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Abstract: A non-parametric technique for modeling of systems with unknown nonlinear
Lipschitz dynamics is presented. The key idea is to successively utilize measurements to
approximate the graph of the state-update function of the system dynamics using envelopes
described by quadratic constraints. The proposed approach is then used for computing outer
approximations of the state-update function using convex optimization. We highlight the efficacy
of the proposed approach via a detailed numerical example.
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1. INTRODUCTION

As data-driven decision making and control becomes ubiq-
uitous (Recht (2019); Rosolia et al. (2018)), system iden-
tification methods are being integrated with control al-
gorithms for control of uncertain dynamical systems. In
the control systems literature, if the actual model of a
system is unknown, adaptive control (Sastry and Bod-
son (2011)) strategies have been applied for simultaneous
system identification and control. Techniques for system
modelling and identification have been traditionally rooted
in statistics and data sciences. Statistical models that
describe observed data, can be classified into paramet-
ric, non-parametric and semi-parametric (Friedman et al.
(2001)). Parametric models assume a model structure a
priori, based on the application and domain expertise of
the designer. In almost all of classical adaptive control
methods, parametric models are learned from data in
terms of point estimates, and asymptotic convergence of
such estimates are proven under persistence of excitation
conditions. The concept of online model learning and adap-
tation has been extended to systems under constraints as
well (Bujarbaruah et al. (2019)), after obtaining a set or a
confidence interval containing possible realizations of the
system model.

Parametric models are restricted only to specified forms of
function classes. In order to widen the richness of model
estimates, non-parametric models are increasingly being
utilized, whereby the model structure is also inferred from
data. For non-parametric modeling of systems, Gaussian
Process (GP) regression (Rasmussen (2003)) has been one
of the most widely used tools in control theory literature.
GP regression keeps track of a Gaussian distribution over
infinite dimensional function spaces, in terms of a mean
function and a covariance kernel, which are updated with
data. Given any system state, GP regression returns the
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mean function value at that state, along with a confidence
interval. Estimates obtained using GP regression often
come with confidence intervals instead of sets containing
all possible realizations of the system, which is a critical
drawback for robust control. Contrary to GP regression,
the kinky inference method in Calliess (2014) and non-
linear set membership in Milanese and Novara (2004) use
Lipschitz interpolation for function value estimates with
tight bounds. The focus of this paper is to propose a
simple non-parametric approach for modelling the un-
known dynamics of a discrete time autonomous system.
Similar to Calliess (2014); Milanese and Novara (2004), our
proposed approach applies to unknown nonlinear systems
with dynamics described by a state-update function which
is globally Lipschitz over a bounded domain, with known
Lipschitz constant. However instead of identifying the
state-update function itself, we identify its graph- the set
of all state and corresponding state-update function value
pairs. This is presented in the first part of the paper by
computing envelopes of the state-update function, which
are sets that contain its graph. These envelopes are built
by using historical data of state trajectories. In the second
part, we provide a method of obtaining convex outer ap-
proximations of the unknown state-update function using
the s-procedure (Pólik and Terlaky (2007)).

2. NOTATION

‖ · ‖ denotes the Euclidean norm in Rn unless explicitly
stated otherwise. Df(x) ∈ Rm×n denotes the Jacobian of
f : Rn → Rm at x. Br(x) ⊆ Rn is the open ball of radius r
centered at x. The Big O notation O(·) is used to compare
functions F (·), G(·) as F (ε) = O(G(ε)) if

∃C, δ > 0 : ‖F (ε)‖ ≤ C‖G(ε)‖ ∀‖ε‖ ≤ δ.
The Minkowski sum of two sets A and B is

A⊕B = {a+ b |a ∈ A, b ∈ B}.
We use ell(c,R) to denote an ellipse that is centered at
point c and has a shape matrix R = R> � 0.
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3. PROBLEM FORMULATION

Consider the discrete time autonomous, time invariant
system

xk+1 = f(xk), (1)

where the state-update function f(·) : X → X describes
the system dynamics and is defined over the state space
X ⊆ Rn.

Assumption 1. The function f(·) : X → X is continuous
and differentiable on convex and closed state space X ⊂
Rn with ‖Df(x)‖ ≤ L for all x ∈ X and some L > 0.

Proposition 1. (Rudin et al. (1964)). Let Assumption 1 hold.
Then ‖f(x)− f(y)‖ ≤ L‖x− y‖ for all x, y ∈ X , i.e., f(·)
is L-Lipschitz in the domain X .

Now suppose that the function f(·) is unknown. The
objective of this work is to compute a set containing f(x)
for any state x in the state space X using trajectory data
{x0, x1, x2, . . . } and the Lipschitz property of the unknown
function f(·).
Assumption 2. The Lipschitz constant L is known.

Remark 1. The problem of characterizing L−Lipschitz un-
modelled dynamics d(·) in

xk+1 = f̄(xk)︸ ︷︷ ︸
assumed model

+ d(xk)︸ ︷︷ ︸
un-modelled dynamics

can also be cast into a problem of the form (1). In
this case, we use the trajectory data {x0, x1, x2, . . . } to
construct {x1 − f̄(x0), x2 − f̄(x1), . . . } which is then used
for computing a set containing d(x) at x ∈ X .

4. PROPOSED APPROACH

We will make use of the following definitions.

Definition 1. (Graph). The graph of function f(·) : X →
X is the set

G(f) = {(x, f(x)) ∈ Rn × Rn| ∀x ∈ X}. (2)

Definition 2. (Envelope). An envelope of function f(·) :
X → X is a set Ef ⊆ Rn × Rn, with the property

G(f) ⊆ Ef . (3)

We use trajectory data {x0, x1, x2, . . . } of the system dy-
namics (1) to construct an envelope of the system dynam-
ics f(·). Observe that the trajectory data can be used to
construct tuples (xk, f(xk)) = (xk, xk+1). In particular,
at every time instant N , we have access to measurements
(xk, f(xk)), for all k = 0, 1, . . . , N−1. These measurements
are utilized to construct envelopes recursively. Our two
step approach for envelope construction is summarized
next:

(S1) At time N , compute an envelope E(xN−1) using the
tuple (xN−1, f(xN−1)) and the L−Lipschitz property
of f(·).

(S2) Compute a refined envelope EfN by intersecting the

refined envelope EfN−1 from time N − 1 with the
envelope E(xN−1) computed in step (S1), i.e.,

EfN = EfN−1 ∩ E(xN−1).

For (S1), the envelope is obtained as the sublevel set of
a quadratic function. Afterwards, the envelope in (S2) is

obtained by using the set membership approach (Bujar-
baruah et al. (2018); Tanaskovic et al. (2014)). Finally, we
use the computed envelope for obtaining a set containing
the value of f(x) at any x ∈ X , using the notion of a slice
of an envelope defined below.

Definition 3. (Envelope Slice). The slice of an envelope
Ef ⊆ Rn × Rn at a given x̄ ∈ X is the set defined as

Ef
∣∣∣
x=x̄

= {(x, y) ∈ Ef ⊆ Rn × Rn|x = x̄}. (4)

Fig. 1 shows a typical realization of the proposed approach
along with the associated set definitions which are detailed
next.

f(·)

x

y

x̄

Fig. 1. Construction of an envelope for a one dimensional
system to approximate the graph G(f) (black curve)
of its state-update function f(·). Tuples (x, f(x))
(red points) obtained from trajectory data are used
for constructing the envelope (blue set) and its slice
(yellow set) at x = x̄.

4.1 Envelope Construction

Inspired by Fazlyab et al. (2019); Megretski and Rantzer
(1997), we use quadratic constraints (QCs) as our main
tool to approximate the graph of a function. A definition
appropriate for our purposes is presented below.

Definition 4. (QC Satisfaction). A set X ⊂ Rn satisfies
the quadratic constraint specified by a symmetric matrix
Q if [

x
1

]>
Q

[
x
1

]
≤ 0, ∀x ∈ X. (5)

The following proposition uses a QC to characterize a
coarse approximation of the graph of an L−Lipschitz
function.

Proposition 2. The graph G(f) of an L−Lipschitz func-
tion f(·) satisfies the QC specified by the matrix

Qf
L(xk) =

−L
2In 0n×n L2xk

0n×n In −f(xk)

L2x>k −f>(xk) −L2x>k xk
+f>(xk)f(xk)

 , (6)

for any (xk, f(xk)) ∈ G(f).

Proof. Using the definition of the L−Lipschitz property
of f(·) (from Proposition 1), at any (xk, f(xk)) ∈ G(f),
we have
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‖f(x)− f(xk)‖ ≤ L‖x− xk‖ ∀(x, f(x)) ∈ G(f),

⇐⇒ (f(x)− f(xk))>(f(x)− f(xk)) ≤ L2(x− xk)>(x− xk)

∀(x, f(x)) ∈ G(f),

⇐⇒

[
x

f(x)
1

]>
Qf

L(xk)

[
x

f(x)
1

]
≤ 0, ∀(x, f(x)) ∈ G(f).

Therefore G(f) satisfies the QC specified by QfL(xk). �

The following corollary then gives us the definition of the
envelope E(xk).

Corollary 1. The set defined by

E(xk) = {(x, y) ∈ Rn × Rn|

[
x
y
1

]>
QfL(xk)

[
x
y
1

]
≤ 0} (7)

is an envelope for all L−Lipschitz functions that pass
through (xk, f(xk)).

Proof. Follows from Proposition 2. �
Remark 2. The proposed formulation can also be extended
to accommodate bounded noise in the measurements of xk
in (1). Suppose that the measurement model is given by

zk = xk + wk,

where wk belongs to a compact set W. Then the envelope
that is guaranteed to contain G(f) is given by E(zk) ⊕
(W×W) where QfL(·) is now constructed using (zk, zk+1).

4.2 Successive Graph Approximation

At time N , the envelope E(xN−1)) constructed in (7) using
the tuple (xN−1, f(xN−1)) can now be used to recursively

compute a new envelope EfN by refining the envelope EfN−1
from time N − 1 via set intersection-

EfN = EfN−1 ∩ E(xN−1) (8)

In the following lemma we show that the sets computed in
this fashion are indeed envelopes.

Lemma 1. For N ≥ 1, given a sequence {xk}N−1
k=0 obtained

under the dynamics (1), we have

G(f) ⊆ EfN = EfN−1 ∩ E(xN−1) =

N−1⋂
k=0

E(xk). (9)

Proof. See Appendix. �

The recursion is initialized with the trivial envelope Ef0 =
Rn × Rn. The procedure is described in Algorithm 1.

Algorithm 1 Recursive Envelope Refinement

Initialization: Ef0 = Rn × Rn

Input: At time N , (xN−1, f(xN−1)) and EfN−1

Output: Approximation of G(f) at time N : EfN

1) Compute QfL(xN−1) (from (6))

2) Compute E(xN−1) using QfL(xN−1) (from (7))

3) Set EfN = EfN−1 ∩ E(xN−1)

Note that since the envelope at any time N is computed
by intersecting with the envelope at time N − 1, they are
getting successively refined, i.e.,

EfN ⊆ EfN−1 ⊆ EfN−2 · · · ⊆ Ef0 (10)

Now we provide a condition under which the shrinking sets
generated by recursion (8) stop shrinking in finite time
or in the limit i.e., recursion (8) attains a fixed point.
Intuitively, we would expect this to happen when the
incoming tuples (x, f(x)) constructed from trajectory data
have already been seen previously (or get closer and closer
to what already seen). The following definition formalises
the notion of such trajectories.

Definition 5. (Zhou (2003)). A p-periodic orbit of the dis-
crete dynamical system (1) is the set of states obtained
under dynamics xk+1 = f(xk) with the property that
xk = xk+p for some finite p ≥ 1 and for all k ≥ 0, i.e.,

Op(xk) = {xl ∈ X | xl+1 = f(xl), l = k, . . . , k + p− 1}.
(11)

Note that the set Op(x̄eq) = {x̄eq} for all p ≥ 1 where x̄eq

is the fixed point x̄eq = f(x̄eq) of system (1). Associated
to each fixed point, one can define the set of states that
converge to it as follows.

Definition 6. (Ortega (1973)). The domain of attraction
of fixed point x̄eq is defined as the set

D(x̄eq) = {x ∈ X |xk+1 = f(xk), lim
k→∞

xk = x̄eq, x0 = x}.

The following proposition uses Definition 5 and Defini-
tion 6 to identify sufficient conditions on system trajecto-
ries for termination of the recursion (8).

Proposition 3. Given a system trajectory denoted by the
set {x0, x1, x2, . . . }, the recursion (8) has a fixed point if
either of the following conditions hold:

(1) Op(xk) ⊆ {x0, x1, x2, . . . } for some finite p ≥ 1 and
some k ≥ 0.

(2) x0 ∈ D(x̄eq) for some fixed point x̄eq.

Proof. See Appendix.

Next we present how the envelope slice is derived from the
constructed envelopes for obtaining a set-valued estimate
of f(x) at any x ∈ X .

4.3 Envelope Slice Computation

The set of possible values of function f(x̄) at any x̄ ∈
X can be obtained using (7) from the function values
f(xk) collected at k = {0, 1, 2, . . . , N − 1}. From any k-
th measurement, we can obtain a coarse estimate of the
set of possible values of f(x̄), by constructing the slice of
envelope E(xk) at x = x̄, from Definition 3. We denote this
slice with the set S(xk, x̄) as

S(xk, x̄) = E(xk)
∣∣∣
x=x̄

,

= {y ∈ X |

[
x̄
y
1

]>
QfL(xk)

[
x̄
y
1

]
≤ 0}

= {y ∈ X |
[
y
1

]>
Ā(k, x̄)

[
y
1

]
≤ 0}, (12)

where we have denoted Ā(k, x̄) = MQfL(xk)M> −

L2

[
0 0
0 (x̄− 2xk)>x̄

]
, for any k = {0, 1, 2, . . . , N − 1}, with

matrix M =

[
0 1 0
0 0 1

]
. Corollary 1 then implies f(x̄) ∈

S(xk, x̄) at any x ∈ X .
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Proposition 4. At any x̄ ∈ X , S(xk, x̄) is a closed norm
ball of radius L‖x̄ − xk‖, centered at f(xk) for each
k = {0, 1, . . . , N − 1}.

Proof. Expanding out (12) gives us

‖f(x̄)− f(xk)‖2 ≤ L2‖x̄− xk‖2, (13)

for each k = {0, 1, . . . , N − 1} and thus proves the claim.
�

As we successively collect data points (xk, f(xk)) for k =
{0, 1, 2, . . . , N − 1} under dynamics (1), the set of possible
values of f(x̄) at any x̄ ∈ X is refined as

FN (x̄) =

N−1⋂
k=0

S(xk, x̄) =

N−1⋂
k=0

E(xk)
∣∣∣
x=x̄

= EfN

∣∣∣
x=x̄

, (14)

with the guarantee f(x̄) ∈ FN (x̄) at any given time N ≥ 1.

Notice that FN (x̄) is a slice of envelope EfN at x = x̄, as
per Definition 3. We further note that FN (x̄) in (14) is
convex and compact, as it is an intersection of convex and
compact sets (13).

We now wish to quantify the error in approximating
the system state as the envelope slice. In the following
theorem, we show that if a trajectory starts in the domain
of attraction D(x̄eq) of a fixed point x̄eq of (1), then the

error in approximation of G(f) by EfN at points arbitrarily
close to x̄eq (measured by the diameter of the envelope
slice FN (x) at any x ∈ X ), gets arbitrarily small for large
enough N .

Theorem 1. Suppose we are given a system trajectory
denoted by the set {x0, x1, x2, . . . , xN} where x0 ∈ D(x̄eq).
Then for states x arbitrarily close to x̄eq, the diameter of
FN (x) is arbitrarily small for large enough N , i.e.,

∀ε > 0,∃ N̄(ε) :

max
y∈FN (x)

‖y − f(x)‖ = O(ε),

∀x ∈ Bε(x̄eq), ∀N ≥ N̄(ε).

Proof. See Appendix. �

4.4 Ellipsoidal Outer Approximation of FN (x̄)

In order to design computationally tractable robust op-
timization algorithms for all realizations of f(x) at any
x ∈ X and N ≥ 1, one must have a “nice” geometric

representation of the envelope slice FN (x̄) = EfN

∣∣∣
x=x̄

,

for all N ≥ 1. We hereby propose an approach to ob-
tain an ellipsoidal outer approximation to FN (x̄) for any
N ≥ 1 using the s-procedure (Calafiore and El Ghaoui,
2014, Section 11.4), having collected measurements at
k = 0, 1, . . . , N − 1,

Let us parametrize an ellipsoidal outer approximation of
FN (xN ), which we denote by ell(c(x̄), R(x̄)) as

ell(c(x̄), R(x̄)) =

{y ∈ Rn| (y − c(x̄))>R−1(x̄)(y − c(x̄)) ≤ 1},
where vector c(x̄) and matrix R(x̄) are the decision vari-
ables, and are functions of x̄. We seek the smallest ellip-
soidal set such that

FN (x̄) =

N−1⋂
k=0

Sk(xk, x̄) ⊆ ell(c(x̄), R(x̄)).

From s-procedure we know that the above holds true, if
there exists scalars {τ0, τ1, . . . , τN−1} ≥ 0 such that R−1(x̄) −R−1(x̄)c(x̄)
−c>(x̄)R−1(x̄) c>(x̄)R−1(x̄)c(x̄)

−1


−
N−1∑
k=0

τkĀ
s(k, x̄) � 0. (15)

We reformulate the above feasibility problem (15) as a
semi-definite program (SDP) in (Nair et al. (2019)).

5. NUMERICAL EXAMPLE

In this section we demonstrate the approach proposed in
Section 4 for characterizing the un-modelled dynamics of
a pendulum.

5.1 Pendulum Model

The continuous time model of the considered pendulum is
given by

ml2θ̈ +mgl sin θ + d̃(θ, θ̇) = T , (16)

where m is the mass, l is the length, θ is the angle the
pendulum makes with the vertical axis, d̃(θ, θ̇) is an un-
modelled damping force with known Lipschitz constant
Ld and T is a known external torque. In this work, we
simulate the system with the damping force d̃(θ, θ̇) =

−Ldθ̇ and characterize state-dependent bounds for the
same. We write the pendulum dynamics (16) in state-space
form as[

θ̇

θ̈

]
=

[
0 I
0 0

] [
θ

θ̇

]
+

 0

T
ml2
− g

l
sin θ − d̃(θ, θ̇)

ml2

 , (17)

where x = [θ θ̇]> is the state of the pendulum. We consider
a torque T that stabilizes the pendulum’s state when it’s
upright, i.e., when x̄eq = [π 0]>. We discretize system (17)
and write it in the form of (1) as xk+1 = f(xk). We then
simulate the system forward in time with a variational
integrator for mechanical systems, as in Nair and Banavar
(2019). The simulation parameters are: m = 2kg, l = 2m
and Ld = 0.2N.

5.2 Envelope Construction for Damping Force

The discrete time model xk+1 = f(xk) is decomposed as

xk+1 = f̄(xk)︸ ︷︷ ︸
assumed model

+ d(xk)︸ ︷︷ ︸
un-modelled damping

, (18)

where xk = [θk θ̇k]> , d(·) is the unknown damping in

discrete time with Lipschitz constant L̃d = LdTS

ml2 and
TS = 0.005s is the sampling period. Our experiment is
succinctly described below:

• Trajectories up to a specified time instant N , start-
ing from four different initial conditions x0 =
{[ 5π

6 0]>, [ 5π
3 − 0.5]>, [π6 0]>, [ 5π

4 − 0.2]>} are simu-
lated (solid lines in Fig. 2) and stored.

• Realizations of the un-modelled dynamics d(xk) are
recorded via d(xk) = xk+1 − F̄ (xk).
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• Having recorded the measurements (xk, d(xk)) for
k = 0, 1, . . . , N − 1 along all four trajectories, we
construct the estimate DN (x̄) (defined as in (14)) of
d(x̄) at six different points (? and ◦ in Fig. 2) using
Algorithm 1.

Table 1. Uncertainty range (up to three significant digits).
Symbol [·, ·] denotes an interval

Point x̄ d(x̄)/10−4 D100(x̄)/10−4 D4000(x̄)/10−4

[2.12 − 0.45]> 0.563 [−0.837, 0.759] [−0.001, 0.759]

[3.11 0.84]> −1.04 [−1.22, 0.73] [−1.04,−1.04]

[1.40 0.34]> −0.43 [−1.58, 0.79] [−0.43,−0.43]

[3.05 − 0.37]> 0.46 [−0.708, 0.486] [0.46, 0.46]

[4.21 0.38]> −0.47 [−2.05, 0.74] [−0.56, 0.16]

[5.60 0.22]> −0.28 [−3.73, 2.46] [−0.28,−0.28]

From Table 1, we observe that the range of un-modelled
dynamics DN (x̄) shrinks at all points x̄, as more data is
collected. This is a direct consequence of the fact that as
shown in (14), DN (x̄) is obtained with successive intersec-
tion operations upon gathering new measurements. More-

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

-1

-0.5

0

0.5

1

Fig. 2. Data collection trajectories (solid lines) and x̄
points (? and ◦) in state-space. ? is used for x̄ close
to recorded trajectories while ◦ is used for x̄ far from
recorded trajectories.

over, the learned dynamics are more accurate for points
near recorded trajectories than for query points far away,
as shown in Fig. 2. For example, at star(?) points : x̄ =
{[1.40 0.34]>, [3.05 −0.37]>, [3.11 0.84]>, [5.60 0.22]>}, we
see around 100% decrease in the uncertainty range esti-
mate as N increases from 100 to 4000. The corresponding
percentages at circle(◦) points : x̄ = {[4.21 0.38]>, [2.12 −
0.45]>} are just around 73% and 34% respectively.

6. CONCLUSIONS

We presented a non-parametric technique for online mod-
eling of systems with nonlinear Lipschitz dynamics. The
key idea is to successively use measurements to approxi-
mate the graph of the function using envelopes described
by quadratic constraints. Using techniques from convex
optimization, we also computed a set valued estimate of
the range of the unknown function at any given point
in its domain. We further highlighted the efficacy of the
proposed methodology via a detailed numerical example.
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7. APPENDIX

7.1 Proof of Lemma 1

For any (x, f(x)) ∈ G(f), we have from the Lipschitz
inequality,

‖f(x)− f(y)‖ ≤ L‖x− y‖, ∀y ∈ X ,
and choosing y = xk for k = 0, 1, . . . N − 1 in the above
inequality, in view of Corollary 1 yields,

(x, f(x)) ∈ E(xk), ∀k = 0, 1, . . . N − 1,

⇒ (x, f(x)) ∈
N−1⋂
k=0

E(xk).

Note the fact that f is globally Lipschitz ensures that the
intersections are non-empty. Since this was shown for any
(x, f(x)) ∈ G(f), we can thus conclude that

G(f) =
⋃
x∈X

(x, f(x)) ⊆
N−1⋂
k=0

E(xk).

The other equalities follow from (8). �

7.2 Proof of Proposition 3

We first prove the implication for when condition (1)
holds. Let k? be the time at which the system enters
the p-periodic orbit, i.e., Op(xk?) ⊆ {x0, x1, x2, . . . }. From

Lemma 1 we have EfN =
⋂N−1
k=0 E(xk) at any time N . For

N ≥ k? + p, consider the set

EfN+1 =

N⋂
k=0

E(xk)

= (

k?−1⋂
k=0

E(xk)) ∩ (

k?+p−1⋂
k=k?

E(xk)) ∩ (

N⋂
k=k?+p

E(xk)),

= Efk?+p ∩ (

N⋂
k=k?+p

E(xk)).

From Definition 5, we have that xk ∈ Op(xk?) for all
k = k? + p, . . . , N . Using (9) and the fact that f(·) is

globally Lipschitz on X , we thus have Efk?+p ⊆ E(xk), for
all k = k?+p, . . . , N . Combining this implication with the

definition of EfN+1 above yields

EfN+1 = Efk?+p, ∀N ≥ k? + p,

and so Efk?+p is a fixed point for recursion (8).

Now we prove the implication for when condition (2) holds,

i.e., limk→∞ xk = x̄eq. Since the sets EfN =
⋂N−1
k=0 E(xk)

are non-increasing in the sense of (10),

Ef? = lim
N→∞

EfN = lim
N→∞

N−1⋂
k=0

E(xk),

= lim
N→∞

[
(

N−2⋂
k=0

E(xk)) ∩ E(xN−1)
]
,

=
[

lim
N→∞

N−2⋂
k=0

E(xk)
]
∩
[
E( lim
N→∞

xN−1)
]
.

The last equality follows from the property of product
of convergent sequences. Computing the limits then gives

Ef? = Ef? ∩ E(x̄eq). Thus Ef? is a fixed point for (8). �

7.3 Proof of Theorem 1

From the definition x0 in the theorem, we have that the

sequence
{
xk

}∞
k=0

converges to the fixed point x̄eq of (1).

From the definition of the convergence of a sequence, we
have that for every ε > 0, there exists a N̄(ε), such that

‖xk − x̄eq‖ ≤ ε, ∀k ≥ N̄(ε).

The convergent sequence is a Cauchy sequence satisfying
with the same ε and N̄(ε) as above. That is,

‖xk1 − xk2‖ ≤ 2ε, ∀k2, k1 ≥ N̄(ε). (19)

Consider a point x̄ at most ε distance away from x̄eq. We
further have from the Lipschitz inequality,

‖f(xk1)− f(x̄)‖ ≤ L‖xk1 − x̄‖. (20)

From Proposition 4, we know that the possible values of
f(x̄) lie within a sphere of radius L‖xk1 − x̄‖ centered
at f(xk1). The diameter of the above sphere bounds the
maximum error in the estimate of f(x̄), i.e.,

‖y − f(x̄)‖ ≤ 2L‖xk1 − x̄‖, ∀y ∈ S(xk1 , x̄).

For k1 chosen as in (19), the above inequality can be
written as

‖y − f(x̄)‖ ≤ 4Lε, ∀y ∈ S(xk1 , x̄).

Now for another k2 chosen as in (19) such that f(xk1) 6=
f(xk2), we have

‖f(xk2)− f(x̄)‖ ≤ L‖xk2 − x̄‖. (21)

The intersections of the envelopes constructed from (20)
and (21) is depicted in Fig. 3. We thus obtain a tighter

Fig. 3. Intersection of set of possible values of f(x̄), given
xk1 , xk2

bound on the error in the estimate of f(x̄) via the diameter
of the n−2 dimensional sphere obtained at the intersection
of n− 1 dimensional spheres, as given by

∀y ∈ S(xk1
, x̄) ∩ S(xk2

, x̄) : ‖y − f(x̄)‖ ≤

2

√
L2(‖xk1

− x̄‖2 + ‖xk2
− x̄‖2)− ‖f(xk2

)− f(xk1
)‖2

2

⇒ max
y∈S(xk1

,x̄)∩S(xk2
,x̄)
‖y − f(x̄)‖ ≤

2

√
L2(‖xk1

− x̄‖2 + ‖xk2
− x̄‖2)− ‖f(xk2

)− f(xk1
)‖2

2
,

≤ min(2L‖xk2
− x̄‖, 2L‖xk1

− x̄‖) ≤ 4Lε

Taking intersections using all the envelopes collected
(which are non-empty due to Lipschitz property of f(·)
on X ) further shrinks the possible error and hence yields
the desired result.
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