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Abstract: A novel, analytic design method for full state observers of nonlinear Lipschitz systems with 

their nonlinear term bounded, is considered. In standard procedures, the Lipschitz constant of the 

nonlinear term imposes strict restrictions on the observer gain matrix stable selection and introduces a 

further uncertainty in the design, caused by the heuristic manner of this selection. As shown in the paper, 

when the system nonlinear term is additionally bounded, which is a common situation for many real 

world systems such as manipulators in robotics and generators in power systems, the Lipschitz constant 

restriction is fully relaxed. Under these circumstances, a direct design approach is proposed that assigns 

the observer linear part eigenvalues at a common, specific, negative real position on the left of the system 

poles. The whole procedure is conducted by simply solving a Lyapunov-type equation that 

simultaneously constructs the suitable corresponding gain matrix of the observer. The validity of the 

method and the enhanced observer performance are verified by simulation results conducted on a 

fundamental power system example.  
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1. INTRODUCTION 

Over the last decades observer-based designs have been an 

active topic of research, constituting also an indispensable 

tool in modern control theory and engineering applications. 

Either disturbance or system state estimators have been 

largely applied in many cases of monitoring and feedback 

control problems, as a mean to attain otherwise inaccessible 

variables. However, state estimation designs have gradually 

attracted more interest as they serve directly the purpose of 

reconstructing the desired system states through measuring 

only the output of the plant, under certain observability 

conditions [Marquez, (2003)]. In fact, this kind of observer 

schemes have been successfully used in many industrial 

configurations [Chen, et al. (2000)], in mechanical and 

electronic implementations [Zhou et al. (2018), Li et al. 

(2015)], in power systems [Jiang et al. (2004)], etc. 

Since state estimators are designed based on a mathematical 

model, the problem of developing a suitable observer greatly 

depends on the type and structure of the considered system. 

Certainly, observer designs for linear systems are the most 

straightforward to implement, as they are based on well-

known concepts of linear estimation theory, requiring only 

the establishment of observability conditions [Dorf and 

Bishop, (2017)]. Several observers of full- or reduced-order 

(Luenberger-type) have been extensively used [Sage, (1981)] 

in linear system models. Furthermore, other state estimators 

of even more minimal-order have also been designed to 

address the combined output feedback and observer pole-

assignment problem [Alexandridis and Paraskevopoulos 

(1996), Alexandridis, (1999)]. All the previously considered 

designs involve pole placement techniques suitably applied to 

ensure the well-known time separation principle. According 

to this approach, the system stabilization is accomplished by 

ensuring fast decays of the state estimation error by assigning 

the observer poles three to ten times left from the ones of the 

plant but are not extended to nonlinear cases.  

As the large majority of real-world applications and practical 

configurations are described by nonlinear models, the 

problem of observer synthesis for this kind of systems is 

undoubtedly a fundamental one. At the same time, the 

obvious difficulties encountered in this case, mainly due to 

different existing nonlinearities in the original model, require 

careful handling in the development of state estimation 

schemes [Hassan and Hammuda, (2019)]. It is noted that 

there are two major approaches established in the literature. 

The first one is based on finding a suitable transformation for 

the examined nonlinear model in order to linearize its original 

plant and then to implement standard linear observer design 

techniques [Krener and Isidori, (1983)]. In this case, 

however, the convenient use of well-established linear system 

theory tools is often negated by the need of adopting strict 

assumptions regarding the existence of a nonlinear 

transformation, while finding the suitable transformation 

itself is typically a non-trivial task [Karagiannis et al. (2008)]. 

Furthermore, the resulting observer design is heavily 

dependent from the system operating point and therefore, 

there are often cases where this method cannot be effectively 

applied. On the other hand, according to the second basic 

approach of developing nonlinear estimators, the original 

dynamic model formulation is retained and the state estimator 

design is attempted to be directly applied [Afri et al. (2017)]. 
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The method suffers from the fact that there is not exist a 

universal manner or a general method to obtain the solution. 

Nevertheless, there are cases of nonlinear dynamic systems 

where the linear and the nonlinear parts co-exist and can be 

clearly separated, a fact which can be exploited in the 

observer design procedure. A fairly large class of systems 

falling into the latter category are characterized as Lipschitz 

ones, since the nonlinear part of them has to satisfy the well-

known Lipschitz condition with respect to the state variables. 

In terms of estimation scheme development, there are two 

basic concepts of design, namely the indirect and the direct 

approach. The first one considers the complete dynamics as 

obtained by an appropriate coordinate transformation and by 

exploiting the notion of uniform observability, the nonlinear 

system is rewritten in canonical form, where both linear and 

nonlinear parts have a specific structure, i.e. triangular one 

[Gauthier et al. (1992)]. High gain state estimators [Khalil 

and Praly, (2014)] are the most representative designs 

implemented in this case, although several other types have 

also been proposed, including sliding-mode observers [Deng 

et al (2018)], fuzzy-based estimators [Tanaka et al (1998)] or 

even geometrical ones [Hammouri et al. (2018)]. However, 

the indirect design methods present several drawbacks with 

most important among them the lack of a general desired 

canonical form and in some cases, the computational 

difficulties introduced by complex transformations.  

In contrast, according to the second approach, the linear and 

nonlinear parts of the system in state space can be directly 

split, with the linear one assumed to be observable and the 

nonlinear one either locally or globally Lipschitz [Thau, 

(1973)]. This method is in fact the most preferable one and is 

based on a conventional way of the observer synthesis that 

initially ignores the characteristics of the nonlinear term in 

order to apply a Lyapunov-based method on the linear part. 

Then the derived solutions are heuretically examined in order 

to verify whether or not they satisfy certain limitations 

associated with the given Lipschitz constant [Rajamani, 

(1998)] and the whole design is far from pole-assignment 

techniques. This standard procedure presents two obvious 

disadvantages. Firstly, the boundary conditions imposed do 

not provide any insight for designing an observer with 

predefined dynamic behavior, i.e. decay characteristics for 

the linear part. Secondly, the boundary condition related to 

the Lipschitz constant can sometimes lead to very 

conservative results regarding the asymptotic stability of the 

system, since it rigidly restricts the solution of the Lyapunov-

type equation via a sequence of norm inequalities [Rajamani, 

(1998)]. In this frame, the challenging task of designing 

reliable observers with desirable damping, while ensuring 

strong stability conditions in a non-conservative and more 

accurate manner remains unaddressed. 

In this paper, the class of nonlinear systems with bounded 

Lipschitz terms, (sinusoidal or others) are considered. For 

this kind of bounded systems, a direct observer design is 

proposed that employs a novel systematic method in order to 

directly construct the observer gain matrix regardless from 

the Lipschitz constant value. This is derived through the 

solution of a Lyapunov matrix equation, which enables to 

assign the real part of the observer linear-part eigenvalues in 

a batch, common way at predefined positions anywhere on 

the left of the original plant poles. The method is 

accomplished by a rigorous stability analysis based on the 

results of the contemporary study [Alexandridis, (2020)], 

which provides a complete theoretical framework to analyze 

nonlinear systems by combining Lyapunov-based methods 

with the (ISS) notion [Sontag, (2008)]. This approach can 

verify global stability and state convergence properties under 

certain boundedness conditions and is suitably used in the 

present case to relax and overcome other strict limitations. 

 The remainder of this paper is organized in the following 

structure: in Section 2, useful preliminary concepts regarding 

the Lipschitz-class systems description and the considered 

observer design are introduced. The main results of the 

analysis are derived in Section 3, where the pole-assignment 

method and the stability analysis for the proposed observer 

design are described in detail. In Section 4, the simulated 

results of an illustrative real-world example are presented. 

Finally, in Section 5, some notable remarks extracted from 

the presented analysis are summarized in the form of 

conclusions. 

2. PRELIMINARY CONCEPTS AND SYSTEM 

FORMULATION 

2.1 Lipschitz Nonlinear System Description 

In the context of this paper, a fairly large class of autonomous 
dynamic systems is considered, in which the existing linear 
and nonlinear parts can be directly separated, while the output 
vector is the result of a linear combination of state variables. 
This type of nonlinear dynamic systems can be described in 
the following form  

( ) ( ) ( ) ( )x t Ax t Bu t g x= + +   (1) 

( ) ( )y t Cx t=    (2) 

where ( ) nx t  , ( ) mu t  , ( ) py t  represent the state, 

input and measured output vectors of the system, respectively. 

Also, n nA  ,  n mB ,  p nC  are linear time 

invariant (LTI) matrices. Additionally, function ( )g x is 

continuous with respect to the state vector and includes all 
nonlinearities in the formulation.  

The system of the form of (1)-(2) is considered to be globally 

Lipschitz in n , with respect to x , if there exists a constant 

0   satisfying:  

1 2 1 2 1 2( ) ( ) , ng x g x x x x x−  −    (3) 

with  denoting the Euclidean norm in n . The positive 

scalar   satisfying (3) is defined as the Lipschitz constant. 

Note that if condition (3) holds in a subspace M  of n , i.e. 

 nM , then function ( )g x  is said to be locally Lipschitz in 

a region M  that includes the origin. 

It is worth noting that many nonlinear functions satisfy either 
locally or globally the Lipschitz condition of (3). In this 
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frame, the development of the proposed approach for 
Lipschitz-type systems serves a rather general purpose, as the 
method itself can be applied to a large number of real control 
problems and practical implementations. 

2.2 Observer Modeling 

Considering the Lipschitz system of (1)-(2), the following 
observer form is introduced and adopted in the proposed 
design 

 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )x t Ax t Bu t g x LC x t x t= + + + −  (4) 

ˆ ˆ( ) ( )y t Cx t=    (5) 

where n pL   is the observer gain matrix, ˆ( )x t represents 

the vector containing the estimates of ( )x t  whereas ( ),C A is 

an observable pair, with C  being of full row rank. Defining 

the state estimation error ˆx x x= − , the following system 

dynamics are obtained  

( ) [ ] ( ) ( )x t A LC x t G x= − +    (6) 

where  

ˆ( ) ( ) ( )G x g x g x= − .        (7) 

3. MAIN RESULTS 

The basic objective of the proposed approach is to apply a 
suitable techniques on the linear part of the observer dynamics 
of (6), in a way that exactly assigns the observer linear part 
poles in a batch and easy manner at the left half plane. 
Simultaneously, in the scope of the present study, is to provide 
less conservative results compared to the ones obtained by 
conventional stability analysis methods for Lipschitz 
observers [Rajamani, (1998)]. To this end, keeping in mind 
along with condition (3), that the case of bounded Lipschitz 
systems is considered, we assume 

ˆ( ) ( ) ( )G x g x g x d= −    (8) 

with d being a positive scalar.  

In the sequel it is proven that the implied boundedness (8) of 
the Lipschitz nonlinear terms can decisively relax the strong 
restrictions imposed by considering only the Lipschitz 
condition (3). The main results are presented in Theorem 1, 
where a batch procedure is established for the pole-assignment 
implementation. It is further proven that the proposed design 
is adequate to ensure asymptotic stability to the origin for the 
original estimation-error dynamics as given by (6). This is 
accomplished by exploiting suitably the ISS property wherein 
the bounded nonlinear term is considered as an external input. 

To proceed with our main results, we firstly recall the 
following helpful result from [Alexandridis, (1996)]. 

Lemma 1. If a matrix n nS  is decomposed into  

S T U= + , where 
1

( )
2

HT S S= + and 
1

( )
2

HU S S= − , 

with HS being the complex conjugate transpose of matrix S , 

then the eigenvalues of S  are located inside the region 

 min max( ) : ( ) Re ( ) ( )S C T S U      . ■    (9) 

Now we are ready to proceed with our main result. 

Theorem 1. Consider the Lipschitz system of (1)-(2) 
satisfying (3) and (8), and the corresponding observer of (4)-
(5). Let matrix A  have distinct eigenvalues and the pair 

( , )C A  be observable. Then, for any scalar β satisfying 

max
Re ( )A  , there always exists a positive definite 

solution, 0= TP P , of the Lyapunov equation  

[ ] [ ] 2T T T TA I P P A I C C + + + =      (10)  

which i) assigns all the eigenvalues of ( )A LC− at the left 

half-plane with real part Re ( )A LC − = − , ii) determines 

the observer gain matrix as  

1 TL P C−=            (11) 

and iii) guarantees that the estimation error ˆx x x= −  

trajectories of (6) converge globally asymptotically to the 
origin. 

Proof: Let matrix 0= TP P be the solution of  

( ) ( )TA LC P P A LC Q− + − = −          (12) 

with 0TQ Q=  , for some suitable L . Let the unique square 

root matrix 1/2P , which is also positive definite and 
Hermitian. By defining matrix S as 

1/2 1/2[2( )]S P A LC P−= −  

and by substituting S in T of Lemma 1, it is easily obtained: 

1/2 1 1/2( )T P P Q P− −= − . 

Note that 1P Q−  is also a Hermitian matrix and thus, it has 

only real eigenvalues. Moreover, by inspecting the last two 
equations, it is easily observed that S  is similar to 

2( ),A LC− as matrix T is also similar to 1P Q−− . Therefore, 

by employing the results of Lemma 1, the following 
inequality holds:  

1 1
min max( ) Re ( ) ( )P Q A LC P Q  − −−  −  − .    (13) 

Now, selecting  

2Q P=              (14) 

all the eigenvalues of 1( )−−P Q  are on the left half-plane at 

1( ) 2 −− = −P Q .   (15) 

Therefore, the minimum eigenvalue identifies with the 
maximum one, i.e. 

1 1
min max( ) ( ) 2  − −− = − = −P Q P Q . 

As a result, inequality (13) suggests that all eigenvalues of the 

system matrix ( )A LC− are assigned to  

Re ( )A LC − = − .       (16) 
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Obviously, the appropriate selection of   strictly defines 

where the real part of all eigenvalues are assigned. Hence, 
taking into account (14), Lyapunov equation (12) gives: 

( ) ( ) 2TA LC P P A LC P− + − = −     (17) 

Defining L, by (11), equation (17) becomes: 

 1 1[ ( )] [ ( ) ] 2T T TA C CP P P A CP C P− −− + − = − .     (18) 

After some simple manipulations, (18) is restated to  

[ ( )] [ ( )] 2T T T TA I P P A I C C − + + − + = −  

which eventually results in the form of (10).  

For the Lyapunov equation (18) the assumption that the 
original system matrix A  has distinct eigenvalues, provides 

the form of A  as 1−= A U U , with  being the diagonal 

matrix containing its distinct eigenvalues and U being the 

modal matrix of A . Therefore, it holds: 

1[ ( )] [ ]A I U U  −− + =  −   

and under the condition  

max
Re ( )      (19) 

 matrix [ ( )]A I− +  is always Hurwitz and under the 

assumption that the pair ( , )C A  is observable there always 

exists a positive definite matrix P  solving (18). Equivalently, 
this means that under condition (19) a positive definite 
solution of (12) exists.  

To complete the proof of points (i) and (ii) of Theorem 1, it is 
worth noting that (18) is equivalent to (10), and, to continue 
our proof of point (iii) of Theorem 1, the following positive 
definite Lyapunov function is first considered for system (6): 

( ) TH x x P x= .             (20) 

Obviously, system (6) is Lyapunov asymptotically stable if 
the time derivative of (20) is negative definite. Since 

( ) 2 ( )T TH x x Q x x PG x= − +   (21) 

we can see that for the right-hand side of (21) it holds: 

2

min max

max
min

min

2 ( ) 2 ( )

2 ( )
( )

( )

T Tx Q x x PF Q x P x G

P G
Q x x

Q

 






− +  − +

 
 − − 

 

.  (22) 

One can easily establish that the negative definiteness of (21) 
can only be assumed if the last term of (22) is a positive one. 
This holds true by taking into account (8) and (14):  

min( ) 2 ( )V x P − , max

min

( )

( )

P
x d

P




  .      (23) 

Clearly, (23) establishes that (6) is ISS with respect to an 
external input G. Then, according to the ISS definition 
[Sontag, (2008)], the estimation-error is bounded for any 
bound d of the observer-error equation and as has been proven 

there always exists an ISS Lyapunov function ( )V x  such that 

( ) ( ( )) ( ) ( ( ))V x V x d V x d   − +  − +  (24) 

where  , K  . 

Now, following a similar procedure as that presented in the 
theoretical part of [|Alexandridis, (2020)], there exists a lower 

bounded storage function ( )W x  of the form: 

 
2 1

1

1
( ( )) ( ) , for ( ) ( )

2( )

0, for ( ) ( )

 −

−


+ 

= 
 

a V x d V x a d
W x

V x a d

 (25) 

Defining  1: ( ) ( )nx V x a d− =    one can see that for 

the time derivative of the 1C  function W , it is calculated 

0W  outside of   , i.e. when 1( ) ( )−V x a d  and 0=W  

inside  . 

Furthermore, considering the structure of (6), the solution of 

0=x , determines the origin as the only one equilibrium for 

the first linear part in the right-hand side of (6). On the 
contrary, the last term in (6), as given by (7), can certainly 
provide additional equilibria, since it is a nonlinear Lipschitz 
function. However, the unique solution satisfying 

simultaneously both parts, i.e. ( , ) 0=f x G  is only the zero 

point. Hence, the largest invariant set E  of (6) contains only 
the origin as the unique equilibrium. Then by applying the 
LaSalle Invariance Principle for system (6) with storage 
function W given by (25), it is directly proven that every 

trajectory ( )x t  converges asymptotically to the largest 

invariant set E included in  , as → t  and consequently, 

the observer-error state trajectories globally converge to the 

origin. Therefore, the proof is completed. ■ 

Clearly, the above analysis results in a method of achieving an 
easy batch stable eigenvalue assignment of the considered 
observer design for Lipschitz-type systems. The advantages 
introduced by this method are duly highlighted in the 
following Remarks. 

Remark 1. It is well-known that following the standard 
approach, asymptotic stability for the observer design of 
Lipschitz systems is established if a certain bound condition 

relating the Lipschitz condition   with the pair ( , )P Q of 

Lyapunov equation (12) is satisfied [Marquez, (2003)], i.e. 

min

max

( )

2 ( )

Q

P





      (26) 

It is noted that inequality (24) constitutes a hard relation 
between all these parameters, including the observer gain 
matrix L , as well. Restriction (26) cannot be easily combined 
with pole-assignment techniques and only the trial-and-error 
technique can be used. In our case, considering the special 
case where bounded Lipschitz terms exist, condition (19) 
substitutes (26). 

Remark 2. Apparently, the proposed design can be applied to 
pure LTI systems as well, with even more straightforward 
manner, since the absence of nonlinearities renders the 
handling of such systems considerably easier. In this case, 
global exponential stability along with estimation-error state 
convergence to the origin equilibrium can be easily realized. 
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4. ILLUSTRATIVE EXAMPLE 

In order to verify the theoretical results and to validate the 
efficiency of the presented approach, various simulation 
scenarios were conducted by considering a typical power 
system application. It is noticed that observer designs have 
been essentially used in power system applications 
[Alexandridis and Galanos, (1989)]. In the present case, the 
proposed observer design was implemented on a single 
generator infinite bus power system model. For comparison 
reasons, the dynamic model of the examined system along 
with the considered parameters are taken as in [Alexandridis, 
(2020)]. The state-space representation takes the form of (1)-

(2), with a state vector    1 2

T T
x x x  = =   and 

 0
T

mu P= , where state   is the rotor angle and   

represents the difference between the rotor speed,  , and the 

synchronous speed 
0 , i.e. 

0   = − . The single external 

uncontrolled input enforced on the system is the mechanical 

power applied to the rotor, denoted by 
mP . Additionally, the 

respective system, input, and output matrices are provided as: 

0 1

0 0.83
A

 
=  

− 
, 

0 0

0 52.36
B

 
=  

 
,  0 1C = . 

The Lipschitz function is expressed by 

 1( ) 0 274.89sin( )
T

g x x= −  

with a Lipschitz constant, 274.89 = . Also, for the open-loop 

system, it is easily calculated 
max

Re ( ) 0.83  = . However, 

since 1 2( , ) ( , ) ( , )G t x g t x g t x= − , with function ( )g x  

being of sinusoidal type, there is always an upper bound for 

G , i.e. d, as suggested by (8) and therefore, the results of 

Theorem 1 can be applied in this case. 

The examined model and the corresponding observer of (4)-
(5) are formulated in Matlab/Simulink environment and the 
resulting dynamic responses are evaluated with a twofold aim, 
namely to assess the pole-placement technique capability in 
assigning the observer poles in a desired position and 
simultaneously to examine the system stable behavior as 
established by the ISS property. For the simulation purposes 

the input of the system was kept constant at 2.625mP = pu 

while the initial conditions were set to 
0 0 = rad 

0 12 = rad/s. 

In Figures 1 and 2, the actual and estimated states of   and 

  are presented whereas the observer-error for both states, 

are depicted in Fig. 3 and 4. For comparison purposes, the 
simulation was conducted by considering various values of 

the scalar  . The eigenvalues of system matrix ( )A LC−  are 

presented in Table I for all examined cases. 

TABLE I 
SYSTEM EIGENVALUES 

Examined case Eig(A-LC) 

5 =   5 4.5662 5 4.5662
T

i i− + − −  

10 =   10 9.5760 10 9.5760
T

i i− + − −  

15 =   15 14.5791 15 14.5791
T

i i− + − −  

 

Figure 1. Actual and estimated states of rotor angle for various values of β. 
 

 

Figure 2. Actual and estimated states of rotor angular velocity difference for 
various values of β. 

 

Figure 3. Estimation error of rotor angle for the considered values of β. 

 

Figure 4. Estimation error of rotor angular velocity difference for the 
considered values of β. 

It is easily established that the implemented observer design 
achieves accurate and fast estimation of the actual system 
states without exhibiting significant transients. It is also 
important to note that with greater values of   the system 

response displays even better characteristics as a result of the 
exact pole-placement this approach offers since then larger 
real parts of system eigenvalues result.  

However, it is noted that as the theoretical analysis suggests, a 
selection of β should be made in accordance to the boundary 
condition (19). To evaluate this, in Fig. 5 and 6 the actual and 
estimated states of   and   are provided with two 

considered values of β, placed very closely to the boundary 
determined for this example, i.e. β > 0.8. 
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Figure 5. Actual and estimated states of rotor angle for boundary β. 

By selecting β=0.9 the dynamic responses of the estimated 
states converge to the actual ones after a transient period. 
Conversely, the choice of adopting an even marginally less 
value than the one permitted, results in significantly more 
deteriorated performance of the system, rendering it unstable. 

 

Figure 6. Actual and estimated states of rotor angular velocity difference for 

boundary β. 

6. CONCLUSIONS 

In this paper, the challenging task of designing reliable and 

efficient observers for a class of Lipschitz nonlinear systems 

with bounded nonlinear terms is considered. In this frame, a 

novel observer design is proposed that achieves exact 

damping values of the observer eigenvalues at desired 

positions on the left halfplane. In this way, it is allowed to 

predefine how fast the dynamic response of the system will 

be and thus, it enables observer synthesis according to 

custom needs and requirements. Furthermore, the 

implementation of the presented approach guarantees 

asymptotic stability of the estimation-error to the origin, 

according to boundary conditions extracted by the pole-

assignment technique itself and the stability results as derived 

by establishing the ISS property applied on bounded systems 

of this type. The theoretical analysis is fully verified and the 

enhanced dynamic properties introduced by the deployed 

method are evaluated by simulating an example based on a 

real-world power system application. This certainly 

highlights the wide applicability of the presented approach, 

although the extension of this method to cover a larger class 

of systems, such as one-sided Lipschitz ones might be an 

interesting concept for future consideration. 
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