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Abstract: To derive feed-forward signals the impulse response matrix has to be inverted. While
for time-invariant systems this matrix has a Toeplitz structure, this is not the case for time-
variant systems. Thus, the derivation of the inverse scales cubically with the length of the
signal horizon. This paper presents an efficient way to calculate the inverse impulse response
matrix based on the description as linear fractional transformation. With this the calculation
effort scales only linearly with the horizon. The feed-forward signal generation is applied in this
paper for superconducting accelerating structures. The superconducting accelerating cavities are
operated in pulsed mode. Each cavity is fed by a 1.3 GHz radio frequency signal with high power.
Model-based feed-forward control is essential here to relief the feedback controller and with this
to minimize the power consumption and therefore heating of different components. To derive
a model-based feed-forward signal, first, a reasonable reference signal is to be chosen, which is
done here based on physical properties of the cavities, then the efficient inversion of the impulse
response matrix is applied. Experimentally results from the European X-ray free-electron laser
are presented.

Keywords: Free-electron laser, RF superconducting cavity, feed-forward optimization, set-point
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1. INTRODUCTION

The European X-ray free-electron laser (EuXFEL) is a
user facility operated by the European XFEL GmbH. The
main purpose is to generate X-ray laser flashes for chem-
ical, biological, physical and other experiments, Altarelli
et al. (2006). Hereby, electrons are accelerated in a burst
mode to almost speed of light, forced on a sinusoidal
trajectory emitting X-rays used for the experiments. The
acceleration of the electrons is achieved by superconduct-
ing cavities with field gradient up to 30 MV/m. The cavity
fields are active in a pulsed mode with 1% duty cycle in
10 Hz operation. The field gradients need to be regulated
to precision of 0.01% in amplitude and 0.01 deg. in phase.
A feed-forward drive and feedback loop is implemented in
a low-level radio frequency (LLRF) controller. The high
demands in RF field control are accomplished with feed-
forward signal together with iterative learning control and
a fast feedback loop implemented on a field programmable
gate array (FPGA). The used feedback schemes are based
on system models developed over the last years, Kirchhoff
et al. (2008), Schmidt et al. (2008), Pfeiffer et al. (2012).

Feed-forward control is an essential task to setup an RF
station at the EuXFEL. The derivation of an optimized
feed-forward signal in open loop has been discussed in
Ayvazyan et al. (2010). This optimized signal generation
scheme, which is currently used by manual tuning, is
based on a system model taking only one cavity parameter
into account, i.e., the half-bandwidth, while the detuning

which is a time-varying effect is neglected. In this work
the detuning is considered for feed-forward generation and
it is not restricted to feed-forward only which allows for
direct closed-loop optimization without changing opera-
tional conditions.
We describe the cavity system in lifted representation to
invert the system response for the computation of the op-
timal feed-forward signal. In the lifted system representa-
tion, a static map representing the convolution, is used to
describe the system dynamics. Commonly, a convolution
matrix (or impulse response matrix) with finite dimensions
is used to describe linear systems, e.g., in iterative learn-
ing control by Dijkstra and Bosgra (2003). In Lunenburg
(2009), it is shown how the lifted system representation for
linear systems can be used for feed-forward control design.
Their proposed method is relatively straightforward: the
impulse response matrix used in the lifted system rep-
resentation is inverted and the resulting matrix can be
used to compute the feed-forward signal. Note that for
time-invariant the impulse response matrix is a Toeplitz
matrix, which is not the case for time-varying systems. In
case of a minimum phase system, this leads to the exact
tracking of an arbitrary reference trajectory. Due to the
high data rate as in the application of SRF cavities with
a sampling frequency of 9 MHz, this lifted representation
and especially the inversion of impulse response matrix
is time consuming, since it scales cubically with the time
horizon, Boyd and Vandenberghe (2004). Therefore, an al-
ternative method for inversion based on the representation
as linear fractional transformation is developed here to
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deal with the high computational effort. Exploiting the
inversion properties of linear fractional transformations
the derivation of the inverse impulse response matrix scales
only linearly with the time horizon.

The paper is organized as follows: Section 2 focuses on
the theoretical approach of the inversion of the impulse
response for time-varying systems. The application of
the results at the EuXFEL is presented in the next
two sections. First, in Section 3 an introduction to the
considered system is given, followed by the feed-forward
optimization shown in Section 4 using the theoretic results
from Section 2. Section 5 concludes the paper.

2. INVERSION OF IMPULSE RESPONSE MATRIX

Given any causal time-varying discrete-time system

xk+1 = Akxk +Bkuk ,

yk = Ckxk .
(1)

The vectors xk ∈ Rn, uk ∈ Rm and yk ∈ Rl concatenate
the system states, inputs and outputs at time k. The sys-
tem matrices Ak = A(k), Bk = B(k) and Ck = C(k) are
real matrices, which are time-varying, i.e., they depend on
time k. They are assumed to be known and of appropriate
dimensions.

2.1 Impulse Response Matrix

The output of system (1) is given by the impulse response
matrix (IRM)

yk+1 = Ck+1

Bkuk +

k−1∑
i=0

 k∏
j=i+1

Aj

Biui

 (2)

or in lifted system representation, Lunenburg (2009), with
time dependent parameters Ak, Bk and Ck as lower trian-
gular matrix mapping the inputs to the outputs

[y]K+1
1 = HIRM · [u]K0 ,

with HIRM

=


C1B0 0

... 0

C2A1B0 C2B1

... 0
. . . . . . . . . . . .

CK+1

(
K∏
l=1

Al

)
B0 CK+1

(
K∏
l=2

Al

)
B1

... CK+1BK


.

(3)

The input [u]K0 and output [y]K+1
1 are the stacked vectors

for the times k = 0, 1, . . . ,K (k = 1, . . . ,K + 1, respec-
tively) given by

[u]K0 = [u>0 u>2 . . . u
>
K ]> and

[y]K+1
1 = [y>1 y>2 . . . y

>
K+1]>, respectively.

This impulse matrix differs from its linear time-invariant
counterpart which is given as Toeplitz matrix. It is not
a pure Toeplitz matrix anymore for such time-varying
system characteristics, but the structure stays the same.

In the following we assume (without loss of generality) that
the system is neither underactuated nor overactuated, i.e.,
the number of inputs m equals the number of outputs l.

2.2 Inverse Impulse Response Matrix

To calculate the input [u]K0 for a desired reference trajec-
tory, we need to invert the IRM as

[u]K0 = H−1IRM · [y]K+1
1 . (4)

The IRM is a (K + 1)m× (K + 1)m dimensional matrix.
Deriving the matrix itself requires (K + 1)(2mn2−mn) +∑K

i=1 2mn2 −mn+ 2m2n−m2 = (K + 1)(2mn2 −mn) +
K(K+1)

2 (2mn2−mn+2m2n−m2) floating point operations
(FLOPs); the basic terms for FLOP calculations are given
as supplementary information in Sec. 6. Note that here it

is considered that the term
∏i

j=1Aj , which is needed in
the i-th lower block diagonal, can be reused to calculate
the respective term in the i+ 1-th lower block diagonal.
To derive the inverse (Km+m)3 FLOPs are required
additionally, leading to a total of

odirect = (Km+m)3 + (K + 1)(2mn2 −mn)

+
K(K + 1)

2
(2mn2 −mn+ 2m2n−m2) . (5)

This might be computational challenging for large K and
fast applications like the one considered in Section 3.
Therefore, the goal is to simplify the calculation. To do
so, we use the concept of linear fractional transforma-
tions (LFTs). An introduction of this concept is given
in Doyle et al. (1991) and the concepts used in this paper
are briefly reviewed here.

Given a complex matrix M partitioned as

M =

[
M11 M12

M21 M22

]
∈ C(p1+p2)×(q1+q2)

and let D2 ⊂ Cp2×q2 , then a (lower) linear fractional
transformation maps Fl(M, •) : D2 7→ Cp1×q1 with

Fl(M,∆l) := M11 +M12∆l(I −M22∆l)
−1M21 .

A graphical representation of the lower LFT as block
diagram is shown in Fig. 1.

∆l

M
w z

Fig. 1. Lower LFT connection.

Rewriting HIRM as LFT leads to

HIRM := M11 +M12∆l(I−M22∆l)
−1M21 , (6)

with

∆l =


A1

A2

. . .
Ak

∈ RKn×Kn ,

M11 =


C1B0

C2B1

. . .
CK+1BK

∈ R(K+1)m×(K+1)m ,
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M12 =


0 0 . . . 0 0
C2 0 . . . 0 0
0 C3 . . . 0 0
...

. . .
...

0 0 . . . 0 CK+1

∈ R(K+1)m×Kn ,

M21 =


B0 0 . . . 0 0 0
0 B1 . . . 0 0 0
...

. . .
...

0 0 . . . BK−1 0

∈ RKn×(K+1)m and

M22 =


0 0 . . . 0 0
I 0 . . . 0 0
...

. . .
...

0 0 . . . I 0

∈ RKn×Kn .

Except of M11, requiring (K + 1)(2m2n − m2) FLOPs,
these matrices do not need any calculations.

We can make use of the properties for LFTs given in Doyle
et al. (1991) to calculate the inverse, which is given by

Fl(M,∆)−1 = Fl(M̂,∆) with

M̂ =

[
M−111 −M−111 M12

M21M
−1
11 M22 −M21M

−1
11 M12

]
=

[
M̂11 M̂12

M̂21 M̂22

]
.

(7)

In M̂ the inverse of M11 appears, which is the calculated
by inverting the block-diagonal elements. Thus, calculating
M−111 requires (K + 1)( 8

3m
3 + 2m2n−m2) FLOPs.

In the following we will distinguish two cases

I: B (and thus also C) are squared, i.e., n = m.
II: B is not squared, i.e., n > m.

Case I: n = m The lower right block of M̂ , M̂22,
simplifies to zero. Thus,

H−1IRM = Fl(M,∆)−1 = Fl(M̂,∆)

= M̂11 + M̂12∆l(I − M̂22∆l)
−1M̂21

= M̂11 + M̂12∆lM̂21

=


(C1B0)−1 0 . . . 0 0
−B−11 A1C

−1
1 (C2B1)−1 . . . 0 0

0 −B−12 A2C
−1
2

. . . 0
...

...
...

. . .
. . . 0

0 0 . . . −B−1K AKC
−1
K (CK+1BK)−1

 .
(8)

To calculate M̂12∆lM̂21 it requiresK
(
28
3 n

3 − 2n2
)

FLOPs.

Thus, in total calculating Fl(M,∆)−1 requires on=m

FLOPs with

on=m = (K + 1)

(
14

3
n3 − n2

)
+K

(
28

3
n3 − 2n2

)
. (9)

Case II: n > m The lower right block of M̂ , M̂22, does
not simplify to zero, but to

M̂22 =


0 0 . . . 0 0 0

m̂2,1 0 . . . 0 0 0
0 m̂3,2 . . . 0 0 0
...

. . .
... 0

0 0 . . . 0 m̂K,K−1 0

 ,

with

m̂i+1,i = I −Bi(Ci+1Bi)
−1Ci+1 for i = 1, . . . ,K − 1 .

Thus, the matrix Ξ = I − M̂22∆l, which needs to be
inverted in (7), is not a full lower triangular matrix but
only the first off-diagonal blocks are full and the diagonal
blocks are identity. With this the inverse Ξ−1 is

Ξ−1 =


I 0 . . . 0 0 0

m̂2,1A1 I . . . 0 0 0
0 m̂3,2A2 . . . 0 0 0
...

. . .
... 0

0 0 . . . 0 m̂K,K−1AK−1 I

 .
To calculate the (i, i − 1)-th block entry of Ξ it requires
2m2n+ 2mn2 −mn+ 2n3 − n2 FLOPs, but the inversion
does not need any extra ones. Finally, the inverse of the
impulse response matrix is given by

H−1IRM =


f1,1 0 0 . . . 0
f2,1 f2,2 0 . . . 0

f3,1 f3,2 f3,3
. . .

...

0
. . .

. . .
. . . 0

0 . . . fK+1,K−1 fK+1,K fK+1,K+1

 , (10)

with

fi,i = (CiBi−1)−1 for i = 1, . . . ,K + 1,

fi+1,i = −(Ci+1Bi)
−1Ci+1AiBi−1(CiBi−1)−1

for i = 1, . . . ,K,

fi+2,i = −(Ci+2Bi+1)−1Ci+1Ai+1m̂i+1,iAiBi−1(CiBi−1)−1

for i = 1, . . . ,K − 1

and the total number of FLOPs, on>m, to calculate (10)
is given by

on>m = (K + 1)

(
2m2n−m2+

8

3
m3

)
+ (K − 1)(4m2n−m2+ 4mn2− 2mn+ 2n3− n2)

+K(−mn+ 4m2n−m2) . (11)

Here, it made use of the fact that the same multiplications
do not need to be performed twice.

0 1 2 3 4 5 6 7 8 9 10
K

0

2000

4000

6000

8000

10000

12000

FL
O

Ps

direct inversion
n>m
n=m

Fig. 2. Comparison of the number of FLOPs depending on
K for an example case with n = m = 2.

Comparison Comparing (5), (9) and (11) shows that
while the calculation and direct inversion of HIRM as given
in (3) is dominated by K3, when exploiting the LFT
description leads to expressions of H−1IRM given in (8) or
(10), which scale linearly with K.

For an example case of n = m = 2 this dependency of the
number of FLOPs is shown in Fig. 2.
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3. LLRF SYSTEM

The EuXFEL is operated in pulsed mode with an RF
pulse length of about 1 ms. The typical filling and flattop
operation is shown as example for one superconducting
radio frequency (SRF) cavity in Fig. 3.
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Fig. 3. Example of typical cavity probe, forward and
reflected signals in baseband for filling and flattop
phase.

During filling, the cavity is ramped to its nominal oper-
ating gradient in amplitude and phase. This probe am-
plitude and phase is kept as constant as possible during
flattop while electrons are injected and accelerated. It is
important to mention that the amplitude of a single cavity
might not be perfectly flat during the flattop because of a
vector-sum regulation scheme 1 , Omet et al. (2018).
The vector-sum of each RF station is controlled by an
LLRF system in closed-loop with a MIMO feedback con-
troller and an iterative learning scheme. To relieve both
of them, additional feed-forward control is essential. In
this section a model for the LLRF system is derived such
that the model-based feed-forward generation using the
inversion of the impulse response matrix from the previous
section can be applied. A block diagram of the RF system
with the signal flow within it is shown in Fig. 4. The main

Vector
modulator

Pre-amplifier
& Klystron

Cavity

Master
Oscillator

∆ω(t)

y(t)u(t)

VForwVRefl

uFF (t)

VProbe

ω1/2(t)

Fig. 4. RF station signal flow from low power LLRF drive
uFF (t) via high power amplifiers to the cavity.

reference is the master oscillator (MO) providing a 1.3 GHz
signal which is modulated by the vector modulator in
amplitude and phase using the drive input uFF (t) from the
control system. A pre-amplifier and klystron amplifies the

1 The concept of the vector-sum regulation is particularly for the
EuXFEL, since here due to the vast number of SRF cavities (776)
not every cavity is driven by an individually high power amplifier
and therefore controlled individually. Instead 32 cavities in one RF
station are driven by one high power amplifier and controlled with
respect to a common output, which is the so-called vector-sum, i.e.,
the sum of the outputs of the 32 cavities.

200 400 600 800 1000 1200 1400
Time [ s]

0

1000

2000

1/
2 [

s-1
]

200 400 600 800 1000 1200 1400
Time [ s]

-2000

0

2000

 
 [

s-1
]

Fig. 5. Example of the half-bandwidth and detuning vari-
ation along an RF pulse.

RF signal from watt to megawatts which is then driving
up to 32 cavities. For each cavity a forward, reflected
and probe signal is detected with respect to the master
oscillator and down-converted into baseband.
In the following we will first introduce the dynamic model
of the cavity followed by a combined one for vector modu-
lator, pre-amplifier and klystron, which can be represented
as nonlinear static map.

3.1 Cavity model

The transfer function of a cavity in continuous time can
be described in baseband, Schilcher (1998), by a first order
transfer function in the complex plane

dVProbe

dt
= Ac(t) · VProbe︸ ︷︷ ︸

y(t)

+Bc(t) · VForw︸ ︷︷ ︸
u(t)

,

y(t) = Cc · VProbe ,

with system matrix Ac(t) depending on the time-varying
half-bandwidth ω1/2(t) and the detuning ∆ω(t) given as
Ac(t) = −ω1/2(t) + j ·∆ω(t), the input matrix which is
dependent on the half-bandwidth Bc(t) = 2 · ω1/2(t) and
the output matrix Cc = 1. The system output y(t) is
given as complex cavity voltage VProbe ∈ C and the input
signal u(t) is the complex forward voltage VForw ∈ C.

In addition to the complex forward voltage and complex
probe signal, the complex reflected voltage VRefl ∈ C is
measured, for which the relation VProbe = VForw + VRefl

holds. Drifts of the signals caused by temperature or
humidity changes require a frequent calibration of the
forward and reflected signal to the probe signal, Pfeiffer
et al. (2015). With a proper signal calibration, the time-
varying detuning ∆ω(t) and the half-bandwidth ω1/2 can
be determined. Example trajectories are shown in Fig. 3
and Fig. 5. These parameters, half-bandwidth and detun-
ing, are additionally used for system health checks and
further diagnostic and adaptation schemes, Rybaniec et al.
(2014); Nawaz et al. (2016).

The transfer function in discrete time is given as

xk+1 = Ad,kxk +Bd,kuk ,

yk = Cdxk , (12)

with time-varying discrete-time state matrix Ad,k, input
matrix Bd,k and output matrix Cd for sampling time
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Ts = 1/fs and sampling frequency fs = 9 MHz. To
avoid discretization errors we make use of the exact
discretization, i.e., the exact solution to the differential
equation, giving the system matrices

Ad(k) = eAc(kTs)·Ts ,

Bd(k) = Ac(kTs)
−1 · (Ad(k)− I) ·Bc(kTs) and

Cd = Cc .

(13)

These time-varying matrices are valid only under the veri-
fied assumption that the bandwidth of detuning and half-
bandwidth are small compared to the sampling frequency.
Thus, the signals can be assumed to be constant within a
sampling period. With these matrices, where the system
matrix Ad,k = Ad(k) and the input matrix Bd,k = Bd(k)
are time varying along the RF pulse, the impulse response
matrix HIRM in (3) for one pulse can be generated, result-
ing in K = 12730 for the given sampling frequency.

3.2 Vector modulator, pre-amplifier and klystron model

The vector modulator, modulating the baseband sig-
nals to RF, has linear input-output behavior, while the
characteristic input-output behavior of the pre-amplifier
and klystron is often nonlinear. It has been shown that
the latter’s output amplitude and phase is dependent
on the input amplitude, Butkowski et al. (2016). The
half-bandwidth of these components exceeds the range
of 10 MHz such that we can assume a static input-
output characteristic for the sampling frequency of 9 MHz.
The dominating nonlinear effect that can be observed
is the nonlinear amplitude dependence between the sig-
nal uFF (input to the vector modulator) and the signal
VForw = u(t) (output of the klystron, which is the input
to the cavity), while the non-linearity for the phase is up
to a few degree neglectable. The nonlinear characteristic
of the normalized amplitude is approximated with a static
map using a polynomial of second order, see Fig. 6.

0 1 2 3u
FF

0

0.5

1

1.5

2

2.5

3

V
Fo

rw

linear
polynominal fit
dataset

Fig. 6. Nonlinear characteristic between the LLRF drive
signal uFF and the input signal to the cavity VForw .

4. FEED-FORWARD OPTIMIZATION

To calculate an appropriate cavity forward signal, a desired
reference signal (or set-point) is first formed. Then, the
results in Section 2 can be applied to calculate the forward
cavity input. Finally, the non-linearity of the pre-amplifier
and klystron needs to be considered to calculate the LLRF
feed-forward drive signal.

4.1 Reference signal generation

The reference signal is chosen with respect to the minimal
power during filling, i.e. the most constant amplitude drive

signal and an on-resonance filling for a slightly detuned
cavity during filling time. For the flattop the clear goal is
to keep the voltage constant. The RF pulse is given by the
two time periods filling and flattop:

1: Filling: kfill ∈ [1, . . . , dtfill · fse]
2: Flattop: kflattop ∈ [kfill + 1, . . . , dtflattop · fse]

1: Filling The reference amplitude during filling is com-
puted by the exponential filling using the averaged half-
bandwidth (here ω̄1/2 = 1000 s−1) as

ASP (kfill) = KSP · (1− exp(−kfill/fs · ω̄1/2)); (14)

with KSP as scaling factor to match the amplitude ref-
erence after filling. The mean detuning forms the phase
reference by numerical integration with

φ̃SP (k2) = −
k2∑
k=1

∆f(k) · 2π (15)

for k2 = [1, . . . , kfill ]. The detuning dependent phase
reference is corrected using the nominal phase reference
φSP,static and the last value of the detuning dependent

phase φ̃SP (kfill,end) to

φSP = φ̃SP − φ̃SP (kfill,end) + φSP,static . (16)

2: Flattop The reference signal during flattop is consid-
ered to be constant, i.e., equal to the static one. Remem-
ber, the amplitude and phase of the cavity RF field need
to be regulated to be as constant as possible to achieve a
constant acceleration of electrons for user experiments.

4.2 Feed-forward derivation

Given the reference signal derived in the previous part the
forward signal for the cavities is derived using the inverse
impulse response matrix for the model (12), matrices (13)
and the maximum number of samples K given by the
length of the reference signal, i.e., K = 12730 samples for
filling and flattop for EuXFEL. With this, the number of
FLOPs to calculate the inverse of the impulse response
matrix directly as given in (5) is in the order of 1013,
while calculating the inverse of HIRM based on the LFT
description (8) is in the order of 106. Note that for this
example n = m = 1, thus case I can be considered.
However, the formula for FLOPs given in (9) cannot be
directly applied here, since it has been derived for real
matrices, while the cavity system (12) is complex. System
(12) can be equivalently described as two-dimensional
symmetric real system with n = m = 2, see Schilcher
(1998) leading to a slightly higher number of FLOPs. Since
the calculation of FLOPs is general and does not exploit
system symmetries, the exact number of FLOPs can be
further reduced. The efficient implementation using (8)
is further approved by the comparison of the calculation
times for different values of K given in Table 1, where
the linear dependency of (9) in contrast to the cubic
dependency of (5) is confirmed.

The resulting forward signal for the cavity is corrected
with the nonlinear map to derive the optimal LLRF feed-
forward signal.

In Fig. 7 the closed-loop input signal to the cavities
and the respective closed-loop output as vector-sum are
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Table 1. Required time of computing the in-
verse system matrix using IRM (5) and LFT
(9) with Matlab (1.6 GHz, 24 core, no parallel

processing used)

K 256 512 1024 2048 4096 8192

IRM 0.15 s 0.7 s 3.77 s 21.4 s 152 s 1120 s
LFT 5.6 ms 5.7 ms 7.4 ms 15 ms 26 ms 60 ms

shown for the reference signal used so far (old) and that
described in Section 4.1 (new), designed for minimal power
consumption. As mentioned above the outputs are not
the outputs of a single cavity, but the vector-sum of the
32 cavities 2 . The input signals include the feed-forward
signals, the ILC and the feedback components, but the
dominating effect is the feed-forward signal. Like this,
as desired, ILC and the feedback-controller are relieved.
Furthermore, with respect to the input it can be seen that
with the reference signal derived in Section 4.1 compared
to the one so far, the input peak power could be reduced.

Fig. 7. Scaled controller drive signals and the correspond-
ing vector-sum signals 1 for the reference signal used
so far (old) and that described in Section 4.1 (new).

5. CONCLUSION

This contribution presents a feed-forward generation using
the inverse impulse response matrix using linear fractional
transformations. The advantage of the chosen approach is
in computational reduction, which makes it highly suitable
for fast adaptations of the reference and feed-forward sig-
nal with environmental changes such as detuning changes
caused by reference changes. The efficiency of the approach
is experimentally validated for the LLRF system at the
EuXFEL.
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6. SUPPLEMENTARY MATERIAL

The floating point operations for matrix calculus as given
in Boyd and Vandenberghe (2004), which are needed
within the paper, are given for completeness.

• Addition: The addition A + B of matrices A,B ∈
Rm×n requires mn FLOPs.

• Multiplication: The multiplication AB of matrices
A ∈ Rm×n and B ∈ Rn×l requires 2mnl−ml FLOPs.

• Inversion of a lower triangular matrix: The inversion
A−1 of a matrix lower triangular matrix A ∈ Rn×n

requires n3 FLOPs, which results from solving the
linear equation Ax = ei for n-times.

• Inversion of a full matrix: The inversion A−1 of a
matrix A ∈ Rn×n requires 8

3n
3 FLOPs using LU-

factorization.

For a specific problem the number of FLOPs for inversion
can be further reduced by an appropriate factorization.
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