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Abstract: This paper studies scalable control of power systems, i.e., control with the constraint
that controllers of all generators are the same. This control framework is useful to reduce the
cost of constructing large-scale power systems because we can obtain controllers of all generators
merely by designing one controller. The problem addressed here is to find the same controllers
stabilizing an equilibrium point of the resulting feedback system and improving the performance
in terms of the time response. As a solution to this problem, we present controllers to uniformly
increase the damping forces of generators. We then show that an equilibrium point of the
resulting feedback system is stable under certain conditions. In addition, we present a design
method of the controller gain for improving the performance of the resulting feedback system
in terms of the time response.
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1. INTRODUCTION

Control of power systems has received considerable at-
tention in the field of power engineering. In particular,
many renewable energy sources with uncertainties have
been recently introduced by environmental concerns [Shah
et al. (2015)], and thus power system control will become
increasingly important.

So far, many studies on power system control have been
conducted. For example, there are studies on controller
design based on frequency responses [Dysko et al. (2010)],
nonlinear observers [Mahmud et al. (2012)], hybrid control
[Zhang et al. (2019)], and sliding mode control [Huerta
et al. (2019)]. On the other hand, in the existing studies,
researchers have implicitly assumed that controllers of
generators are separately designed and implemented. Such
an assumption leads to the increase of time and effort
required for controller design and implementation if the
number of generators is large. For example, in the method
proposed in [Dysko et al. (2010)], controllers are designed
by a step-by-step procedure; thus, when applying this
method to 100 generators (controllers), the following 100
steps are necessary:

1) designing controller 1,
2) designing controller 2 based on controller 1,

...

100) designing controller 100 based on controllers 1, 2, . . . ,
99.

This is a problem to be solved because power systems are
generally large-scale systems.
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Thus, this paper considers scalable control of power sys-
tems. More precisely, we consider power system control
under the constraint that controllers of all generators are
the same. By imposing this constraint, we can obtain con-
trollers of all generators merely by designing one controller,
and do not have to implement a different controller in each
generator. This reduces time and effort spent to design and
implement controllers.

This paper aims to establish a framework of scalable
control of power systems. To this end, under the above
constraint, we consider a design problem of controllers
such that an equilibrium point of the resulting feedback
system is stable and the performance in terms of the time
response is improved. For this problem, this paper makes
the following two contributions:

1) As a solution to the design problem, we present scal-
able controllers to uniformly increase the damping
force of each generator. The difficulty of our problem
is that a straightforward approach based on linear
state feedback control [Franklin et al. (2010)] is not
available due to the above scalability constraint. How-
ever, by focusing on the damping forces of generators,
we can obtain a solution to the problem. We then
show that if the original (i.e., uncontrolled) system
has a stable equilibrium point, the stability is pre-
served by the proposed scalable controllers.

2) We present a design method of the controller gain for
improving the performance of the resulting feedback
system in terms of the time response. In this method,
we seek a gain minimizing a quadratic performance
index by a linear search. It is difficult to directly
solve the minimization problem of the performance
index because the product of variables appears in its
constraint. However, by focusing on the fact that the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 13649



gain is common in all the controllers and by using a
linear search, we can find an appropriate gain.

Note that this paper is based on our preliminary version
[Izumi et al. (2019)]. The preliminary version has focused
on the stability of an equilibrium point of the resulting
feedback system. Meanwhile, this paper considers not only
the stability but also the performance in terms of the time
response, and presents a design method of the controller
gain for achieving good performance.

Notation. Let R and R+ be the real number field and
the set of positive real numbers, respectively. We use 0
to represent both the zero scalar and the zero vector.
The n-dimensional vector of ones is represented by 1n,
i.e., 1n := [1 1 · · · 1]>. The n × n identity matrix
and the n × m zero matrix are represented by In and
0n×m, respectively. For the numbers x1, x2, . . . , xn ∈ R,
let diag(x1, x2, . . . , xn) be the diagonal matrix whose i-th
diagonal element is xi. We denote by tr(M) the trace of
the matrix M . Finally, E(x) represents the expectation of
the random variable x.

2. PROBLEM FORMULATION

Consider a power system Σ with n generators.

The dynamics of generator i (i ∈ {1, 2, . . . , n}) is described
by the swing equation

Miδ̈i(t) = Pmi − Pei(δ(t))−Diδ̇i(t) + ui(t), (1)

where δi(t) ∈ R is the phase angle of the generator voltage,
δ(t) ∈ Rn represents the phase angles of all the generator
voltages, i.e., δ(t) := [δ1(t) δ2(t) · · · δn(t)]>, ui(t) ∈ R is
the control input, and Mi ∈ R+, Pmi ∈ R, and Di ∈ R+

are the inertia constant, the mechanical input, and the
damping coefficient, respectively. The variable Pei(δ(t)) ∈
R is the electrical output expressed as

Pei(δ(t)) :=

n∑
j=1

EiEjBij sin(δi(t)− δj(t)), (2)

where Ei ∈ R+ is the generator voltage and Bij ∈ R is
the susceptance between generators i and j. In general,
Bij = Bji holds for every (i, j) ∈ {1, 2, . . . , n}2. Note in
(2) that the power system Σ is assumed to be lossless.

We suppose that a controller Ki is embedded in each
generator i. This is of the form

Ki : ui(t) = f(δi(t), δ̇i(t)), (3)

where δi(t) and δ̇i(t) are the inputs, ui(t) is the output,
and f : R × R → R is a function. In (3), f does not have
the subscript i; that is, f is assumed to be the same for
the controllers Ki (i = 1, 2, . . . , n). This implies that all
the controllers have the same structure, and in this sense,
Ki (i = 1, 2, . . . , n) are scalable controllers.

Then, we consider the following problem.

Problem 1. For the (lossless) power system Σ, find scalable
controllers K1,K2, . . . ,Kn (i.e., a function f) such that
the resulting feedback system

(a) has an asymptotically stable equilibrium point,
(b) achieves good performance in terms of the time re-

sponse compared to the original system (i.e., the
system with ui(t) ≡ 0 for every i ∈ {1, 2, . . . , n}).

Problem 1 cannot be solved by directly using linear state
feedback control. In fact, by regarding all the generators as
a plant and designing the feedback gain, we obtain a gain
matrix whose elements are generally different from each
other; thus, the resulting controllers cannot be expressed
as (3). This fact makes the problem challenging.

3. STABILIZATION BY SCALABLE CONTROLLERS

We first consider (a) in Problem 1. More precisely, we
present scalable controllers such that an equilibrium point
of the resulting feedback system is guaranteed to be stable.

3.1 Proposed Controllers

As mentioned in the previous section, the straightforward
approach using linear state feedback control is not avail-
able for Problem 1. Hence, we focus on damping forces,
which are known as a fundamental characteristic of gener-
ators, and consider controllers based on the forces.

Based on this idea, we propose the following solution to
Problem 1:

f(δi(t), δ̇i(t)) := −kδ̇i(t), (4)

where k ∈ R+ is the controller gain. In (4), k is the same for
the controllers Ki (i = 1, 2, . . . , n) because the subscript
i is not attached to k. Therefore, this solution results in
scalable controllers. The proposed controllers given by (3)
and (4) play the role of uniformly increasing the damping
forces of all the generators. In fact, substituting (3) and
(4) into (1) yields

Miδ̈i(t) = Pmi − Pei(δ(t))− (Di + k)δ̇i(t) (5)

for every i ∈ {1, 2, . . . , n}, which means that the damping
coefficient of each generator i increases from Di to Di + k
by the proposed controllers.

For the proposed scalable controllers, the following result
is obtained.

Theorem 1. For the (lossless) power system Σ, assume
that the original system has an asymptotically stable
equilibrium point. Let K1,K2, . . . ,Kn be given by (3) and
(4). Then, the equilibrium point remains asymptotically
stable for every k ∈ R+.

Sketch of Proof. Let us introduce the function V (δ, δ̇) :=

U(δ, δ̇) − Ue, where U(δ, δ̇) is an energy function for the
original system, defined as

U(δ, δ̇) :=
1

2

n∑
i=1

Miδ̇
2
i −

n∑
i=1

Pmiδi

−
n−1∑
i=1

n∑
j=i+1

EiEjBij cos(δi − δj) (6)

and Ue is the value of U(δ, δ̇) at the asymptotically stable
equilibrium point. Then, the following three facts and
an extension of the Lyapunov’s stability theorem (e.g.,
Corollary 4.1 in [Khalil (2002)]) prove the theorem.

(i) The locations of the equilibrium points of the power
system Σ are the same as those of the original system
for every k ∈ R+.

(ii) Consider the equilibrium point that is asymptotically
stable in the original system. Then, there exists a set

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13650



D satisfying the following two conditions for every
k ∈ R+: (ii–a) D contains the equilibrium point but

does not contain the others; (ii–b) V (δ, δ̇) is positive
definite on D when the equilibrium point is considered
as the origin.

(iii) For every k ∈ R+, the time derivative of V (δ, δ̇)
is negative semidefinite, and no solution can stay
identically in the points in D satisfying V̇ (δ, δ̇) = 0
other than the above equilibrium point.

2

Theorem 1 means that if there exists an asymptotically
stable equilibrium point in the original system, the sta-
bility is preserved by the proposed scalable controllers for
every k ∈ R+.

3.2 Example

Consider the power system Σ with n := 3. Based on [Sauer
and Pai (1998)], let M1 := 0.125 s2, M2 := 0.0340 s2,
M3 := 0.0160 s2, Pm1 := 1.00 pu, Pm2 := 1.00 pu, Pm3 :=
−2.00 pu, D1 := 0.0531 s, D2 := 0.0265 s, D3 := 0.00531 s,
E1 := 1.05 pu, E2 := 1.05 pu, E3 := 1.02 pu, and

B :=

[−2.99 1.51 1.23
1.51 −2.72 1.01
1.23 1.01 −2.37

]
,

where B ∈ R3×3 is the matrix whose (i, j)-element is Bij

in the unit of pu. In this case, the (original) system has

an asymptotically stable equilibrium point at [δ> δ̇>]> =
[0.862 0.911 −0.102 0>]>, which satisfies the assumption
in Theorem 1. We further let K1, K2, and K3 be given by
(3) and (4) with k := 0.1.

Fig. 1 shows the time evolution of δ(t) for [δ>(0) δ̇>(0)]> :=
[1.2 0 0.5 0>]>, where each line corresponds to each
element of δ(t). We see that δ(t) converges to that at
the equilibrium point. Fig. 2 shows the time evolution of
V (δ(t), δ̇(t)). It turns out that V (δ(t), δ̇(t)) is nonnegative
and monotonically decreases as time goes on. These results
validate Theorem 1.

4. DESIGN OF CONTROLLER GAIN

In this section, for (b) in Problem 1, we present a design
method of the gain k for improving the performance of the
resulting feedback system in terms of the time response.

4.1 Preliminary

From δi(t)−δj(t) in (2), we can show that the equilibrium
points of the feedback system given by (1), (3), and (4)
are invariant under the uniform translation δe → δe +
c1n, where c ∈ R is a constant. This means that each
equilibrium point is not isolated, which makes a discussion
of the deviation from it difficult.

Hence, we focus on the relative phase angles, and introduce
the new state variable vector x(t) := [δ1(t)− δn(t) δ2(t)−
δn(t) · · · δn−1(t)− δn(t) δ̇1(t) δ̇2(t) · · · δ̇n(t)]> ∈ R2n−1.
Then, using (1) and (2), we can express the state equation
of the power system Σ as
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Fig. 1. Time evolution of δ(t) for k := 0.1
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Fig. 2. Time evolution of V (δ(t), δ̇(t))

ẋ(t)=



xn(t)− x2n−1(t)
xn+1(t)− x2n−1(t)

...
x2n−2(t)− x2n−1(t)
(1/M1)(Pm1−Pe1,x(x(t))−D1xn(t)+u1(t))
(1/M2)(Pm2−Pe2,x(x(t))−D2xn+1(t)+u2(t))

...
(1/Mn)(Pmn−Pen,x(x(t))−Dnx2n−1(t)+un(t))


,

(7)

where xi(t) (i ∈ {1, 2, . . . , 2n − 1}) is the i-th element of
x(t) and Pei,x(x(t)) (i ∈ {1, 2, . . . , n}) is defined as

Pei,x(x(t)) :=

EiEnBin sinxi(t) +
∑

j∈{1,2,...,n−1}

EiEjBij

× sin(xi(t)− xj(t)) if i ∈ {1, 2, . . . , n− 1},

−
∑

j∈{1,2,...,n−1}

EnEjBnj sinxj(t) if i = n.

(8)

In addition, based on Theorem 1, we assume that there
exists an asymptotically stable equilibrium point in the
original system. We represent this equilibrium point and
its i-th element by xe ∈ R2n−1 and xei ∈ R, respectively.

4.2 Proposed Design Method

For the system (7), we introduce the performance index

J :=

∫ ∞
0

(∆x>(t)Q∆x(t) + u>(t)Ru(t))dt, (9)

where ∆x(t) := x(t)−xe, u(t) := [u1(t) u2(t) · · · un(t)]>,
and Q ∈ R(2n−1)×(2n−1) and R ∈ Rn×n are positive def-
inite matrices. This is a standard quadratic performance
index, and a smaller value of J indicates better perfor-
mance. We design the gain k such that J is minimized.
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To this end, we linearize the feedback system given by (3),
(4), and (7) around x = xe. Using (8), we can linearize the
system (7) as

∆ẋ(t) = A∆x(t) +Gu(t), (10)

where A ∈ R(2n−1)×(2n−1) and G ∈ R(2n−1)×n are defined
as

A :=
0(n−1)×(n−1) In−1 − 1n−1

a1,1 · · · a1,n−1
...

. . .
... −diag

(
D1

M1
,
D2

M2
, . . . ,

Dn

Mn

)
an,1 · · · an,n−1

 ,
(11)

G :=

 0(n−1)×n

diag

(
1

M1
,

1

M2
, . . . ,

1

Mn

) (12)

for

ai,j :=

− 1

Mi

(
EiEnBin cosxei +

∑
j∈{1,2,...,n−1}\{i}

EiEjBij

× cos(xei − xej)

)
if i ∈ {1, 2, . . . , n− 1}, i = j,

EiEjBij

Mi
cos(xei − xej)

if i ∈ {1, 2, . . . , n− 1}, i 6= j,

EnEjBnj

Mn
cosxej if i = n.

(13)

Moreover, by the definitions of x(t) and ∆x(t) and the

fact that δ̇ = 0 at the equilibrium point xe, we obtain
δ̇(t) = H∆x(t) for

H :=
[
0n×n−1 In

]
. (14)

This, together with (3) and (4), yields

u(t) = −kH∆x(t). (15)

By regarding H∆x(t) in (15) as the output of the system
(10), we see that the proposed scalable control corresponds
to output feedback control [Levine and Athans (1970);
Syrmos et al. (1997); Lewis et al. (2012)], where the gain
matrix is restricted to the scalar k.

By focusing on this fact and using techniques developed
in those studies, we obtain the following theorem.

Theorem 2. Consider the feedback system given by (10)
and (15) and the performance index J in (9). Suppose
that the initial state ∆x(0) is a random vector satisfying
E(∆x(0)) = 0 and E(∆x(0)∆x>(0)) = I2n−1. If there
exists a positive definite matrix P ∈ R(2n−1)×(2n−1) such
that

P (A− kGH) + (A− kGH)>P

+ k2H>RH +Q = 0(2n−1)×(2n−1), (16)

then

E(J) = tr(P ). (17)

Theorem 2 gives a relation between the expectation E(J)
of the performance index J and the gain k when the
feedback system is linearized and the initial state ∆x(0) is
regarded as a random vector. The reason for considering
the expectation is explained as follows. Since J depends on
∆x(0) from (9), the minimization of J for a specific ∆x(0)
does not necessarily mean the minimization for all ∆x(0).
Hence, as a form independent of ∆x(0), E(J) is employed.
Such an approach is typical in the field of output feedback
control [Levine and Athans (1970); Syrmos et al. (1997);
Lewis et al. (2012)].

Although we consider finding a gain k minimizing E(J)
using Theorem 2, it is difficult to directly obtain such a k
because (16) contains the products of the variables k and
P . To overcome this difficulty, we propose a design method
based on a linear search for k by focusing on the fact that
the design parameter k is scalar. More precisely, we solve
(16) for each k in a given range, and adopt a k such that
the resulting P is positive definite and tr(P ) is minimum.
By fixing k, (16) contains only P as the variable, and thus
we can numerically solve it. Moreover, if the search range
of k is sufficiently large, we will obtain an optimal k.

Remark 1. As mentioned above, Theorem 2 is based on
existing results on output feedback control; in this sense,
the theorem is not completely new. Our main contribu-
tions here are to show that the proposed scalable control
corresponds to constrained output feedback control and
to present a design method of the gain k using Theorem 2
and the structure of the proposed scalable controllers.

4.3 Example

Consider again the power system Σ with n := 3 discussed
in Section 3.2. When describing the system Σ by (7),
the system with u(t) ≡ 0 has an asymptotically stable
equilibrium point xe at x = [0.964 1.01 0>]>. We further
let K1, K2, and K3 be given by (3) and (4).

Then, we design the gain k using the proposed method. For
each k in the interval [0, 10], we solve (16) and calculate
tr(P ), whereQ := I5,R := I3, and the step size of k is 0.01.
As a result, there exists a positive definite P satisfying
(16) for every k ∈ {0, 0.01, 0.02, . . . , 10}, and we obtain
the relation between k and tr(P ) shown in Fig. 3. From
this relation, the (estimated) optimal gain kopt is given
by kopt := 0.91, for which tr(P ) = 5.08 holds. Hence, we
obtain E(J) = 5.08 from Theorem 2.

Table 1 summarizes the values of E(J) and J for k := 0,
10, and kopt, where the values of J are obtained by
numerically calculating (9) for x(0) := [0.8 0.6 0>]> (i.e.,
∆x(0) := [−0.164 − 0.413 0>]>). We see that the value
of J for k := kopt is smaller than those for k := 0 and 10.
From this result, we conclude that the proposed design
method provides a k such that the resulting feedback
system achieves good performance in terms of J .

5. CONCLUSION

This paper has addressed a design problem of scalable
controllers for power systems. By focusing on the damping
forces of generators, we have presented scalable controllers
solving the design problem. It has been shown that the
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Fig. 3. Relation between k and tr(P )

Table 1. Values of E(J) and J for several k

k 0 10 kopt

E(J) 165 28.1 5.08

J 12.0 1.64 0.279

proposed scalable controllers preserve the stability of an
equilibrium point of the original power system. Moreover,
we have presented a design method of the controller gain
for improving the performance of the resulting feedback
system in terms of the time response. These results are
useful to reduce time and effort spent in controller design
and implementation for large-scale power systems.

A limitation in this study is that the proposed method is
applied only to a simple lossless system with three gener-
ators for the illustration purpose. Therefore, in the future,
the proposed method should be verified for more practical
power systems, i.e., systems with many generators and
losses.
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