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Abstract: This paper proposes LMI conditions to design parameter-dependent (i.e. gain-scheduled)
state-feedback controllers that ensure closed-loop stability with guaranteed H∞ performance for both
continuous and discrete-time LPV systems with state multiplicative noise. The state-space matrices and
the multiplicative noise matrix are considered polytopic and independent. The time-varying parameters
can be considered time-invariant, arbitrarily fast or with bounded rates of variation. The advantages of
the proposed technique are illustrated by numerical examples borrowed from the literature.
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1. INTRODUCTION

Demands for improved performance in physical systems have
imposed the use of increasingly sophisticated analysis and syn-
thesis tools. In this line, the trade-off between accuracy and
numerical complexity of the algorithms rises as an important
issue to be considered. In order to obtain faithful and precise
modeling of phenomena that occur in real systems, represen-
tations based on linear models have increasingly incorporated
information about the unidentified part or frequently unconsid-
ered, such as the existence of noise, nonlinearities, delays, and
specious dynamics. The inclusion of parametric uncertainties
as affine and polytopic representations, with time-invariant or
time-varying parameters (with bounded or arbitrarily fast rates
of variations) is another aspect that is widely explored in system
modeling Åström and Wittenmark (1984), Åström and Witten-
mark (1995), Barmish (1994), Boyd and Barratt (1991), Boyd
et al. (1994), Khalil (1996), De Caigny et al. (2010), Agulhari
et al. (2013), Takaku et al. (2014).

Currently, the design of controllers to guarantee stable closed-
loop systems and the estimation of the state variables from the
output measurements (associated to performance criteria that
characterize the behavior of the state process over time) are
among the main purposes of control theory. Concerning linear
systems, an important class comprises models where the state
variables are affected by multiplicative noises with stochastic
properties, characterizing what is known as bilinear stochastic
dynamics, Kumar and Varaiya (1986), with applications in
chemistry, biology, economy, etc. Costa and Kubrusly (1996).

The H∞ norm is an import performance index with several
applications in terms of allowable disturbance and robustness
? Research supported by PNPD/CAPES and Department of Electrical Engi-
neering of Federal University of Technology of Paraná – UTFPR, São Paulo
Research Foundation (FAPESP) (grant 2017/18785-5).

of uncertain linear (with time-invariant or time-varying param-
eters) and nonlinear systems, De Caigny et al. (2010). Using
the concept of quadratic stability, it is possible to guarantee,
through LMI feasibility tests, stability of linear systems af-
fected by time-varying parameters with arbitrary rates of varia-
tion, leading to numerical tests with low numerical complexity
and allowing to deal with control problems using the concept
of guaranteed costs (see Geromel et al. (1991), Geromel et al.
(2007), Boyd et al. (1994)). The gains-scheduled strategy can
reduce conservatism of the solutions, as well to provide better
performance for the closed-loop system when compared to the
performance obtained with robust gain strategies, at the price
of measuring (or estimating the time-varying parameters to
update the controller gain, Leith and Leithead (2000), Rugh
and Shamma (2000). This control technique is particularly in-
teresting for treating linear parameter varying systems (LPVs)
Hoffmannet et al. (2015).

This paper investigates LPV systems subject to multiplicative
noise in the states and proposes gain-scheduled state-feedback
synthesis conditions using the H∞ norm as performance crite-
rion. In this line, the aim is to design controllers that generate
closed-loop stable systems associated to an H∞ guaranteed
cost. The approach is general in the sense of dealing with
continuous and discrete-time LPV systems and considering
arbitrary and bounded rates of variation for the time-varying
parameters. Numerical examples illustrate the applicability of
the proposed approach and the advantages when compared with
the existing methods.

2. GENERAL NOTATION

Throughout the paper the symbol ᵀ stands for the transpose
of a matrix or a vector. The symbol ? denotes transposed
blocks in a symmetric matrix. The identity matrix and the zero
matrix are denoted by I and 0, respectively, diag(·) denotes a
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diagonal matrix of blocks, and He{X} = X + Xᵀ is used for
any square matrix X . N is the set of natural number, Rn is
the n-dimensional Euclidean space, and Rn×m represents the
set of matrices of dimension n×m with real elements. Inside
this paper, the point above of any matrix Ẋ(t) denotes the
derivative with respect to time t. The notation P = Pᵀ > 0 is
used when P ∈ Rn×n is a symmetric positive definite matrix.
The expected value is denoted by E[·]. The Euclidean norm is
represented as follows ‖ · ‖Rn , such that ‖x(·)‖2

Rn = 〈x(·),x(·)〉
with inner product 〈 ,〉.Consider L2(Ω,Rn) as the space of
quadratically integrable functions and (Ω,F ,P) the space of the
probabilities, such that, F represents a σ -algebra, P represents
probability law on F . {Ft}t≥0 denotes a family of σ -algebras,
such that, Ft ⊆Fs for all 0 < t ≤ s. For the continuous-time
systems L̃2([0,∞+),Rn) represents the space of unanticipated
stochastic processes with respect to (Fτ)τ∈[0,∞+) satisfying in
L̃2 (abbreviated form of L̃2([0,∞+),Rn))

‖ f (·)‖2
L̃2 =

∫
∞

0
E
[
‖ f (t)‖2

Rn
]

dt < ∞.

In discrete-time, [0,∞+) is replaced byN that represents the set
of natural numbers, in this case the norm in ˜̀2(N,Rn) is defined
as

‖ fk(·)‖2
˜̀2 =

∞

∑
k=0

E
[
‖ fk‖2

Rn
]
< ∞.

Denote δi j as the Kronecker delta for all k, j ≥ 0. In this paper,
we consider exponential stability, Kozin (1969).

Throughout the text t ∈ R+ is used for continuous-time and
k ∈N is used for discrete-time samples.

3. CONTINUOUS-TIME SYSTEMS

Consider the following continuous-time LPV system
dx(t) = (A(α(t))+D(β (t))ν(t))x(t)dt

+B1(α(t))w(t)+B2(α(t))u(t),
z(t) =C1(α(t))x(t)+D11(α(t))w(t)

+D12(α(t))u(t),

(1)

where x(t)∈Rn is the vector of states, w(t)∈Rp is the external
disturbance, u(t) ∈ R` is the control input, z(t) ∈ Rr is the
output to be controlled and v(t) is a multiplicative noise affect-
ing the states. Matrices A(α(t)), B1(α(t)), B2(α(t)), C1(α(t)),
D11(α(t)), D12(α(t)) and D(β (t)) depend affinely on bounded
time-varying parameters

(α(t),β (t)) = (α1(t), . . . ,αN1(t),β1(t), . . . ,βN2(t))
for all t ∈ R+, such that α(t) ∈ ΛN1 and β (t) ∈ ΛN2 where ΛN
is the unit simplex given by

ΛN =
{

ζ ∈RN :
N

∑
i=1

ζi = 1, ζi ≥ 0, i = 1, . . . ,N
}
.

As α(t) ∈ ΛN1 , system (1) is known in the literature as a poly-
topic LPV system. Matrix D(β (t)) is also polytopic LPV and
weights the multiplicative noise. Additionally, it is assumed that
α(t) and β (t) are continuously differentiable, with bounded
rates of variation given in the form |α̇i(t)| ≤ bi, i = 1, . . . ,N1,
|β̇i(t)| ≤ d j, j = 1, . . . ,N2, such that, the vectors α̇(t) ∈ ΩM1

and β̇ (t) ∈ΩM2 where ΩM is a bounded polyhedron (polytope)
defined as

ΩM =
{

δ ∈ RN : δ =
M

∑
i=1

ζihi,
M

∑
j=1

hi
j = 0,

j = 1, . . . ,M,ζ ∈ ΛM

}
. (2)

The vertices of the polytope ΩM , given by the vectors hi,
i = 1, . . . ,M (in principle the value of M is unknown) can be
obtained from the bounds bi (or d j) and from

α̇1(t)+ · · ·+ α̇N1(t) = 0, or, β̇1(t)+ · · ·+ β̇N2(t) = 0.
These restrictions are nothing but linear constraints that can be
put in the form Ax ≤ b, where vertex enumeration algorithms
Avis and Fukuda (1992) can be employed to generate the
vectors hi in a systematic way using, for instance, the Multi-
Parametric Toolbox (MPT) toolbox Herceg et al. (2013).

The scalar ν(t) ∈ R represents a Gaussian process with zero
expected value satisfying

E[dν(t)] = 0, E[dν(t)2] = dt.

The goal to design a gain-scheduled control law, such that,
u(t) = K(α(t),β (t))x(t) stabilizes system (1) and optimizes the
following cost functional

JSE := E
[∫

∞

0
(‖z(t)‖2− γ

2‖w(t)‖2)dt
]
, (3)

that is, to determine an upper bound γ > 0 for the H∞ norm
from noise input w(t) to output z(t). In the specialized literature
there are several works that propose a solution to this problem
for linear systems affected by time-invariant uncertainty, for in-
stance see (Gershon et al., 2015, Th. 1). Next theorem presents
an extension of this result to cope with LPV systems, including
the treatment of D(β (t)) as time-varying.

Theorem 1. The system (1) in open-loop is exponentially stable
in the mean quadratic sense and for some scalar γ > 0, JSE < 0
hold for all w(t) ∈ L̃2([0,∞+),Rp) not null, if there exists a
symmetric matrix P(α(t),β (t)) > 0, satisfying the following
parameter-dependent LMIsΞ1 Ξ2 P(α(t),β (t))B1(α(t)) D(β (t))ᵀP(α(t),β (t))
? −γ2Ir D11(α(t)) 0r×n
? ? −Ip 0p×n
? ? ? −P(α(t),β (t))

< 0,

(4)
where Ξ1 = He{A(α(t))ᵀP(α(t),β (t))} + Ṗ(α(t),β (t)) and
Ξ2 = C1(α(t))ᵀ, for all (α(t),β (t)) ∈ ΛN1 ×ΛN2 and for all
(α̇(t),β̇ (t)) ∈ΩM1 ×ΩM2 .

A proof for Theorem 1 in the case of time-invariant parameters
can be found in (Gershon et al., 2015, Th. 1). The time-varying
case requires only the inclusion of the term Ṗ(α(t),β (t)) and
that inequality (4) be tested for all (α(t),β (t))∈ΛN1×ΛN2 and
for all (α̇(t),β̇ (t)) ∈ΩM1 ×ΩM2 .

Note that Theorem 1 presents the most general case, where
the Lyapunov matrix also depends on β (t). In what follows
we present the first result of the paper, which is a synthesis
condition expressed in terms of parameter-dependent LMIs
combined with a scalar search. The main advantage is the fact
that the Lyapunov matrix is not used to construct the control
gain. In this case different structures for the controller can be
chosen, for instance, depending only on α(t), only on β (t) or
parameter-independent (robust).
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Theorem 2. For given scalars ξ and γ > 0, if there exist a posi-
tive defined symmetric matrix W (α(t),β (t))∈Rn×n, and matri-
ces X(α(t),β (t)) ∈Rn×n, Z(α(t),β (t)) ∈R`×n, Y1(α(t),β (t)),
Y2(α(t),β (t)), Y4(α(t),β (t)), Y6(α(t),β (t)) ∈Rn×n which sat-
isfy the following parameter-dependent LMI condition

Σ11 ? ? ? ? ?
Σ21 Σ22 ? ? ? ?
Σ31 Σ32 −γ2Ir ? ? ?
Σ41 Σ42 0n×r Σ44 ? ?

B1(α(t))ᵀ 0p×n D11(α(t))ᵀ 0p×n −Ip ?
Σ61 Σ62 0n×r Σ64 0n×p Σ66

< 0, (5)

for all (α(t),β (t))∈ΛN1×ΛN2 and for all (α̇(t),β̇ (t))∈ΩM1×
ΩM2 , where

Σ11 = He
{

A(α(t))X(α(t),β (t))+B2(α(t))Z(α(t),β (t))
}

−Ẇ (α(t),β (t)),

Σ21 = ξ
(
A(α(t))X(α(t),β (t))+B2(α(t))Z(α(t),β (t))

)ᵀ
+W (α(t),β (t))−X(α(t),β (t)),

Σ22 =−ξ He
{

X(α(t),β (t))
}

,

Σ31 =C1(α(t))X(α(t),β (t))+D12(α(t))Z(α(t),β (t)),

Σ32 = ξ
(
C1(α(t))X(α(t),β (t))+D12(α(t))Z(α(t),β (t))

)
,

Σ41 =W (α(t),β (t))−Y1(α(t),β (t)),

Σ42 =−Y2(α(t),β (t)), Σ44 =−He{Y4(α(t),β (t))},
Σ6 j = D(β (t))Yj(α(t),β (t)), j = 1,2,

Σ64 =−Y6(α(t),β (t))ᵀ+D(β (t))Y4(α(t),β (t)),

Σ66 =−W (α(t),β (t))+He
{

D(β (t))Y6(α(t),β (t))
}

,

then K(α(t),β (t)) = Z(α(t),β (t))X(α(t),β (t))−1 is a gain-
scheduled state-feedback gain that stabilizes system (1) and
ensures that JSE < 0 for all w ∈ L2 not null.

Proof. Using the change of variables K(α(t),β (t))X(α(t),β (t))
= Z(α(t),β (t)), notice that (5) can be rewritten as

Q+X B+BᵀX ᵀ < 0 (6)
such that 1

Q =


−Ẇ W 0 W B1 0
? 0 0 0 0 0
? ? −γ2Ir 0 D11 0
? ? ? 0 0 0
? ? ? ? −Ip 0
? ? ? ? ? −W

 , (7)

X =

[
X ξ X 0 0 0 0
Y1 Y2 0 Y4 0 Y6

]ᵀ
, (8)

B =

[
Aᵀ

cl −In Cᵀ
cl 0 0 0

0 0 0 −In 0 Dᵀ

]
. (9)

The system (1) in closed-loop is represented by{
dx(t) = Aclx(t)dt +D(β (t))ν(t)x(t)dt +B1(α(t))w(t),

z(t) =Cclx(t)+D11(α(t))w(t).
(10)

where Acl =A(α(t))+B2(α(t))K(α(t),β (t)) and Ccl =C1(α(t))
+D12(α(t))K(α(t),β (t)).
1 The dependence on α(t) and β (t) was omitted to save space.

Therefore, multiplying (6) on the right by

B⊥ =


In 0 0 0

Aᵀ
cl Cᵀ

cl 0 0
0 Ir 0 0
0 0 0 Dᵀ

0 0 In 0
0 0 0 In


and on the left by B⊥

ᵀ
, one getsAclW +WAᵀ
cl−Ẇ WCᵀ

cl B1 WDᵀ

? −γ2Ir D11 0
? ? −Ip 0
? ? ? −W

< 0. (11)

Finally, pre and post multiplying (11) by diag
(
W−1, Ir, Ip,W−1

)
we have (4) with A = Acl , C1 = Ccl and P = W−1 (note that
−W−1ẆW−1 = Ṗ).

A procedure to check the conditions of Theorem 2 in terms
of a finite-dimensional test (not depending on time-varying
parameters and t) is discussed in Section 5.

Remark 1. It is possible to design a robust K gain (parameter-
independent) by simply fixing X(α(t),β (t)) = X ∈ Rn×n,
Z(α(t),β (t)) = Z ∈ R`×n such that K = ZX−1. Note that the
structure of these matrices is a choice of the designer (see
Section 5 for more details). It is worth of mentioning that ro-
bust gains tend to provide more conservative results than gain-
scheduled gains.

4. DISCRETE-TIME SYSTEMS

Consider the following linear system subject to multiplicative
noise νk in the state variable,

xk+1 = (A(α(k))+D(β (k))νk)xk

+B1(α(k))wk +B2(α(k))uk,

zk =C1(α(k))xk +D11(α(k))wk +D12(α(k))uk,

(12)

where xk ∈Rn is the vector of states, wk ∈Rp is the exogenous
input vector, uk ∈ R` is the control input vector and zk ∈ Rr is
the output signal to be controlled. Matrices A(α(k)), B1(α(k)),
B2(α(k)), C1(α(k)), D11(α(k)), D12(α(k)) and D(β (k)) are
structured as in the continuous-time case (polytopic LPV). The
time-varying parameters α(k) ∈ ΛN1 and β (k) ∈ ΛN2 are such
that

|αi(k+1)−αi(k)| ≤ bi ≤ 1, bi ∈R+, i = 1, . . . ,N1

|β j(k+1)−β j(k)| ≤ c j ≤ 1, c j ∈R+, j = 1, . . . ,N2

for all k ≥ 0. If bi = 0 (or c j = 0), the parameters are time-
invariant, whereas bi = 1 (or c j = 1) indicates that the parameter
is arbitrarily fast (maximum allowed variation rate). Bounded
rates of variation are represented by 0 < bi < 1 (or 0 < c j <
1). Taking into account the linear constraints that define the
bounds and the variation rates of the parameters, the space
where

(
α(k),α(k+ 1)

)
or
(
β (k),β (k+ 1)

)
lies also defines a

polytope, given in the form

ΞM =
{

δ ∈ R2N : δ =
M

∑
i=1

ζihi,
N

∑
j=1

hi
j =

2N

∑
j=N+1

hi
j = 1,

i = 1, . . . ,M, ζ ∈ ΛM
}
.

Differently from the continuous-time case, the parameters α(k)
and α(k+ 1) (or β (k) and β (k+ 1)) must be modeled jointly,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2291



giving rise to a single polytope whose vertices have dimension
2N1 (or 2N2), Bertolin et al. (2019).

The scalar variable νk, which represents the multiplicative
noise, has null expected value and satisfies

E[νkν j] = δk j, ∀k, j ≥ 0.
As in the continuous-time case, the purpose is to design a
state-feedback gain-scheduled control gain optimizing the cost
functional

JSE d := Eν

[
‖zk‖2

˜̀2 − γ
2‖wk‖2

˜̀2
]
,

that is, to compute a guaranteed cost γ > 0 for the H∞ norm
from the noise input wk to the output zk of system (12). Next
theorem presents an extension of the bounded real lemma for
discrete-time systems affected by multiplicative noise Gershon
et al. (2005) to deal with time-varying parameters.

Theorem 3. For a given scalar γ > 0 system (12) in open-
loop exponentially stable in the mean quadratic sense condition
JSE < 0 holds for all wk ∈ ˜̀2 not null, if there exist a symmetric
matrix P(α(t),β (t))> 0, satisfying the following LMI

P(α(k+1),β (k+1)) ? ?
0p×n γ2Ip ?

A(α(k))P(α(k+1),β (k+1)) B1(α(k)) P(α(k),β (k))
D(β (k))P(α(k+1),β (k+1)) 0n×p 0n×n
C1(α(k))P(α(k+1),β (k+1)) D11(α(k)) 0r×n

? ?
? ?
? ?

P(α(k),β (k)) ?
0r×n Ir

> 0. (13)

for all (α(k),α(k+1)) ∈ ΞM1 and (β (k),β (k+1)) ∈ ΞM2 .

The following theorem presents the second result of this pa-
per.
Theorem 4. For given scalars γ > 0 and ξ 6= 0, if there
exist a positive definite symmetric matrix P(α(k),β (k)) ∈
Rn×n, matrices X(α(k),β (k)) ∈ Rn×n, Z(α(k),β (k)) ∈ R`×n,
Y2(α(k),β (k)), Y6(α(k),β (k)) ∈Rn×n, satisfying the following
parameter-dependent LMI condition

γ2Ip ? ?
B1(α(k)) Φ22 ?

0n×p Φ32 P(α(k),β (k))
D11(α(k)) Φ42 0r×n

0n×p Φ52 ξY2(α(k),β (k))D(β (k))ᵀ
0n×p −Y2(α(k),β (k))ᵀ Y6(α(k),β (k))D(β (k))ᵀ

? ? ?
? ? ?
Ir ? ?

Φ54 Φ55 ?
0n×r Φ65 Φ66

> 0 (14)

for all (α(k),α(k+1))∈ΞM1 and (β (k),β (k+1))∈ΞM2 where

Φ22 = P(α(k),β (k))+He
{

A(α(k))X(α(k),β (k))ᵀ+

B2(α(k))Z(α(k),β (k))
}
,

Φ32 = D(β (k))Y2(α(k),β (k))ᵀ,

Φ42 =C1(α(k))X(α(k),β (k))ᵀ+D12(α(k))Z(α(k),β (k)),

Φ52 =−X(α(k),β (k))ᵀ+ξ
(
X(α(k),β (k))A(α(k))ᵀ+

Z(α(k),β (k))ᵀB2(α(k))ᵀ
)
,

Φ54 = ξ
(
X(α(k),β (k))C1(α(k))ᵀ+

Z(α(k),β (k))ᵀD12(α(k))ᵀ
)
,

Φ55 =−P(α(k+1),β (k+1))−ξ He
{

X(α(k),β (k))
}

,

Φ65 =−P(α(k+1),β (k+1))−ξY2(α(k),β (k))ᵀ,

Φ66 =−P(α(k+1),β (k+1))−He
{

Y6(α,β )
}

,

then K(α(k),β (k)) = Z(α(k),β (k))X(α(k),β (k))−ᵀ is a gain-
scheduled gain that stabilizes system (12) and ensures that
JSE d < 0 for all w ∈ `2 not null.

Proof. Observe that (14) can be rewritten as
Q+V ᵀX ᵀU +U ᵀX V < 0 (15)

where 2

Q =


γ2Ip ? ? ? ? ?
B1 P ? ? ? ?
0 0 P ? ? ?

D11 0 0 Ir ? ?
0 0 0 0 −P+ ?
0 0 0 0 −P+ −P+

 , V ᵀ =


0 0
I Y2
0 0
0 0

ξ I ξY2
0 Y6

 ,

U =

[
0 Aᵀ

cl 0 Cᵀ
1 −I 0

0 0 Dᵀ 0 0 −I

]
, X ᵀ =

[
X 0
0 I

]
and Acl(α) and Ccl(α) as in (10). Considering the following
basis for the null spaces of V and U , respectively,

V ⊥ =


0 I 0 0

ξ I 0 0 0
0 0 I 0
0 0 0 I
−I 0 0 0
0 0 0 0

 , U ⊥ =


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 Aᵀ

cl 0 Cᵀ
1

0 0 Dᵀ 0

 ,
and multiplying (15) on the right by U ⊥ and on the left by its
transpose, one obtainsγ2Ip ? ? ?

B1 P−AclP+Aᵀ
cl ? ?

0 −DP+Aᵀ
cl P−DP+Dᵀ ?

D11 −C1P+Aᵀ
cl −C1P+Dᵀ Ir−C1P+Cᵀ

1

> 0. (16)

Applying a Schur complement in (16) yields (13).Finally, pre-
multiplying (15) by V ⊥ and post-multiplying by its transpose,
one obtainsξ 2P(α(k),β (k))−P(α(k+1),β (k+1)) ? ? ?

ξ Bᵀ
1 γ2Ip ? ?

0 0 P ?
0 D11 0 Ir

> 0

(17)
proving that ξ cannot be zero.

Regarding the scalar parameter ξ in Theorem 4, note that as
the variation rates of both α(k) and β (k) tend to zero, one
has that ξ 2P(α(k),β (k)) − P(α(k + 1),β (k + 1)) → (ξ 2 −
1)P(α(k),β (k)). In this case it is necessary that |ξ | > 1 to
have feasible solutions. This particular case was investigated
in Morais et al. (2017).

5. PROGRAMMING THE SYNTHESIS CONDITIONS

The proposed synthesis conditions were presented in a high
level of abstraction (parameter-dependent LMIs) for two rea-
2 The dependence on α(k), α(k+ 1), β (k) and β (k+ 1) was omitted to save
space.
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sons. The first is a clearer presentation, avoiding the trick no-
tation to represent polynomials. The second is that nowadays
to solve parameter-dependent LMIs by polynomial approxima-
tions is a well established technique with software support. As
a matter of fact, the proposed conditions can be programmed in
high level using ROLMIP (Robust LMI Parser) Agulhari et al.
(2019). The only task of the user is to pick the polynomial
degrees associated to each optimization variable. The notation
g = (gα ,gβ ) is used to indicate the polynomial degrees associ-
ated to the variable in terms of α and β (time-dependence can
be dropped since α and β are constrained to the set ΛN for all
t ≥ 0. The same applies to α̇ and β̇ , and to the discrete-time
case). Note that the degrees chosen for the variables X(α,β )
and Z(α,β ) define the type of the controller. If any degree
is nonzero, then the controller is gain-scheduled, otherwise
the controller is robust (parameter-independent). Moreover, the
computation of Ṗ(α(t),α(t)) and a systematic treatment for
(α(k),α(k + 1)) is also provided by the software once the
bounds for the time-derivatives (continuous-time case) or for
the variation rates (discrete-time case) are informed. The scripts
used in the numerical examples presented in the next section
were programmed using ROLMIP, YALMIP Löfberg (2004)
and solved using SeDuMi Sturm (1999).

6. NUMERICAL EXPERIMENTS

Comparisons with the methods from Gershon et al. (2015)
and Gershon and Shaked (2015) are also presented when the
parameters are time-invariant. All the results presented in this
section, including the figures, are based only on the bounds for
the H∞ norm provided by the synthesis conditions.

Example 1 Consider the spring mass system proposed in
Trofino et al. (2005), with the matrices given below,

A =


0 0 1 0
0 0 0 1

−k1(t) k1(t) −0.2 0.2
k1(t)

2 − k1(t)+9.6
2 0.1 −0.15

 ,B1 =

 0
0
0

0.5

 ,B2 =

0
0
1
0


C1 =

[
1 0 0 0
0 0 0 0

]
, D12 =

[
0
1

]
, k1(t) ∈ [1.6 2.4], |k̇1(t)|< bi.

The matrix associated to the multiplicative noise is given by

D = diag(d(i), − d(i), 0, 0), i = 1,2, with d = [0.1 0.45].
A polytopic model for the dynamic matrix A(α) can be easily
obtained by considering the extreme values of k1(t).

The aim is to evaluate the effectiveness of the conditions
of Theorem 2 in terms of the scalar parameter ξ when the
variation rates grow. More precisely, considering |αi(t)| =
|βi(t)| ≤ b, the conditions of Theorem 2 are tested with b ∈
{0.01, 0.1, 1,5, 10}. In the first part of this experiment,
(gα ,gβ ) = (1,0) is adopted and the gain is robust (variables
X(α,β ) and Z(α,β ) are fixed with (gα ,gβ ) = (0,0)). The
guaranteed costs are depicted in Figure 1 considering ξ ∈
[0.01, 8.65] and, as can be seen, a search on ξ can provide
stabilizing gains associated with better guaranteed costs. Con-
sidering all parameters time-invariant (b = 0), it is possible to
compare the proposed approach with the method in (Gershon
et al., 2015, Cor. 2), that provides γ = 0.6756. In this situation
Theorem 2 provides γ = 0.6546 with ξ = 1.389. In terms of
numerical complexity, Theorem 2 demands V = 169 scalar vari-
ables and L = 160 LMI rows. On the other hand, the method in
Gershon requires V = 57 and L = 53. To conclude, the problem
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Figure 1. H∞ guaranteed costs (γ) computed by Theorem 2
as a function of the scalar parameter ξ considering the
variation rate bi ∈ {0.001, 0.1, 1, 5, 10} in Example 1.

of gain-scheduled is investigated. Adopting (gα ,gβ ) = (1,0),
the conditions of Theorem 2, tested with ξ = 1.389, provide
γ = 0.6157 for b = 0.01 and γ = 2.1188 for b = 10. Note
that to obtain the better performance provided by the scheduled
controller the parameter α needs to be measured or estimated
in real-time.

Example 2 The purpose of this example is to design state
feedback gains for the discrete system (11) with matrices given
by

A{1} =
[

0.4 0.7
0.5 0.3

]
, A{2} =

[
0.1 0.6
0.6 0.5

]
, B2{1,2} =

[
0 1
1 1

]
,

D{1} =
[

0.21 0.42
0.105 0.21

]
, D{2} =

[
−0.01 −0.02
−0.01 −0.01

]
,

B1{1} = [2.5 1]ᵀ, B1{2} = 2B1{1}, C1{1} = [1 0], C1{2} = [0 1],
D12{1} = 0.1, D12{2} = 0.2. The synthesis conditions of The-
orem 4 are tested using ξ ∈ [−10,10] and considering the
variation rates bounded in the form |αi(k + 1)− αi(k)| ≤ b,
b ∈ {0.01,0.1,0.5,1} and β time-invariant. Regarding the de-
gree of the optimization variables, (gα ,gβ ) = (1,0) is chosen
for all variables except X(α,β ) and Z(α,β ), that are chosen
degree zero (robust gain). The results in terms of the guaranteed
costs are shown in Figure 2. As can be seen, feasible results
were obtained when |ξ | ≥ 1.5. Moreover, negative values of ξ

provided better results. If all parameters are time-invariant, it is
possible to apply the method from (Gershon and Shaked, 2015,
Lema. 2), which provides γ = 4.4872. In this case Theorem 4
provided γ = 4.4778 with ξ = −2.069. In terms of numerical
complexity, Theorem 4 demands V = 29 scalar variables and
L = 44 LMI rows, whereas the method in Gershon requires
V = 13 and L = 20. Considering X(α,β ) and Z(α,β ) with
degrees (gα ,gβ ) = (1,0), that is, a gain-scheduled controller,
Theorem 4 using ξ =−2.069 provides γ = 3.9822 for b = 0.01
and γ = 7.4383 for b = 10.

7. CONCLUSIONS

This paper proposed synthesis conditions for the design of
H∞ state-feedback controllers for continuous- and discrete-
time LPV systems affected by multiplicative noise. The merits

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2293



−10 −8 −6 −4 −2 0 2 4 6 8 10
4

5

6

7

8

9

10

11

12

13

14

ξ

γ

 

 
b

i
=0.01

b
i
=0.1

b
i
=0.5

b
i
=1

Figure 2. H∞ guaranteed costs (γ) computed by Theorem 4 as
a function of the scalar parameter with limited variation
rate bi ∈ {0.01, 0.1, 0.5, 1} in Example 2. Note that when
|ξ |< 1.5 no feasible solutions were obtained.

of the approach are an independent treament of the uncertainty
affecting the system matrices and the multiplicative noise ma-
trix (a slack variable approach is used to address this issue) and
a general approach to cope with bounded rates of variation for
continuous- and discrete-time systems, which in the LPV case
require distinct treatments. Numerical experiments including
comparisons with methods from the literature illustrated the
results.
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