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Abstract: Distributed consensus-based estimation is one of the main applications of sensor
networks. Most approaches are highly dependent on exact model knowledge. This limitation
motivated the development of robust distributed filters that deal with model uncertainties.
Many of these works, however, are not fully distributed filters or demand high communication
and computational efforts. In this paper, we propose a robust distributed consensus-based filter
for uncertain discrete-time linear systems. We assume norm-bounded parametric uncertainties
in all matrices of both the target system and sensing models. The approach consists of adopting
a purely deterministic interpretation of the robust distributed estimation problem, formulated
by combining the penalty function method and the robust regularized least-squares estimation
problem. The filter is presented in a fully distributed Kalman-like structure that is suitable for
online applications, requiring acceptable computational and communication efforts. We evaluate
the effectiveness of the proposed filter by comparing its performance with an existing robust
distributed filter, as well as with a centralized strategy.

Keywords: Sensor networks, distributed estimation, consensus, robust estimation, discrete-time
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1. INTRODUCTION

Distributed filtering over sensor networks has experienced
an increasing research interest during the past few decades.
These networks are composed of a set of interconnected
nodes that have sensing, computing, and communication
capabilities. Since multiple sensors observe a target sys-
tem, information is shared through the network to improve
estimation accuracy. Environment monitoring, intelligent
transportation systems, industrial cyber-physical systems,
smart grids, robotics, and healthcare are some of the ap-
plications that benefit from the flexibility and reliability of
sensor networks, see, for instance, Ding et al. (2014), Ding
et al. (2019), and references therein.

In a distributed architecture, each node has access to a
limited set of neighboring nodes. Therefore, each node
combines local information with data from its neighbors
to estimate the state of the observed process. This enables
a reduction in communication bandwidth, as well as im-
proved reliability, flexibility, and scalability. The consensus
protocol is an algorithm whereby, through averaging, mul-
tiple agents can reach an agreement on a certain quantity.
Olfati-Saber (2005) was the pioneer in applying this strat-
egy to distributed filtering by introducing the consensus
on measurements (CM) approach. Later, in Olfati-Saber
(2007), the author proposed the consensus on estimates
(CE) scheme, originating the Kalman Consensus Filter
(KCF). In Olfati-Saber (2009), it is shown that the KCF
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is a suboptimal solution to the distributed estimation
problem. Nevertheless, the optimal solution (Deshmukh
et al., 2017) requires the calculation of cross-covariance
matrices between any two sensors, demanding excessive
communication bandwidth and computational burden in
exchange for minor performance improvement. A wide
variety of consensus-based distributed filtering strategies
can be found in the literature, see e.g. He et al. (2020) for
a recent compilation.

Most works on consensus-based distributed filtering as-
sume an exact knowledge of both system and sensor mod-
els, which is rarely valid in practice. Parametric uncer-
tainties may arise from unmodeled dynamics, lineariza-
tion, model reduction, or varying parameters. They can
severely degrade the filter performance, which has, there-
fore, stirred considerable attention from researchers, more
recently, in the distributed filtering domain. For instance,
Shen et al. (2010) and Dong et al. (2014) use consensus to
handle norm-bounded uncertainties and packet dropouts.
They rely on linear matrix inequalities (LMIs), which are
computationally intensive, and compute the filter gains all
at once, requiring knowledge of the whole network. Feng
et al. (2013) and Tian et al. (2016) propose distributed
fusion architectures for uncertain systems with auto- and
cross-correlated noises. The former is based on the in-
volved computation of cross-covariance matrices between
agents, whereas the latter applies the covariance intersec-
tion scheme to reduce computational effort. Both demand
a fusion center where the local estimates of all sensors
are combined. Hence, these works are not fully distributed
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strategies, as they require network-wide information or
a fusion center. Rastgar and Rahmani (2018) extended
the work of Deshmukh et al. (2017) to systems with
stochastic uncertainties, proposing an optimal CE-based
fully distributed filter. However, to achieve optimality,
the computation of cross-covariance matrices is necessary,
which increases computation and communication burdens.

Motivated by this discussion, in this paper, we propose a
robust fully distributed consensus-based filter (RDCF) for
uncertain discrete-time linear systems. We assume more
general target system and sensing models, with all ma-
trices subject to norm-bounded parametric uncertainties.
The filter is obtained as the solution to a robust regularized
least-squares estimation problem (Sayed, 2001; Ishihara
et al., 2015), in which the penalty function method (Lu-
enberger and Ye, 2008) is applied. It is presented in a
Kalman-like structure, such that each sensor fuses local
and neighboring information. Moreover, it does not rely
on the computation of cross-covariance matrices, exhibit-
ing acceptable communication and computational require-
ments, making it suitable for online applications.

Notation: Let R be the set of real numbers, Rn the set
of n-dimensional vectors with elements in R, and Rn×m
the set of n × m real matrices. In is the n × n identity
matrix. The superscript T denotes transposition. Let P
be a real symmetric matrix, then P � 0 (P � 0) means
that P is positive (semi)definite. The col operator stacks
its operands in a block-column matrix, whereas diag
represents a block-diagonal matrix with its operands as
diagonal elements. The weighted squared Euclidean norm
of x is denoted by ‖x‖2P = xTPx. Whenever convenient,
we adopt the notation XTP (•) = XTPX.

2. PROBLEM FORMULATION

Consider a sensor network with S sensors. The communi-
cation among them is represented by an undirected graph
G = (S,E), with node set S = {1, 2, . . . , S} and edge set
E ⊆ S × S. The neighborhood of sensor i is denoted by
Ni = {j ∈ S | (i, j) ∈ E}, and has cardinality Ni. We

further define the inclusive neighborhood set Ni = Ni∪{i},
with cardinality N̄i = Ni+1. Without loss of generality, we
assume that graph G has a fixed topology and is connected,
i.e., there is a path between any pair of nodes.

The target plant is described by the uncertain discrete-
time linear system

xk+1 = (Fk+δFk)xk+(Gk+δGk)uk+(Hk+δHk)wk, (1)

for k = 0, 1, . . . , N . xk ∈ Rn is the state vector, uk ∈ Rm
the input vector, and wk ∈ Rp the process noise at time
step k.

The uncertain sensing model of the ith sensor is given by

zik = (Cik + δCik)xk + (Di
k + δDi

k)vik, ∀i ∈ S, (2)

where zik ∈ Rr and vik ∈ Rq are the measurement and noise
vectors at time step k, respectively.

The nominal parameter matrices Fk ∈ Rn×n, Gk ∈ Rn×m,
Hk ∈ Rn×p, Cik ∈ Rr×n, and Di

k ∈ Rr×q are known
and the parameter uncertainty matrices δFk ∈ Rn×n,
δGk ∈ Rn×m, δHk ∈ Rn×p, δCik ∈ Rr×n, and δDi

k ∈ Rr×q
are modeled as

[δFk δGk δHk] = M1,k ∆1,k [EFk EGk EHk ] ,[
δCik δD

i
k

]
= M i

2,k ∆i
2,k

[
EiCk E

i
Dk

]
,

with nonzero M1,k ∈ Rn×s1 and M i
2,k ∈ Rr×s2 known

matrices, EFk ∈ Rt1×n, EGk ∈ Rt1×m, EHk ∈ Rt1×p,
EiCk ∈ Rt2×n, and EiDk ∈ Rt2×q also known, and ∆1,k ∈
Rs1×t1 and ∆i

2,k ∈ Rs2×t2 arbitrary contraction matrices

such that ‖∆1,k‖ ≤ 1 and ‖∆i
2,k‖ ≤ 1, for all i ∈ S.

Our goal is to design a robust distributed state estimator
for the uncertain target system (1). Since the system
state sequence {xk} is not perfectly observed, the problem
consists in leveraging consensus-based distributed filtering
such that each sensor i can obtain an estimate x̂ik|k of xk
by combining its own information with data received from
its neighbors, despite the presence of model uncertainties.

As discussed in Bryson and Ho (1975), Sayed (2001),
and Ishihara et al. (2015), stochastic estimation problems
admit a deterministic interpretation. In this context, the
random variables wk and vik are seen as model fitting
errors. Based on this, we associate the following one-step
quadratic cost function with system (1)–(2):

J ik(xk, wk, v
j
k) =

∑
j∈Ni

‖xk − x̂jk|k−1‖
2
(P j
k|k−1

)−1

+ ‖wk‖2Q−1
k

+
∑
j∈Ni

‖vjk‖
2
(Rj
k
)−1 , (3)

for each k = 0, 1, . . . , N and i ∈ S. Matrices P jk|k−1 � 0

weight the prior estimation errors ejk|k−1 = xk − x̂jk|k−1,

for j ∈ Ni, and Qk � 0 and Rjk � 0 weight the model
fitting errors. The robust distributed consensus-based fil-
ter is then obtained by solving a min-max constrained
optimization problem in which the cost function (3) is
minimized under the maximum influence of the paramet-
ric uncertainties δk = {δFk, δGk, δHk, δC

j
k, δD

j
k}, for all

j ∈ Ni, i.e.,

min
xk,xk+1,wk,v

j
k

max
δk

J ik(xk, wk, v
j
k)

subject to

{
xk+1 = Fδ,kxk +Gδ,kuk +Hδ,kwk

zjk = Cjδ,kxk +Dj
δ,kv

j
k, ∀j ∈ Ni,

(4)

with Fδ,k = Fk+δFk, Gδ,k = Gk+δGk, Hδ,k = Hk+δHk,

Cjδ,k = Cjk + δCjk, and Dj
δ,k = Dj

k + δDj
k.

For ease of notation, consider the following definitions:

x̂ik|k−1 = col
(
x̂ik|k−1, x̂

i1
k|k−1, . . . , x̂

iNi
k|k−1

)
,

eik|k−1 = col
(
xk − x̂ik|k−1, xk − x̂

i1
k|k−1, . . . , xk − x̂

iNi
k|k−1

)
,

vik = col
(
vik, v

i1
k , . . . , v

iNi
k

)
, zik = col

(
zik, z

i1
k , . . . , z

iNi
k

)
,

Pik|k−1 = diag
(
P ik|k−1, P

i1
k|k−1, . . . , P

iNi
k|k−1

)
,

Ri
k = diag

(
Rik, R

i1
k , . . . , R

iNi
k

)
, I = col

(
In, In, . . . , In

)
,

Ciδ,k = Cik + δCik = col
(
Ciδ,k, C

i1
δ,k, . . . , C

iNi
δ,k

)
,

Di
δ,k = Di

k + δDi
k = diag

(
Di
δ,k, D

i1
δ,k, . . . , D

iNi
δ,k

)
,

Ei
Ck

= col
(
EiCk , E

i1
Ck
, . . . , E

iNi
Ck

)
,

Ei
Dk

= diag
(
EiDk , E

i1
Dk
, . . . , E

iNi
Dk

)
,
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Mi
2,k = diag

(
M i

2,k,M
i1
2,k, . . . ,M

iNi
2,k

)
,

∆i
2,k = diag

(
∆i

2,k,∆
i1
2,k, . . . ,∆

iNi
2,k

)
,

in which the superscript ij , j ∈ Ni, denotes the jth
neighbor of sensor i.

The constrained problem (4) can be transformed into an
equivalent unconstrained problem by application of the
penalty function method (Luenberger and Ye, 2008). The
constraints are weighted by a penalty parameter µ > 0
and included in the cost function (3). Violations of the
constraints are thus penalized by µ. Therefore, for each
µ > 0, problem (4) can be rewritten as follows.

min
xk,µ

max
δk

Jik,µ (5)

with cost function given in (6). According to Luenberger
and Ye (2008), the optimal solution to the original con-
strained problem (4) is obtained when µ→ +∞ in (5)–(6).

In the next section, we present the strategy that will be
used to solve the proposed optimization problem.

3. ROBUST REGULARIZED LEAST-SQUARES
ESTIMATION PROBLEM

Consider the robust regularized least-squares estimation
problem

min
x

max
δA,δb

‖x‖2Q + ‖(A+ δA)x− (b+ δb)‖2W, (7)

where x is an unknown vector we wish to estimate, A
is a nominal matrix, b is a measurement vector, Q � 0
and W � 0 are weighting matrices, and δA and δb are
parametric uncertainties modeled as

[δA δb] = M∆ [EA Eb] , ‖∆‖ ≤ 1,

with known matrices M , EA, and Eb.

Sayed (2001) proposed a unique solution to problem (7),
which was later presented in alternative convenient sym-
metric matrix arrangement framework by Ishihara et al.
(2015), as the following lemma states.

Lemma 1. (Ishihara et al., 2015) Consider the robust reg-
ularized least-squares estimation problem (7). The optimal
solution x∗ and the respective weighting matrix P for an
estimation error e = x− x∗ are given by

[x∗ P] =

0
0
0
I


T

Q−1 0 0 I

0 Ŵ−1 0 A

0 0 λ̂−1I EA
I AT ETA 0


−1  0 0

b 0
Eb 0
0 −I

 , (8)

with

Ŵ = (W−1 − λ̂−1MMT )−1,

λ̂ = (1 + α) ‖MTWM‖, for some α > 0.

Remark 1. In case Q � 0 in (7), such that Q =

[
Q̄ 0
0 0

]
, Q̄ �

0, it can be shown that solution (8) can be alternatively
rewritten as

[x∗ P] =
0 0
0 0
0 0
I 0
0 I


T

Q̄−1 0 0 I 0

0 Ŵ−1 0 A1 A2

0 0 λ̂−1I EA1
EA2

I AT1 ETA1
0 0

0 AT2 ETA2
0 0


−1

0 0 0
b 0 0
Eb 0 0
0 −I 0
0 0 −I

 , (9)

where A = [A1 A2] and EA = [EA1
EA2 ].

4. ROBUST DISTRIBUTED CONSENSUS-BASED
FILTER

We are now ready to propose a solution to the uncon-
strained min-max optimization problem (5)–(6). Notice
that it is a special case of the robust regularized least-
squares estimation problem (7), considering the following
identifications:

x←


eik|k−1

wk
vik
xk
xk+1

 , Q←


(Pik|k−1)−1 0 0 0 0

0 Q−1
k 0 0 0

0 0 (Ri
k)−1 0 0

0 0 0 0 0
0 0 0 0 0

 ,

A+ δA←

In̄ 0 0 −I 0
0 Hδ,k 0 Fδ,k −In
0 0 Di

δ,k Ciδ,k 0

 , ∆←
[
∆1,k 0

0 ∆i
2,k

]
,

b+ δb←

−x̂ik|k−1

−Gδ,kuk
zik

 , M ←
 0 0
M1,k 0

0 Mi
2,k

 , W← µI,

EA ←
[
0 EHk 0 EFk 0
0 0 Ei

Dk
Ei

Ck
0

]
, Eb ←

[
−EGkuk

0

]
.

Notice that we have Q � 0, therefore, as stated in
Remark 1, the alternative solution (9) can be used in this
case. In order to do so, consider the following additional
identifications:

Q̄←

(Pik|k−1)−1 0 0

0 Q−1
k 0

0 0 (Ri
k)−1

 , A1 ←

In̄ 0 0
0 Hk 0
0 0 Di

k

 ,
A2 ←

−I 0
Fk −In
Cik 0

, EA1 ←
[
0EHk 0
0 0 Ei

Dk

]
, EA2 ←

[
EFk 0
Ei

Ck
0

]
.

Lemma 2. Consider the optimization problem (5)–(6)
with fixed µ > 0. The posterior and prior state estimates,
x̂ik|k and x̂ik+1|k, respectively, obtained by the ith sensor

of the network, as well as their respective error weighting
matrices, P ik|k and P ik+1|k, are recursively given by

Jik,µ =


eik|k−1

wk
vik
xk

xk+1


T

(Pik|k−1)
−1 0 0 0 0

0 Q−1
k

0 0 0

0 0 (Rik)
−1 0 0

0 0 0 0 0
0 0 0 0 0



eik|k−1

wk
vik
xk

xk+1

+


[
In̄ 0 0 −I 0
0 Hδ,k 0 Fδ,k −In
0 0 Di

δ,k Ciδ,k 0

]
eik|k−1

wk
vik
xk

xk+1

−
[
−x̂ik|k−1

−Gδ,kuk
zik

]
T

µI
(
•
)

(6)

with fixed µ > 0 and n̄ = N̄in.
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[[
x̂ik|k
x̂ik+1|k

] [
P ik|k ∗
∗ P ik+1|k

]]
=

0
0
0
I


T


Pi
k 0 I 0

0 Λiµ,k D i
k C i

k

I (D i
k)T 0 0

0 (C i
k)T 0 0


−1  0 0

ψik 0
0 0
0 −I

 , (10)

for k = 0, 1, . . . , N , with

Pi
k =

Pik|k−1 0 0
0 Qk 0
0 0 Ri

k

 , Λiµ,k =

µ−1In̄ 0 0
0 Σi1,µ,k 0

0 0 Σi2,µ,k

 ,
Σi1,µ,k =

[
µ−1In − (λ̂ik)−1M1,kM

T
1,k 0

0 (λ̂ik)−1It1

]
,

Σi2,µ,k =

[
µ−1Ir̄ − (λ̂ik)−1Mi

2,k(Mi
2,k)T 0

0 (λ̂ik)−1It̄2

]
,

D i
k =

In̄ 0 0

0 Ĥk 0

0 0 D̂
i

k

 , C i
k =

−I 0

F̂k −Î
Ĉ
i

k 0

 , ψik ←
−x̂ik|k−1

−Ĝkuk
ẑik

 ,
F̂k =

[
Fk
EFk

]
, Ĝk =

[
Gk
EGk

]
, Ĥk =

[
Hk

EHk

]
, Î =

[
In
0

]
,

Ĉ
i

k =

[
Cik
Ei

Ck

]
, D̂

i

k =

[
Di
k

Ei
Dk

]
, ẑik =

[
zik
0

]
,

λ̂ik = (1 + α)
∥∥∥µdiag

(
MT

1,kM1,k, (Mi
2,k)TMi

2,k

)∥∥∥ ,
for some α > 0, n̄ = N̄in, r̄ = N̄ir, and t̄2 = N̄it2.

Proof. If follows directly from applying Lemma 1 to
problem (5)–(6), considering the alternative solution in
Remark 1. Note that the entries of the solution marked
with ∗ are byproducts with no particular meaning.

Remark 2. The optimal solution to the original con-
strained problem (4) is thus obtained by making µ→ +∞
in the solution (10) of the equivalent unconstrained prob-

lem (5)–(6). As a consequence, λ̂ik → +∞, such that
Λiµ,k → 0. In this case, notice that the matrix block[
D i
k C i

k

]
must have full row rank in order to ensure the

invertibility of the central matrix in (10).

The main result of this paper is the following theorem, in
which the solution in Lemma 2 is reduced to an equivalent
distributed Kalman-like recursive structure.

Theorem 1. Consider the optimization problem (5)–(6)
with fixed µ > 0. The RDCF recursive equations to
compute the posterior and prior state estimates, x̂ik|k
and x̂ik+1|k, respectively, obtained by the ith sensor of

the network, as well as their respective error weighting
matrices, P ik|k and P ik+1|k, for k = 0, 1, . . . , N , are

• Correction step:

(P ik|k)−1 =
∑
j∈Ni

(P̄ jk|k−1)−1 +
∑
j∈Ni

(Ĉjk)T (R̄jk)−1Ĉjk

+ F̂Tk Υi
kF̂k, (11)

(P ik|k)−1x̂ik|k =
∑
j∈Ni

(P̄ jk|k−1)−1x̂jk|k−1+
∑
j∈Ni

(Ĉjk)T (R̄jk)−1ẑjk

− F̂Tk Υi
kĜkuk, (12)

• Prediction step:

P ik+1|k =
[
ÎT (Q̄ik)−1Î

]−1

+ ΓikF̂kP
i
k|kF̂

T
k (Γik)T , (13)

x̂ik+1|k = Γik

(
F̂kx̂

i
k|k + Ĝkuk

)
, (14)

with

F̂k =

[
Fk
EFk

]
, Ĝk =

[
Gk
EGk

]
, Ĥk =

[
Hk

EHk

]
, ẑjk =

[
zjk
0

]
,

Ĉjk =

[
Cjk
EjCk

]
, D̂j

k =

[
Dj
k

EjDk

]
, P̄ jk|k−1 = µ−1In + P jk|k−1,

Q̄ik = Σi1,k + ĤkQkĤ
T
k , Γik =

[
ÎT (Q̄ik)−1Î

]−1

ÎT (Q̄ik)−1,

R̄jk = σj2,k + D̂j
kR

j
k(D̂j

k)T , Υi
k = (Q̄ik)−1 − (Q̄ik)−1Î Γik,

Σi1,k =

[
µ−1In − (λ̂ik)−1M1,kM

T
1,k 0

0 (λ̂ik)−1It1

]
, Î =

[
In
0

]
,

σj2,k =

[
µ−1Ir − (λ̂ik)−1M j

2,k(M j
2,k)T 0

0 (λ̂ik)−1It2

]
,

λ̂ik = (1 + α)
∥∥∥µdiag

(
MT

1,kM1,k, (Mi
2,k)TMi

2,k

)∥∥∥ ,
(15)

for some α > 0, and ∀j ∈ Ni.

Proof. It follows from solving the system of simultaneous
equations represented by the matrix arrangement (10) and
performing some algebraic manipulations.

Remark 3. In order to improve estimation accuracy, addi-
tional consensus steps can be carried out by the sensors
when computing the summation terms in (11) and (12).

Remark 4. The invertibility of P ik|k, ∀i ∈ S and k =

0, 1, . . . , N is guaranteed by requiring that P i0|−1 � 0 and

(Ĉik)T (R̄ik)−1Ĉik � 0, ∀i ∈ S. Thus, matrices Ĉik should
have full column rank. Furthermore, it can be shown that

F̂Tk Υi
kF̂k � 0.

Remark 5. Regarding optimality of the solution, as men-
tioned in Remark 2, it is required that µ → +∞. In this
reduced form, it is easier to verify that, for this to be

possible, matrices Ĥk and D̂i
k should have full row rank,

∀i ∈ S. This, in turn, means that n+t1 ≤ p and r+t2 ≤ q.
When this is not the case, the penalty parameter µ acts
as a measure of robustness of the proposed filter.

Algorithm 1 summarizes the robust distributed consensus-
based filtering procedure for each sensor i of the network.

5. ILLUSTRATIVE EXAMPLES

In this section, we assess the performance of the proposed
RDCF with two examples. In both, we compare our results
with an existing robust distributed filtering strategy (Rast-
gar and Rahmani, 2018) and with a robust centralized
scheme, in which a fusion center has access to information
from all sensors of the network.
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Algorithm 1 Robust Distributed Consensus-Based Filter

Model: Assume a target plant with model (1) and a
network of sensors with model (2).
Initialization: Set x̂i0|−1, P i0|−1 � 0, µ > 0, and α > 0.

for k = 0, 1, . . . , N do:
1: Obtain measurement zik;
2: Compute P̄ ik|k−1, as in (15);

3: Broadcast message

mi
k =

{
(P̄ ik|k−1)−1x̂ik|k−1, z

i
k, (P̄ ik|k−1)−1,

Ĉik, D̂
i
kR

i
k(D̂i

k)T , M i
2,k

}
;

4: Receive messages mj
k from neighbors j ∈ Ni;

5: Compute λ̂ik, Σi1,k, Q̄ik, Γik, and Υi
k using (15);

6: Compute σj2,k and R̄jk, ∀j ∈ Ni, according to (15);

7: Obtain posterior error weighting matrix P ik|k and

state estimate xik|k using (11) and (12), respectively;

8: Obtain prior error weighting matrix P ik+1|k and state

estimate xik+1|k using (13) and (14), respectively.

end for

A

B

Type 1

Type 2

Fig. 1. Sensor network with 25 nodes and 81 edges.

Example 1. (Adapted from Rastgar and Rahmani (2018))
Consider a target plant model as in (1), with matrices:

Fk =

[
0 −0.5
1 1

]
, Gk =

[
0
0

]
, Hk =

[
−6

1

]
, M1,k =

[
1
1

]
,

EFk = [0.01 sin(6k) 0.2] , EGk = 0, EHk = 0.3.

No input signal uk is present and wk is a zero-mean white
Gaussian noise signal with variance Qk = 0.00125. The
initial state is x0 = [1 0]T .

A set of S = 25 sensors arranged in a random geometric
undirected network, depicted in Fig. 1, observe the target
system. The sensing model is described in (2), with vik as
zero-mean white Gaussian noise signals with variances Rik.
Two distinct types of sensors are considered. Sensors with
odd number, i.e., i = 1, 3, . . . , 25, are of the first type,
having matrices

Cik = [−100 50] , Di
k = 1, M i

2,k = 1,

EiCk = [0.2 0.5] , EiDk = 0.2, Rik = 0.9.

Sensors with even number, i.e., i = 2, 4, . . . , 24, are of the
second type, with matrices

Cik = [−100 53] , Di
k = 1, M i

2,k = 1,

EiCk = [0.3 0.5] , EiDk = 0.3, Rik = 0.9.

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Time Step k

x
1
,k

Sensor A (Type 1)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Time Step k

Sensor B (Type 2)

0 5 10 15 20 25

−0.5

0

0.5

1

1.5

Time Step k

x
2
,k

0 5 10 15 20 25

−0.5

0

0.5

1

1.5

Time Step k

Fig. 2. Actual (solid lines) and estimated (dashed lines)
state of the target system by the two types of sensors
in the network.

We apply Algorithm 1 with the following initialization
data for all sensors:

P i0|−1 = I2, µ = 106, α = 0.5,

and initial prior state estimates xi0|−1 randomly selected

from a normal distribution with mean x0 and variance
P i0|−1, for all i ∈ S. Figure 2 shows the evolution of the tar-

get state along with the estimation performed by sensors A
(type 1) and B (type 2), which are identified in Fig. 1. At
each time step, ∆1,k and ∆i

2,k are real numbers picked from
a zero-mean Gaussian distribution with variance ξ = 0.1.
The results show that the proposed RDCF can successfully
track the state of the target, despite the norm-bounded
parametric uncertainties, present in all matrices of both
the process and sensor models.

We further evaluate the RDCF by comparing its perfor-
mance with that of the optimal robust distributed CE-
based filter (ORDCF) proposed in Rastgar and Rahmani
(2018) and with a robust centralized filter (RCF), based
on the filter presented in Ishihara et al. (2015), in which
all sensor data is fused at once. The simulation consists
of performing L = 1000 Monte Carlo experiments, each
with time horizon N = 100. At each time step k, the root
mean squared estimation error (RMSE) averaged along all
experiments and sensors in the network is computed as

RMSEk =

(
1

SL

S∑
i=1

L∑
`=1

‖xk − x̂ik|k,`‖
2

) 1
2

.

The results for the three filters are shown in Fig. 3. As
expected, the centralized strategy presents the smallest
estimation error. The proposed RDCF, even in a subopti-
mal setting, since µ < +∞ (see Remark 5), outperforms
the ORDCF. Moreover, the communication burden and
computational complexity of the latter are significantly
higher, as it depends on the calculation of cross-covariance
matrices between every pair of sensors.
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Fig. 3. RMSE of the three filters for Example 1.
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Fig. 4. RMSE of the three filters for Example 2.

Example 2. In this second example, we consider the same
data from Example 1, except for the following changes in
the sensing model matrices:

Cik = [−100 10] , i = 1, 3, . . . , 25.

Cik = [−95 16] , i = 2, 4, . . . , 24.

As in Example 1, a set of L = 1000 Monte Carlo
experiments are performed. The resulting evolution of
the RMSE for the three filters over time is depicted in
Fig. 4. As before, the RCF exhibits the best performance,
followed by the RDCF. Nevertheless, the ORDCF presents
performance degradation.

6. CONCLUSION

In this paper, we proposed a new robust distributed
consensus-based filter that is suitable for sensor networks
applications. Norm-bounded parametric uncertainties are
assumed in every matrix of both the target plant and
sensing models. The filter results from the solution of
a purely deterministic robust regularized least-squares
estimation problem, along with the application of the
penalty function method. The relation between optimality
and robustness is encapsulated in the penalty parameter µ,
which can be tuned in order to obtain satisfactory tracking
performance.

The effectiveness of the proposed filter was verified by
means of two numerical examples. A comparison with the
optimal robust distributed filter of Rastgar and Rahmani

(2018) and with a centralized strategy was carried out. The
results show that, in both examples, our filter presents a
performance close to the centralized scheme and outper-
forms the other distributed strategy. Moreover, it does not
require the calculation of cross-covariance matrices, saving
significant communication and computational efforts.
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