is an end-to-end neural network-based method that
aims at addressing the challenges mentioned in Section
1. The framework of Multi-Influor (Fig. 1) contains three
parts. First, this work provides how to generate multiple
influence contexts in stage 1. Second, based on the gen-
erated influence contexts, this paper presents a learning
approach for multiple influence representations in stage
2. Finally, this study feeds the combined multiple vectors
into a fully connected neural network to predict influence
probabilities in stage 3.

3.1 Stage 1: Multiple Influence Contexts Generating

In this study, we introduce a method of generating multiple
influence contexts, which includes node-level, subnetwork-
level, and graph-level influence contexts. These influence
contexts focus on multi-dimensional influence factors for
pairwise node interactions, network structures, and global
similarity comparisons.

Definition 3.1. (Influence Context). Based on a social
network G = (V,E) and action logs, this study defines
an influence context for user u as a set of users who are
probably affected by user u.

Node-level influence context Based on a social network
and a given user u, the straightforward way to generate
a node-level influence context for user u is to adopt the
breadth-first search (BFS) method that starts from user
u. Then, r-neighbours Nr

u = {v : d(u, v) ≤ r} can be
acquired, where d(u, v) is the shortest path between user
u and v. This work applies a sub-network induced by Nr

u
to establishing a network of r-ego user u. To facilitate
the neural network learning in network embeddings, we
suppose to sample a fixed-size sub-network. In addition,
this is easy to solve the problem of different sampling sizes.

According to network structures and edge weights esti-
mated by diffusion episodes Di, this study performs ran-
dom walks on the network of r-ego user u. A random walk
iteratively traverses to neighbors with different probabili-
ties and stops running until it collects a fixed-size of users
(LN ). Then, this work regards the sampled network as
a node-level influence context for user u, Cni

u , that can
embed pairwise nodes’ interaction information into user
u’s latent influence vector.

Subnetwork-level influence context This work builds an
influence spread network to incorporate subnetwork-level
influence (high-order influence diffusion) information into
latent influence vectors, which illustrates influence diffu-
sions for each item in social networks (as shown on the
left part of Fig. 1).

Definition 3.2. (Influence Spread Network). Based on
a social network G = (V,E) and action logs, we define an
influence spread network as Gi = (Vi, Ei) if it satisfies: (1)
Vi ⊂ V and Ei ⊂ E; (2) each edge (u, v) denotes a social
influence spreads from user u to v.

The Multi-Influor method captures high-order diffusion
information via random walk processes on influence spread
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Fig. 1. An overview illustration of Multi-Influor. The top part denotes data flows for node-level influence representations
learning. The bottom part denotes data flows for graph-level influence representations learning.

networks, which incorporates structure information into
subnetwork-level embeddings. Moreover, this approach
can solve the problem of influence estimating caused by
sparse propagation data.

This study generates user u’s subnetwork-level influence
context, Csi

u , based on the influence spread network Gi.
We apply random walks with restarts to simulating users’
influence diffusions. The random walk process starts from
user u and randomly selects one neighbor of user u to
traverse. Next, based on the currently activated users, we
randomly select one neighbor of these users to traverse in
the next sampling step. In addition, the process is probable
to back to user u at each step. This work uses a length
threshold (LS) to limit the size of Csi

u and stops sampling
when the threshold LS is reached.

Global graph-level influence context This study further
incorporates users’ preference similarities in latent influ-
ence vectors by using graph-level influence contexts. Given
an influence spread network Gi = (Vi, Ei), users perform
the same actions indicates that these users share the same
interest.

To capture the similarity of users’ interests, the Multi-
Influor method uniformly samples a set of users (LG) by a
given user u in the influence spread network Gi. Note that
the samples of similar users denote the global graph-level
influence context Cgi

u .

Multiple influence contexts generating algorithm Based
on a social network G and a given user u, this work aims to
generate multiple influence contexts Ci

u = Cni
u +Csi

u +Cgi
u .

To balance the contributions of these multi-level contexts,
we suppose the component weights (α, β, γ) are all in the
range of 0 to 1, and α+ β + γ = 1.

First, this work generates the node-level influence context
(LN = α · L) via random walks in the social network G.
Then, the subnetwork-level influence context (LS = β ·L)
can be generated based on the influence spread network

Gi. Finally, this study uniformly samples the users in
Vi, and the length of the graph-level influence context
LG = γ ·L. These multiple influence contexts contain three
types of sampled data. The time complexity of multiple
influence contexts generating algorithm is O(L), where L
denotes the total length threshold for influence contexts
(L = LN + LS + LG).

3.2 Stage 2: Multiple Network Embeddings

The stage of multiple network embeddings provides an
effective approach that simulates relationships between
users and their multiple influence contexts. Inspired by the
related work in the field of natural language processing, we
apply a modified word2vec technique to learning multiple
influence representations for each user in social networks
[Grover, et al. (2018)].

Node-level influence representation learning This study
develops a neural network-based approach that learns
node-level influence vectors. Based on the node-level influ-
ence contexts, this work aims to estimate the probability
of affecting user v conditional on his/her r-ego network Gr

v
and action state of his/her r-neighbors Sr

v . We formulate
the method of predicting the influence probability for user
v after a given time interval ∆t as

Pr(St+∆t
v |Gr

v, S
r
v).

To calculate node-level influence probabilities, this work
formulates the node-level influence prediction as a binary
graph classification problem, which can be solved by
maximizing the objective function as

O(Θ) =
∏

(u,v)∈E

Pr(St+∆t
v |Gr

v, S
r
v). (1)

Based on the node-level influence contexts, all users learn
an embedding matrix X ∈ Rd×n, each column correspond-
ing to the representation of a user in the network. Each
user ui maps to his/her d-dimensional vector xui ∈ Rd us-
ing a pre-trained embedding layer. Then, this work adopts
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an instance normalization technique [Huang, et al. (2017)]
to calculate the instance normalization for each embedding
dimension d as

yui
=
xui
− µi√

σ2
i − ε

(2)

where µi is the mean of vectors, σi is the variance of
vectors, and ε is a small number for numerical stability.

With a node-level embedding for each user, this work also
devises to incorporate various user-specific features into
the input layer of the graph convolutional network (GCN),
such as content features and demographic features [Qiu,
et al. (2018)]. Aside from instance normalization vectors,
this work also considers a binary variable to indicate users’
action states.

In the neural network learning, we stack multiple GCN
layers to conduct nonlinear transformations [Narayan, et
al. (2018)]. The input of each GCN layer is a vertex feature
matrix H, and the output H ′ is calculated as

H ′ = GCN(H) = g(A(G)HWT + b) (3)

where the notation A(G) denotes a n × n matrix that
captures structural information for the network G, and
W and b are model parameters.

Finally, this work supposes the output layer provides a
two-dimension representation (V ecu) for each user. We
use the vector of user u to predict the ego user’s state
and the influence probability of user u. We compare the
prediction results with ground truth data to optimize the
objective function (Eq. (1)). Therefore, we learn a node-
level influence vector for each user.

Graph-level influence representation learning To capture
graph-level influence information, this work uses a skip-
gram method to generate the graph-level context for
a given user u [Krishna, et al. (2019)]. The key step
in graph-level influence embedding is to evaluate the
probability of observing the graph-level influence context,
Pr(Csi+gi

u |u), including the contexts of subnetwork-level
and global graph-level influence (Csi+gi

u = Csi
u +Cgi

u ). This
work calculates the probability Pr(Csi+gi

u |u) by using the
independent probability Pr(v|u) that influences propagate
from user u to v, and the notation v denotes a user in the
graph-level context Csi+gi

u .

Pr(Csi+gi
u |u) =

∏
v∈Csi+gi

u

Pr(v|u) (4)

This work generates a list of (u,Csi+gi
u ) tuples for each

diffusion episode, which is denoted as TDi
. The whole

influence context tuples, T , contains all the observed
episodes Di in action logs A. This work attempts to
maximize the log-probability of Pr(Csi+gi

u |u). Thus, this
study defines the loss function of the graph-level influence
representation learning as

L(Θ) = −
∑

TDi
∈T

∑
(u,Csi+gi

u )∈TDi

∑
v∈Csi+gi

u

logPr(v|u). (5)

Next, this work calculates the loss function by evaluating
the probabilities that influences propagate from user u
to v. The Multi-Influor method calculates the probability

Algorithm 1 Multi-Influor

Input: A social network G = (V,E), diffusion episodes
Di, component weights α, β, γ, a learning rate η and the
dimension of influence vector k.
Output: Multiple influence representations for each user
u ∈ V .

1: Initialize vectors Iu and Sv with uniform distribution
[−1/k, 1/k], V ecu ← 0, bu ← 0, b̂v ← 0, T ← ∅.

2: Multiple influence contexts generating :
3: for Di ∈ A do
4: Generate a node-level influence context Cni

u ;
5: Extract an influence spread network Gi = (Vi, Ei).
6: for each user u ∈ Vi do
7: Generate Csi

u and Cgi
u ;

8: Insert (u,Ci
u) into TDi

;

9: Insert TDi
into T .

10: Multiple influence representations learning :
11: for TDi ∈ T do
12: for (u,Ci

u) ∈ TDi do
13: for v ∈ Ci

u do
14: Node-level influence vector: V ecu;

15: Graph-level influence vectors: Iu, Sv, bu, b̂v;

16: Update all parameters until convergence.

17: return V ecu, Iu, Su, bu, b̂u.

Pr(v|u) via the inner product of users’ latent vectors
Iu · Sv, where Iu denotes the influence ability vector
for user u and Sv denotes the susceptibility vector for

user v. Moreover, this work uses bu and b̂v to reflect
the bias of influence vector for user u and the bias of
susceptibility vector for user v, respectively. Therefore, this
work formulates the probability that user u influences user
v as a softmax function (Eq. 6).

Pr(v|u) = e(Iu·Sv+bu+b̂v)/sum(u) (6)

where sum(u) =
∑

w∈Vi
e(Iu·Sw+bu+b̂w) is a normalization

term.

To alleviate the issue of computation efficiency, the nega-
tive sampling can be used to compute the softmax function
[Peng, et al. (2017)]. Then, this study uses the method of
stochastic gradient descent to learn all parameters. During
each step, this work updates parameters Θ via gradient
calculations as

Θ← Θ + η
∂

∂Θ
(log (Pr(v|u))) (7)

where η denotes a learning rate and ∂
∂Θ denotes the

gradient of parameters Θ.

Algorithm 1 summarizes the Multi-Influor method, which
contains two essential parts: multiple influence contexts
generating (lines 2-9) and multiple influence representa-
tions learning (lines 10-16).

3.3 Stage 3: Influence Probability Predicting

After obtaining multiple influence representations for each
user, this work uses a multi-layer fully connected neural
network to gradually reduce the vector’s dimension for
each user. In the end, we predict the influence probability,
ˆsuv, that influences propagate from user u to v. This study
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compares the prediction results with ground truth data,
and optimizes the log-likelihood loss function as

LΘ = −
∑

(u,v)∈G

log(Pr( ˆsuv|Ci
u)). (8)

To sum up, the Multi-Influor method incorporates the fine-
grained influence relationships that are captured by the
node-level embedding and the coarse influence information
that is captured by the graph-level embedding, which pro-
vides a thorough view of influence probability estimating
to the prediction approach.

4. EVALUATION

4.1 Experimental Setup

This study conducted computational experiments based
on four real-world social networks, which are widely used
in the research of influence analysis. Table 1 lists the
basic statistics of these datasets, including Sina Weibo1,
Epinions [Goyal, et al. (2011)], WikiVote [Zhou, et al.

(2013)], and NetHEPT [Pal, et al. (2014)].

Table 1. Basic Statistics of Real-world OSNs

Dataset Nodes Edges Avg. Degree Contexts

Sina Weibo 63641 1391718 12.9 270K

Epinions 131828 841372 6.1 352K

WikiVote 7115 103689 10.5 11.9K

NetHEPT 27770 352807 12.2 34K

In this study, we conducted the comparisons of the Multi-
Influor approach and several baselines (SVM [Al-Garadi,
et al. (2018)], Emb-IC [Feng, et al. (2018)], Node2vec
[Grover, et al. (2018)], Inf2vec [Feng, et al. (2018)]).

This study randomly selected 60%, 20%, 20% instances
of sampling data for training, validation, and testing,
respectively. The size of a mini-batch was set to be 512
across four datasets. The Multi-Influor method performed
random walks with a restart probability of 0.75 in the
steps of contexts sampling. Furthermore, this work set
the dimension of initial vectors to be 64 in the node-level
embedding, and to be 60 in the graph-level embedding.
Each initial vector in the input layers was pre-trained via
the autoencoder technique.

In the step of neural network learning, this work supposed
the learning rate η = 0.005 and the influence vector’s
dimension k = 62. According to the empirical study on
tuning set [Bai, et al. (2019)], the total length threshold
for influence context L was set to 160, and the component
weights were set as α = 0.4, β = 0.3, and γ = 0.3.

4.2 Evaluation Metrics

Prediction performance comparison. The task of
influence diffusion prediction focuses on predicting predict
probabilities of whether users will be influenced by seed
users. This study evaluated the predictive performance
for different methods in terms of precision (Prec.), recall
(Rec.), F1-measure, and area under curve (AUC).

Influence spread comparison. This work used the
prediction results to detect seeds and solve the influence
1 http://open.weibo.com/

maximization problem. We compared the seeds’ influence,
which is demonstrated by the range of influence spread.
We conducted these comparisons on different datasets
and used the independent cascade (IC) model to simulate
influence spread processes on OSNs [Aslay, et al. (2018)].

4.3 Prediction Performance Comparison

This subsection presents the comparisons of diffusion prob-
ability predictions based on different OSNs (Table 2). In
general, the Multi-Influor approach achieves significantly
better performance than the conventional methods (SVM
and Emb-IC) in the datasets of Sina Weibo, Epinions,
and NetHEPT. The methods of Multi-Influor and Inf2vec
perform best, but the Multi-Influor method performs bet-
ter than the Inf2vec method in diffusion probability pre-
dictions. These may because the Multi-Influor method
considers multiple network embeddings that incorporate
more influence factors.

Table 2. Diffusion Prediction Comparisons

Data Model Prec. Rec. F1 AUC

Sina Weibo

SVM 32.27 71.23 46.23 66.79

Emb-IC 33.41 65.73 42.63 66.49

Node2vec 30.17 63.28 41.91 64.21

Inf2vec 30.25 64.12 43.29 65.19

Multi-Influor 49.33 78.23 53.31 73.67

Epinions

SVM 53.21 61.44 56.62 56.12

Emb-IC 43.66 65.12 52.37 62.24

Node2vec 50.22 65.37 51.23 69.24

Inf2vec 33.17 63.28 41.91 64.21

Multi-Influor 60.17 71.32 59.93 76.15

WikiVote

SVM 22.17 31.32 40.91 46.17

Emb-IC 23.98 35.44 42.31 46.41

Node2vec 30.32 33.82 42.36 44.67

Inf2vec 30.17 33.28 41.91 44.21

Multi-Influor 33.34 39.21 43.75 43.23

NetHEPT

SVM 52.03 61.63 52.92 44.29

Emb-IC 49.21 64.67 52.21 62.43

Node2vec 50.87 63.05 51.91 65.22

Inf2vec 56.17 63.28 51.94 64.21

Multi-Influor 59.36 69.24 58.73 69.23

However, in the dataset of WikiVote, Node2vec and Emd-
IC sometimes outperform than the Multi-Influor approach.
Since the data size of WikiVote is small, the Multi-Influor
approach lacks training data to improve the performance
of neural network-based learning (GCN layers and fully
connected neural network). Adding more sampling data
in the training processes can improve the performance
of Multi-Influor. These experimental results demonstrate
that the Multi-Influor approach is highly data-driven.

4.4 Influence Spread Comparison

We uniformly used a greedy algorithm to detect seeds
based on the prediction results [Sun, et al. (2018)]. Then,
we compared the range of activated users influenced by
seeds. After adding a new user to the seeds, we set the
number of influence spread simulations to be 10,000. In
addition, this study conducted comparisons under the
conditions of different datasets and seed sizes.

In general, the comparisons of influence spread (Fig. 2)
illustrate that the Multi-Influor approach always performs
best, which means that it can lay a solid foundation
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for solving the influence maximization problem. In the
datasets of Sina Weibo, Epinions, and NetHEPT (Fig. 2
(a), (b), (d)), the Multi-Influor method performs much
better than SVM and Emb-IC, and above 30% better
than Node2vec. However, with much less training data
in WikiVote, the approaches all perform worse than in
other datasets. In WikiVote (Fig. 2 (c)), the Multi-Influor
method only performs better than SVM and Emb-IC, and
it achieves near performance to Node2vec and Inf2vec.

(a) Sina Weibo (b) Epinions

(c) WikiVote (d) NetHEPT

Fig. 2. Influence Spread Comparisons

The size of training data in neural networks could strongly
affect the performance of Multi-Influor. However, these
experimental results indicate that using more information
propagation data improves the performance of the Multi-
Influor approach. The real-world social networks provide
extensive user data, which guarantees the performance of
Multi-Influor. In other words, the Multi-Influor approach
can be more practical on large-scale datasets.

5. CONCLUSION

This study focused on exploring a cross problem for mul-
tiple network embeddings and social influence prediction,
and we developed a new end-to-end approach, namely
Multi-Influor, that learns multiple network embeddings for
each user in OSNs. The basic idea is to learn a neural-
network-based function that considers multi-dimensional
influence factors. The Multi-Influor approach takes a so-
cial network and action logs as input and outputs pre-
dictive influence probabilities. The experimental results
illustrate that the Multi-Influor approach performs better
than other baselines on influence predictions. Moreover,
Multi-Influor is a highly data-driven method that can be
more practical on real-world social networks.
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