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Abstract: The automation industry is currently in the process of transforming towards
Industrie 4.0. To fully leverage the new possibilities, e.g., predictive maintenance, systems
from all levels of the AT-pyramid are required to be fully connected. For this purpose there
exist abstract models as well as concrete implementations of middleware-based interconnection
platforms.
This paper aims to close the gap between abstract concepts and concrete implementations by
comparing technological concepts for a middleware implementation. At first, requirements are
determined, which should be fulfilled by middleware to be comprehensible and competitive.
Based on these requirements, six different middleware technologies are presented and evaluated.
The evaluation yields that both OPC UA Pub/Sub with AMQP/MQTT as transport and
DDS suit the requirements best. However, there are no complete implementations of OPC UA
Pub/Sub with AMQP/MQTT as transport available yet. Therefore DDS is chosen for a
prototypical middleware implementation. The prototype is tested and shows to fulfill all except
one requirement, namely real-time constraints.
In conclusion, it is recorded that for future middleware implementations, OPC UA Pub/Sub (as
soon as complete implementations are available) and DDS are the most appropriate technologies.

Keywords: Horizontal and Vertical Integration, Industrial communication protocols,
Middleware Integration and Communication, Systems Interoperability

1. INTRODUCTION

In today’s industry, the term Industrie 4.0 gets more and
more tangible as an ever-increasing amount of sensors are
recording our physical world. With this rise comes a surge
of raw data. The industry has a significant interest in
collecting and analyzing this data for further refinement.
Nevertheless, transparent access and availability of data is
still an issue as it is distributed over various systems. Fur-
ther on, many of these systems bear additional challenges
which prevent operators from effectively collecting data,
e.g.

• outdated software (Bisbal et al. (1999); Crotty and
Horrocks (2017)),
• little to no documentation (Crotty and Horrocks

(2017)),
• proprietary (fieldbus-)systems (Sauter (2010)), and
• system constructed according to the classical automa-

tion pyramid (IEC (2013)), which does not allow out-
of-band communication (Sauter (2010)).

? This research is part of the project ”M@OK” (ma-
chine@onlineknowledge), which has received funding by the Bavarian
Ministry of Economic Affairs, Energy and Technology (StMWi)
under grant number IUK566/001.

Implementing a data collection service that makes all data
available on top of such heterogeneous legacy environment
requires many point to point connections. Each of these
connections has to be implemented with a dedicated pair
of adapters. This results in a complex connection mesh.
Maintenance of such a mesh as well as integrating new
systems is a cost-intensive task.

Trunzer et al. (2019) proposed a generic system architec-
ture for Industrie 4.0 applications. The central part of the
concept design is a middleware-based interconnection plat-
form. In this setup, only one connection to the middleware
has to be set up and maintained for each system instead
of a communication mesh. New systems can be integrated
natively into the middleware communication, while legacy
systems can be attached via adapters. Finally, the concept
also allows for easy integration of additional services like
data storage to collect all and provide historical data. The
architecture concept is technology independent and can be
implemented using various sets of technology (see Trunzer
et al. (2018) for an example). For instance, different mid-
dleware solutions can be used to mediate the connected
systems. State-of-the-art approaches (see Section 3) focus
on the presentation of abstract reference architectures or
concrete realizations but do not consider the intermediate
step of choosing a suitable middleware solution.
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The contribution of this paper is, therefore, the compar-
ison of different technological concepts for the realization
of industrial middleware concepts as proposed by Trun-
zer et al. (2019). Based on the technology comparison, a
prototype is subsequently realized and evaluated against
industrial requirements. In comparison to the state-of-the-
art, the authors investigate the step of surveying available
technological concepts and evaluating the suitability for
an industrial middleware realization.

The remainder of the paper is as follows: Section 2 presents
requirements an industrial middleware should fulfill. Sec-
tion 3 gives an overview of the current state of the Art
concepts. In Section 4 different technological concepts are
presented and evaluated for their fulfillment of the require-
ments. The implementation of a prototype is described in
Section 5. Section 6 gives results of the prototype evalua-
tion. Finally, Section 7 concludes the paper.

2. MIDDLEWARE REQUIREMENTS

For an objective comparison and evaluation of middleware
technology concepts, a set of preferably standardized re-
quirements has to be determined beforehand. With VDI
(2013), the German VDI and VDE associations presented
a guideline defining the requirements for middleware in
industrial automation. The VDI and VDE are both as-
sociations of leading German engineers, scientists, and
enterprises, which are also promoting the German In-
dustrie 4.0 initiative. At the same time, they are the
primary target group for the proposed solution. Hence
their stated requirements can be considered as a reference.
Still, a comparison based on all requirements would be
too exhaustive. Therefore, five characteristic requirements
(R1-R5) are selected, which the authors consider to make
up the core of a middleware, which are explained in the
following. At the end of this chapter, an additional, non-
functional requirement is derived.

The Industrie 4.0 initiative triggered a steady rise of
smart communicating systems. Therefore, an industrial
middleware technology should be capable of handling a
variable number of participating systems without the need
to adapt to the underlying architecture. This ability, called
horizontal scalability (R1), is essential for middleware to
be future-proof.

It is of great importance that a concept does not have
to be implemented from scratch, if possible. Adaption of
available (R2) solutions lowers development effort and
shortens time-to-market. Therefore, available technologies
are preferred over theoretical designs.

The generic middleware concept, as introduced by Trunzer
et al. (2019), includes a real-time communication bus.
Therefore, the real-time capability is a metric to consider
as a requirement. Real-time can be divided into three
subcategories by considering the classification of deadlines,
hard, firm, and soft (Shin and Ramanathan (1994)). The
first indicates severe consequences if a deadline is missed.
Missing firm deadlines does not cause severe consequences,
but the result produced does lose its value. Frequent misses
of a soft deadline will degrade the overall utility of a result
produced. For an industrial middleware, soft real-time is
sufficient if no control interactions should be carried out

over the middleware. However, missing data for a longer
time frame may lead to false and/or delayed outcomes.
Consequently, soft real-time capability (R3) is considered
a requirement for middleware technology.

Another property the communication should fulfill, aside
from latencies, is that no messages are lost. Furthermore,
no messages should be received twice and perhaps be
interpreted as two individual messages. Each message
should be guaranteed to be received only once by each
querying receiver. This property is referred to in the
following by the term Quality-of-Service (QoS) (R4).

When deploying an implemented design, the configurabil-
ity (R5) has to be considered. Even a well-functioning mid-
dleware can be considered suboptimal if a large amount
of man-hours is required to configure the system. Also,
adding new participants should be viable with a reasonable
small amount of effort. Especially in a continually changing
environment and to accommodate possible failures, fast
and easy (re-)configurability is desirable.

For optimal middleware implementation, the selection of
a technological concept should be as transparent and
comprehensible as possible. Hence, the selection of a
technological concept for the middleware should not be
an arbitrary choice. A middleware based on a random
technological concept may suffer from disadvantages which
origin lies within the technology and cannot be resolved by
implementation means. The selected design should thus
be based on a comparison of multiple state of the art
technology concepts (R0).

3. EXISTING MIDDLEWARE REALIZATIONS

There are already several approaches that investigate the
same or similar problem statements.

The PERFoRM project is dedicated to solving the ever-
increasing demand for flexibility and reconfigurability in
the industry. The approach taken by the PERFoRM
project members is similar to the one used in this contri-
bution. They compare an extensive list of Enterprise Ser-
vice Bus (ESB)-based implementations (Gosewehr et al.
(2016)), but no other middleware concepts besides ESBs.
Furthermore, a system architecture and an exemplary im-
plementation are presented (Angione et al. (2017)).

The Line Information System Architecture (LISA), as
described by Theorin et al. (2015), is designed to enable
utilization of data while maintaining easy factory integra-
tion. The main goal of LISA is to be industrially applica-
ble. Therefore, LISA is based on international standards
and established off-the-shelf technologies. However, the
authors present the implemented design without a pre-
liminary comparison of other concepts or implementation
possibilities.

Trunzer et al. (2018) describe a technological concept for a
Unified Data Transfer Architecture in automated produc-
tion systems based on their generic architecture presented
in Trunzer et al. (2019). Their developed architecture aims
to enable the handling of big data from heterogeneous
sources. The authors analyze the requirements for such
an architecture and compare different concepts. As none
of the considered concepts fulfill all of their requirements,
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the authors develop their architecture. Nevertheless, the
reasoning for the implementation technology for the ar-
chitecture is not mentioned.

Based on OPC UA aggregate servers, Großmann et al.
(2014) developed a solution for the problem of point to
point connection meshes. The concept replaces point to
point OPC UA connections with an OPC UA aggregate
server, which acts as a central integration point. A working
prototype is implemented. However, there is no reason why
an OPC UA aggregate server is chosen over other concepts.

Some of the presented works fulfill all five functional
requirements (R1-R5). However, none of the approaches
includes a comparison of suitable technological concepts
for the implementation of the middleware (R0).

4. COMPARISON AND EVALUATION OF
MIDDLEWARE TECHNOLOGIES

Addressing R0, relevant technology concepts for an indus-
trial middleware are compared in the following. The pre-
sented technologies are based on well known (industrial)
specifications and are already present in the literature.
Therefore, they are expected to be highly relevant to the
realization of industrial middleware. Overall, six different
technology concept ideas are compared.

The first is based upon OPC UA (OPC Unified Archi-
tecture, OPC (2017)). Data producers run an OPC UA
server to which the data consumers, OPC UA clients, can
connect to (Schleipen et al. (2016), see Figure 1 a). There
are multiple free and commercial OPA UA implementa-
tions available 1 , 2 , 3 , which fulfills (R2). These provide
communication over a TCP Transport Layer. TCP only
ensures messages are received at least once, which partially
satisfies (R4). Although OPC UA implementations cannot
satisfy hard real-time constraints, they are still capable
of fulfilling soft real-time constraints (R3). OPC UA it-
self is horizontally scalable (R1), however the point-to-
point nature of server/client communication results in
large connection meshes. A client may not only gather
information from one data provider instance but may want
to query multiple data producers. This will result in a high
configuration complexity as setting up connections to the
servers is left to the client (R5), and the provided discovery
mechanisms are only informational.

The configuration complexity is a relative disadvantage of
the previous technological concept. Adding an centralized
aggregation instance can lower the configuration efforts
(Großmann et al. (2014), see Figure 1 d). Data of several
OPC UA servers get aggregated and is offered at the
central aggregation server. Hence, each system needs only
one connection to the aggregate server. Therefore, the
requirement of low configuration effort (R5) is met. As this
concept is based on OPC UA, requirements R2 and R4 are
still fulfilled. The disadvantage of this solution is that by
adding an aggregation layer, time constraints that were
previously met may no longer be satisfied (R4). This
problem intensifies if more aggregation layers are added.

1 https://open62541.org, accessed 29.08.2019
2 https://github.com/opcfoundation, accessed 29.08.2019
3 https://www.beckhoff.de/english/twincat/tf6100.htm, ac-

cessed 29.08.2019

The major disadvantage of this concept is the inability
of horizontal scaling (R1). One would have to partition
the network into multiple parts to deal with an increasing
number of aggregation servers.

At the beginning of 2018, the 14th part of the OPC UA
specification (OPC (2018b)) was released, which extends
the OPC UA standard by a Publish/Subscribe (Pub/Sub)
communication model. The specification includes map-
pings to the two standardized protocols AMQP (AMQ
(2014)) and MQTT (MQT (2016)), which allow a broker-
based message distribution for OPC UA (see Figure 1 c).
Part 14 also defines the customized, UDP-based UADP
protocol (OPC (2017)). Pub/Sub enables a good horizon-
tal scalability (R1). Moreover, the use of MQTT/AMQP
broker technologies abstracts the need to manually identify
and connect to endpoints, resulting in a low configuration
effort (R5). R4 can be fulfilled by using AMQP or MQTT
as the transport layer. Unfortunately, no feature-complete
implementations are available yet (R2). Therefore, it can
not be determined whether OPC UA Pub/Sub will be
(soft) real-time capable or not (R3). Nevertheless, partial
implementations are already available 4 . None of them
supports AMQP/MQTT, but instead use UADP commu-
nication which is depicted in Figure 1 b). This provides
almost all of the advantages of OPC UA Pub/Sub with
AMQP/MQTT mentioned before, but with the drawback
that UADP offers no QoS support (R4).

Another approach to realize the Pub/Sub communication
model similar to Figure 1 c) is a custom queue-based
message broker. Here, protocols like AMQP or MQTT
are used. Participants are managed by a custom admin-
istration system for communication and service registry.
Available message-brokers like RabbitMQ 5 , Apache Ac-
tiveMQ 6 or Apache Kafka 7 can serve as a basis here.
As the custom queue-based message broker realizes the
Pub/Sub model, horizontal scalability is given (R1) as
well as QoS when using an appropriate protocol (R4).
Assessing fulfillment of (R2) depends on the selection of
technologies for implementation. For example, the use of
RabbitMQ as a message broker allows for easy deployment
without much implementation effort. In comparison, the
utilization of Kafka requires a moderate to high amount
of implementation work. The same reasoning can be made
for soft real-time capability (R3) and configurability (R5).

A further technology concept to consider is the usage of
DDS (Data Distribution Service, DDS (2015); Garćıa-Valls
et al. (2018)). Establishing connections between different
participants is handled by the virtual DDS Domain and
the DDS Data Space. Both systems are implemented in the
participants themselves. Hence, the message exchange is
decentralized and distributed using the Pub/Sub paradigm
(see Figure 1 e). This allows for reasonable horizontal
scalability (R1). The Object Management Group (OMG)
specification for DDS dictates a minimum of QoS (R4) and
can satisfy soft real-time deadlines (R3). There are already
various, mostly commercial but also free, implementations
available (R2), which include all features according to the
latest specification revision. A minor disadvantage is the

4 See footnotes 1 and 3
5 https://www.rabbitmq.com/, accessed 18.07.2019
6 http://activemq.apache.org/, accessed 18.07.2019
7 https://kafka.apache.org/, accessed 18.07.2019

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11084



OPC UA

Server

OPC UA

Server

OPC UA

Server

OPC UA

Client

OPC UA

Client

OPC UA

Client

OPC UA Server

OPC UA ClientA
g
g
re

g
a
te

 
S

e
rv

e
r

OPC UA

Server

OPC UA

Server

OPC UA

Server

OPC UA

Client

OPC UA

Client

OPC UA

Client

OPC UA

Publisher

OPC UA

Publisher

OPC UA

Publisher

OPC UA

Subscriber

OPC UA

Subscriber

OPC UA

Subscriber

DDS

Publisher

DDS

Publisher

DDS

Publisher

DDS

Subscriber

DDS

Subscriber

DDS

Subscriber

Global Data Space

D
D

S
 D

o
m

a
in

OPC UA

Publisher

OPC UA

Publisher

OPC UA

Publisher

OPC UA

Subscriber

OPC UA

Subscriber

OPC UA

Subscriber

AMQP/MQTT Message Broker

OPC UA

Publisher

OPC UA

Publisher

OPC UA

Publisher

OPC UA

Subscriber

OPC UA

Subscriber

OPC UA

Subscriber

AMQP/MQTT Message Broker

Data Producer

Data Consumer

(b) OPC UA PUB/SUB over UADP (c) OPC UA PUB/SUB over AMQP/MQTT(a) OPC UA over n-to-n connections

(d) OPC UA Aggregate Server (e) DDS over virtual Domain Legend

Fig. 1. Overview of five different technology concepts highlighting their communication interconnection

Table 1. Comparison of middleware concepts

Concept R1 R2 R3 R4 R5

OPC UA o + + o -

OPC UA with
Aggregate Server

- + o o +

OPC UA Pub/Sub
over MQTT/AMQP

+ - x + +

OPC UA Pub/Sub
over UDP

+ o + - +

Queue-based Message
Broker with own construct

+ x x + x

Data Distribution Service + + + + o

Legend: + fulfilled, - not fulfilled, o partially fulfilled, x depends

handling of messages and data types with DDS: every
client requires information about message types it wants
to process already at compile time. This contradicts easy
configurability (R5).

Even though DDS has minor deficits in R5, it is still the
most suitable middleware concept when considering the
defined requirements, as can be seen in Table 1. The only
alternative which could compete is OPC UA Pub/Sub over
MQTT/AMQP, which fulfills every requirement except
that it is not yet implemented. However, the need to
commit oneself to a solution may render irrelevant in the
future as the organizations behind DDS and OPC UA
are currently working on an OPC UA/DDS gateway
specification (OPC (2018a)).

5. OVERVIEW OF THE PROTOTYPE
IMPLEMENTATION

Based on the previous results, a prototypical, DDS-based
middleware is implemented. Primary development tasks
for the prototype is leveraging all participants to commu-

nicate via DDS and integration of a data storage to store
and provide historical data. Implementation of a central
discovery service or a message broker is not required as
DDS is a decentralized communication protocol.

The main goal is to make the prototype technology-
independent, i.e., independent of the actual DDS imple-
mentation and data storage solution. Therefore, a commu-
nication library for participants is proposed. The library
abstracts the DDS implementation-specific code to a gen-
eral interface, which is used by participants to communi-
cate via the middleware. The library allows to

• subscribe to live data,
• publish live data,
• get historic (archived) data, and
• discover all publishers.

OpenDDS 8 was chosen as a DDS system for the prototype
since it is open source and well documented. To store
large amounts of data and give easy access with efficient
query mechanisms, PostgreSQL 9 is used as an additional
data storage component connected to the architecture. A
schematic overview of the prototype architecture can be
seen in Figure 2.

The prototype, which is made up of the communication
library and the database adapter, is written in C++. It
was tested for x86 (Windows 10 & GNU/Linux Ubuntu)
and ARM (Raspbian) platforms.

6. PROTOTYPE EVALUATION

To verify the concept and its implementation, the devel-
oped prototype is evaluated. For this purpose, two scenar-
ios, a Proof of Concept (PoC) and a load test, are realized.
The PoC test aims to show the general applicability of the
prototype. The prototype is rolled out on the myJoghurt

8 http://opendds.org/, accessed 29.08.2019
9 https://www.postgresql.org/, accessed 29.08.2019
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Fig. 2. Schematic overview of the prototype architecture.

Industrie 4.0 prototype plant 10 , which represents a realis-
tic and heterogeneous semi-industrial environment. After
the prototype proves to be working correctly, the subse-
quent load test is conducted. The load test is meant to
measure relevant key figures of the implementation. It is
conducted on an artificial setup, as described below.

All tests are carried out with DDS QoS set to reliable and
infinite message lifespan. OpenDDS offers its discovery
instance DCPSInfoRepo which is used to associate sub-
scribers and publishers for this evaluation. Throughout all
tests, each publisher and subscriber logged the total num-
ber of sent respectively received messages. Additionally,
during the first PoC and load tests, all received and sent
messages are logged individually. The exhaustive logging
of all messages was dropped during later tests to reduce
log size and overhead.

6.1 Proof of Concept Test

The applicability of the concept is verified by rolling out
the implemented prototype on a lab-scale facility consist-
ing of two independent plants. The plants consist of a
variety of heterogeneous legacy systems and communicate
via different protocols, namely OPC UA, OPC DA, MQTT
and Beckhoff ADS 11 . This heterogeneity of systems and
protocols is a common and representational situation in
industrial engineering. The success of this test was proven
by a working interconnection of all connected systems and
protocols through the DDS middleware. Newly joining
participants were discovered correctly and able to commu-
nicate. All published messages are received by the intended
subscribers and are recorded correctly by the database.

6.2 Load Test

The PoC test does not indicate the reliability and stability
of the middleware under high loads. Therefore, a load
test determines the key figures of the prototype. As key

10 http://i40d.ais.mw.tum.de/, accessed 29.08.2019
11 https://www.beckhoff.de/default.asp?twincat/tc1000.htm?

id=1890306418903071, accessed 29.08.2019

Publisher

Raspberry Pi

Subscriber

+ Time Server

+ DCPSInfoRepo

Raspberry Pi

Switch

Fig. 3. Setup for latency tests.

figures, the maximum possible message rate, as well as the
latency of messages, are identified. The first one sets the
upper limit for participating publishers in the middleware
or their publishing frequency. It indirectly reflects the
scalability of the solution. The second one indicates the
real-time communication capabilities of the middleware.
To determine the maximum message rate on the specific
hardware, as well as the latency of the messages at each
rate, a latency load test was carried out.

To simplify the setup and execution of the tests, dummy
publishers and subscribers are used instead of real par-
ticipants. These publishers do not poll real data from a
machine. Instead, they generate arbitrary data as pay-
load (one integer of 4 bytes), which is published with a
related timestamp (8 bytes). Upon receiving a message,
the subscribers discard the payload and take the current
timestamp. Both publishing and receiving timestamps are
used to calculate the message latency. The clocks of all
participants are synchronized at the beginning of each
measurement, and calculated drift rates are used to correct
the latency measurements.

The setup consists of one publisher and one subscriber,
each running on a Raspberry Pi (RPi) 3 Model B with
Raspbian 9. Both are connected via Ethernet to the same
network switch (see Figure 3). The subscribing RPi also
runs the DCPSInfoRepository and the time server for clock
synchronization over NTP. The whole test is replicated on
two more RPis connected via a different switch to increase
confidence about the correctness of the results. The latency
tests are carried out for message rates of 10, 100, 500,
1,000, 2,000 and 10,000 msg/s. Tests were repeated at
least 35 times for each rate and lasted seven minutes,
respectively.

In the following, the results of the load test for a selected
message rate of 2,000 msg/s are shown. A histogram of
all recorded values is depicted in Figure 4. The histogram
states the average latency tL, the standard deviation σ of
the latency (σL), as well as of the drift measured at the
end of each test run (σD), and the jitter J . The jitter is
calculated as J = (σL + σD)2. Figure 4 reveals a small
but persistent number of significant latency outliers up
to almost seven seconds. The zoom in Figure 4 further-
more highlights the primary peak of measured latencies at
around 600 microseconds and indicates that the majority
of measurements reside in the millisecond range. For a pos-
tulated message lifespan of 2 milliseconds, only 0.33% of
the messages would be expired and discarded. Nonetheless,
the specification of a concrete lifespan setting is a trade-off
between acceptable latencies and allowed message drops.

Results for measurements at all message rates over all
repetitions are summarized in Table 2. The table states
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Fig. 4. Histogram of message latencies for the primary
publisher/subscriber pair of RPis with a message rate
of 2000 msg s−1 (tL = 3066 µs, σL = 78,570 µs, σD =
41 µs, J = 6,179,842,220 µs2, samples = 78,641,375).
All data (outer plot, bin size = 23,333 µs, logarithmic
frequency axis) and zoom to primary peak (inner
plot,bin size = 5 µs).

the minimum, average, and maximum measured latency
for each conducted message rate as well as the jitter.
Furthermore, it lists the overall number of measurement
points, as well as the number and fractions of latencies
above a threshold of two milliseconds. The results for the
other message rates expose a similar trend as observed for
2000 msg/s: there is always a small number of outliers.
Still, the percentage of latencies higher than two millisec-
onds never exceeds 0.5%.

Measurements with a message rate of 10,000 msg/s expose
the upper limit of the possible message rate. 10,000 msg/s
could not be achieved, but the rate instead capped at
around 4,400 msg/s. One could observe that the publisher
and subscriber RPi reached 100% CPU utilization. There-
fore, it appears that the prototype reached its maximum
achievable performance on the RPi hardware. Measure-
ments on the secondary RPi pair confirmed the results.

Overall, the middleware is reliably capable of handling
message rates up to 4,000 msg/s in the given use-case.
Measurements for higher message rates are hindered by the
hardware limitations of the used RPis, suggesting that the
middleware implementation itself can handle higher loads
on more powerful hardware. An overall average latency in
magnitudes of milliseconds could be measured. However,
outliers in magnitudes of around a few seconds diminish
the quality of message receiving reliability.

6.3 Evaluation Results

The evaluation results are used to verify if the implemen-
tation of the concept meets the considered requirements.

During the PoC test, it was observable that participants,
publisher as well as subscriber, could arbitrarily be added
and removed from the DDS middleware without any
adverse side effects. It is to be expected that the process
of adding and removing participants to and from the

communication layer at a larger scale of participating
systems poses no problem as well. Further on, the load
tests confirmed that the communication infrastructure
and database could handle significant stress. For the
middleware, it should be of no interest if few publishers
cause a high load with unrealistic high message rates or
many participants with significantly lower message rates.
This does not directly prove the fulfillment of horizontal
scalability (R1) for hundreds or more of participants. Still,
it is assumed that the middleware achieves R1 even at
larger scales for the two reasons mentioned above.

The demand for usage of already implemented (R2) solu-
tions is obeyed as far as possible. Only abstracting layers
like the communication interface and database adapter to
make the underlying technologies, namely OpenDDS and
PostgreSQL, exchangeable are implemented. The adapters
make extensive use of existing libraries for their respective
communication protocols.

Considering the outliers during the latency tests, the re-
quirement soft real-time capability (R3) may not be ful-
filled in every scenario. This is due to the magnitude
of the outliers and their highly unpredictable manner of
occurrence. With a postulated message lifetime of 2 mil-
liseconds, only a maximum of 0.5% of the messages exceeds
this limit. Depending on the specific use-case, adjustment
of the lifetime setting is a trade-off between acceptable
maximum latencies and message loss. Nevertheless, reli-
able communication with no loss of messages at very low
latencies is not possible with the current implementation,
which could limit the applicability of the middleware.

The analysis of the created log files was carried out
to verify the correct transfer of messages between the
systems. All subscribers have received the same number
of messages their associated publisher has sent. A total
of 25 samples of the exhaustive subscriber and associated
publisher logs were randomly selected and examined in
detail. It was found that each message is unique, and the
correct number of total messages was not falsely achieved
by receiving one message twice while losing another one
entirely. The results strongly indicate that a QoS (R4)
level where each sent message should be received precisely
once is constantly met.

The prototype is implemented as configurable (R5) as
possible. The DDS communication, as well as the database
storage, are abstracted by interfaces and can, there-
fore, easily be replaced. The OpenDDS-specific DCPSIn-
foRepository allows for adding new communication par-
ticipants without further actions required. Moreover, all
implemented publishers and subscribers are configurable
as far as possible through configuration files.

The evaluation proved the functioning of the prototype
and that it is capable of integrating various protocols. Load
tests have shown that the middleware can reliably handle
message rates of up to 4000 msg/s on RPis. The chosen
QoS settings for DDS prohibit a real-time critical usage
but could be changed to most likely support real-time if a
best-effort QoS is sufficient.

In total, four out of five functional requirements could
be fulfilled (R1, R2, R4, and R5), as well as the non-
functional requirement R0. R3 could only partially be
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Table 2. Summary of latency results for primary RPi pair

Message rate Latency tL Jitter J Total number Measured Fraction of
min avg max of measured latencies latencies

(msg/s) (µs) (µs) (µs) (µs2) points > 2 µs > 2 µs

10 640 1,046 885,364 32,014,918 382,291 606 0.0016
100 624 1,132 1,676,759 134,688,067 3,778,740 8,227 0.0022
500 416 1,282 2,052,391 386,233,120 18,865,725 56,551 0.0030

1,000 471 1,902 1,287,547 777,661,633 15,078,611 71,247 0.0047
2,000 493 3,066 6,995,701 6,179,842,220 78,641,375 261,629 0.0033
4,400 510 37,677 2,692,251 48,610,062,311 64,387,106 2,597,623 0.0403

fulfilled, which means it may or may not be considered
fulfilled depending on two factors. The first is the defined
soft deadline for message transfers. The second is the rate
of decline of the usefulness of message payloads because of
missed deadlines.

7. SUMMARY AND OUTLOOK

With the trend towards Industrie 4.0, production plants
offer more process data for further refinement. However,
complex issues currently prevent the collection and further
processing of this data. Primarily, the need for integrating
a highly diverse set of systems and protocols sets up a huge
barrier. To overcome this barrier, multiple abstract system
architectures and concrete middleware realizations already
exist. This work tries to overcome the gap between both
categories by comparing multiple concept technologies.

Based on a requirements analysis, five functional require-
ments are selected, the middleware should fulfill. The
technology concept comparison based on the require-
ments at hand yields that both, OPC UA Pub/Sub over
AMQP/MQTT and DDS meet the desired requirements,
except that currently, no complete implementations for
OPC UA Pub/Sub over AMQP/MQTT are available.

A DDS-based prototype is realized and evaluated in detail.
It is deployed to a lab-scale facility demonstrating its func-
tionality. Load tests verified that the middleware is capable
of message rates of 4,000 msg/s on RPis. Evaluation of
the middleware shows that the presented prototype fulfills
the requirements horizontal scalability (R1), already imple-
mented (R2), QoS (R4) and configurability (R5). Never-
theless, soft real-time (R3) capability cannot be completely
fulfilled at the same time as R4. Future works include
additional measurements with larger hardware setups as
well as a reevaluation as soon as OPC UA Pub/Sub over
AMQP/MQTT is available.

Regarding OPC UA, it may be beneficial to check the
development status of the mentioned OPC UA/DDS gate-
way. As of today, OPC UA does not fulfill all QoS re-
quirements, while the implemented and evaluated DDS
middleware in this work does not fulfill hard real-time
demands. It may be of interest to explore a combina-
tion of both systems taking into account the gateway, as
mentioned earlier, essentially combining two environments
with different demands. OPC UA Pub/Sub over TSN
(Pfrommer et al. (2018)) is hard real-time capable and
can, therefore, be used on the field level. The business-
level uses DDS to gain access to a variety of QoS settings,
which may be more important than real-time properties. A

gateway combines these otherwise incompatible networks
and allows for intercommunication.
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