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Abstract: In this paper, we investigate the continuity of the value function for a stochastic
sparse optimal control. The most common method to solve stochastic optimal control problems
is the dynamic programming. Specifically, if the value function is smooth, it satisfies the
associated Hamilton-Jacobi-Bellman (HJB) equation. However, in general, the value function
for our problem is not differentiable because of the nonsmoothness of the L0 cost functional.
Instead, we can expect that the value function is a viscosity solution to the HJB equation.
This paper shows the continuity of our value function as a first step for showing that the value
function is a viscosity solution.
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1. INTRODUCTION

This paper considers an L0 optimal control problem for
stochastic systems. The L0 optimal control minimizes the
length of the support of controls while realizing control
objectives. The resulting control signal tends to take zero
values on a set of positive measures. Due to this property,
the L0 optimal control is also referred to as sparse opti-
mal control. Recently, this framework has been attracting
much attention because we can stop actuators for long
periods of time so that the control is environmentally
friendly. As a typical example, in automobiles, this control
method enables us to reduce CO and CO2 emissions and
fuel consumption. We can raise many applications of the
framework of the sparse optimal control problem, such as
actuator placements (Stadler, 2009; Herzog et al., 2012;
Kunisch et al., 2014), networked control systems (Naga-
hara et al., 2014; Ikeda and Kashima, 2018b), multi-period
investments (Boyd et al., 2014), to name a few.

In general, L0 optimization problems are challenging to
solve computationally because of the discontinuity and
the nonconvexity of the L0 cost functional. A common
method for handling this issue is to relax the original
problem by replacing L0 norm by L1 norm (Donoho,
2006). Thanks to this relaxation, we can utilize various
convex optimization methods to solve it. Interestingly,
under some conditions, the optimal solution for the relaxed
optimization problem coincides with the one for the orig-
inal L0 optimization problem. For deterministic control-
affine systems, the equivalence between the L0 optimality
and the L1 optimality has been shown in (Nagahara et al.,
2015). Moreover, an equivalence theorem is also derived
for deterministic general linear systems including infinite-
dimensional systems (Ikeda and Kashima, 2018a). On the
other hand, when it comes to stochastic systems, the
sparse optimal control problem is not studied so much

yet. In (Exarchos et al., 2018), a finite horizon optimal
control problem with the L1 cost functional for stochastic
systems is dealt with and the authors propose sampling-
based algorithm to solve the problem utilizing forward and
backward stochastic differential equations. However, it is
not obvious that the L1 optimal control provides the L0

optimal control for stochastic systems. For this reason, we
tackle the analysis of the stochastic L0 optimal control
problem.

When we deal with stochastic optimal control problems,
the most popular method to analyze them is the dynamic
programming. In this method, the value function, which
is the optimal value of the cost functional, plays an
important role in characterizing the optimal control. If
the value function is smooth, it satisfies the associated
Hamilton-Jacobi-Bellman (HJB) equation. However, the
value function is not differentiable, in general. In such a
case, we can expect that it is a viscosity solution of the
HJB equation (Fleming and Soner, 2006; Yong and Zhou,
1999).

In (Ikeda and Kashima, 2019), the dynamic programming
approach is applied to a deterministic L0 optimal control
problem and it has been revealed that the value function
is continuous and that it is a viscosity solution of the
associated HJB equation. Furthermore, an equivalence
theorem between the L0 optimality and the L1 optimality
is shown via the uniqueness of the viscosity solution. It
should be emphasized that the continuity of the value
function plays a fundamental role in the results and
makes it easier to discuss the viscosity solution. Note
also that the continuity of the value function ensures
that sufficiently small changes in the initial state and
the initial time of the control system result in small
changes in the optimal value. This property is not clear
for L0 optimal control problems due to the discontinuity
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of L0 norm. In addition, the continuity is useful to show
the stability in the sense of Lyapunov when the finite-
horizon optimal control of interest is extended to model
predictive control (Ikeda and Nagahara, 2016). Thus, the
continuity of the value function is a fundamental and
important property. Towards the stochastic counterparts
of the results for deterministic systems, in this paper,
we prove the continuity of the value function for the
stochastic sparse optimal control. The main difficulty in
the analysis of our value function is that the state of
the systems is unbounded due to the stochastic noise.
Therefore, we require more delicate analysis compared to
the deterministic case.

Organization: This paper is organized as follows: In Sec-
tion 2 we give mathematical preliminaries. In Section 3
we briefly review the related work (Ikeda and Kashima,
2019) and formulate our problem. In Section 4 we derive
the continuity of the value function for stochastic systems.
Some concluding remarks are given in Section 5.

2. MATHEMATICAL PRELIMINARIES

This section gives notation that will be used throughout
the paper.

Let N , N1, and N2 be positive integers. For a matrix
M ∈ RN1×N2 , M⊤ denotes the transpose of M . For a
matrixM ∈ RN×N , tr(M) denotes the trace ofM . Denote

the Frobenius norm of M ∈ RN1×N2 by ∥M∥, i.e., ∥M∥ ≜√
tr(M⊤M). For a vector a = [a1, a2, . . . , aN ]⊤ ∈ RN , we

denote the Euclidean norm by ∥a∥ ≜ (
∑N

i=1 a
2
i )

1/2, the
open ball with center at a and radius r > 0 by B(a, r),

i.e., B(a, r) ≜ {x ∈ RN : ∥x − a∥ < r}, and the closed
ball with center at a and radius r > 0 by B̄(a, r), i.e.,

B̄(a, r) ≜ {x ∈ RN : ∥x − a∥ ≤ r}. We denote the inner
product of a ∈ RN and b ∈ RN by a · b.
Let T > 0. For p ∈ {0, 1,∞}, Lp denotes the set of all
continuous-time signals u(t) = [u1(t), u2(t), . . . , uN (t)]⊤ ∈
RN over a time interval [0, T ] such that ∥u∥p <∞, where
∥ · ∥p, referred to as Lp norm, is defined by

∥u∥0 ≜
N∑
j=1

µL({t ∈ [0, T ] : uj(t) ̸= 0}),

∥u∥1 ≜
N∑
j=1

∫ T

0

|uj(t)|dt,

∥u∥∞ ≜ max
j=1,2,...,N

ess sup
0≤t≤T

|uj(t)|,

with the Lebesgue measure µL on R. The L0 norm is also

expressed by ∥u∥0 =
∫ T

0
ψ0(u(t))dt, where ψ0 : RN → R is

a function that returns the number of nonzero components,
i.e.,

ψ0(a) ≜
m∑
j=1

|aj |0

with 00 = 0.

Let α ∈ (0, 1]. A function f : RN1 → RN2 is called α-
Hölder continuous if there exists a constant L > 0 such
that, for all x, y ∈ RN1 ,

∥f(x)− f(y)∥ ≤ L∥x− y∥α.

Especially when α = 1, f is called Lipschitz continuous. f
is called locally α-Hölder continuous if for any x ∈ RN1 ,
there exists a neighborhood Ux of x such that f restricted
to Ux is α-Hölder continuous.

Let (Ω,F ,P) be a complete probability space equipped
with a natural filtration {Fs}s≥t, and E be the expectation
with respect to P. In this paper, we omit the subscript
of stochastic processes when no confusion occur, e.g.,
{Xs} = {Xs}s≥t. For A ∈ F , we denote the complement

of A by Ac ≜ {ω ∈ Ω : ω /∈ A}. The expected value
of a random variable X restricted to A is denoted by
E[X,A] ≜

∫
A
X(ω)dP(ω) = E[X · 1lA] where 1lA is the

indicator function of A, i.e.,

1lA(ω) =

{
0, ω ̸∈ A

1, ω ∈ A
.

When X is a R-valued random variable, it holds that

E [X,A] ≤ E
[
|X|2

]1/2 · (P(A))1/2 (1)

where Hölder’s inequality is applied.

3. SPARSE OPTIMAL CONTROL PROBLEM

In this section, we briefly review the L0 optimal control
problem for deterministic systems based on the discussion
in (Ikeda and Kashima, 2019). Next, we formulate the L0

optimal control problem for stochastic systems.

3.1 Review of deterministic L0optimal control

Consider the following deterministic control system:

ẏ(s) = f(y(s), u(s)), s > t

y(t) = x,
(2)

where y(s) ∈ Rn is the state variable, u(s) ∈ Rm is the
control variable, t ≥ 0 is the initial time, and x ∈ Rn

is the initial state. We assume the range of the control
u is constrained in a compact set U ⊂ Rm that contains
0 ∈ Rm, i.e., u(s) ∈ U for all s, and we denote the set of
all such functions by U , i.e.,

U ≜ {u ∈ L∞ : u(s) ∈ U for all s}.
We fix a finite horizon 0 < T <∞. For given (x, t) ∈ Rn×
[0, T ] and u ∈ U , we denote by yt,x,u(s) the state at time
s with the initial condition y(t) = x and a control u.

For given x ∈ Rn, T > 0, and t ∈ [0, T ], we consider the
cost functional

J(x, t, u) ≜
∫ T

t

ψ0(u(s))ds+ g(yt,x,u(T )),

where the function g : Rn → R is the terminal cost and
the function ψ0 : Rm → R returns the number of nonzero
components, which is defined in Section 2. Note that the
first term expresses the L0 cost of the control input, and
hence by minimizing J , we can expect that the resulting
control is sparse. To sum up, the optimal control problem
is formulated as follows:

Problem 1. Given x ∈ Rn, T > 0, and t ∈ [0, T ], find a
control input u on [t, T ] that solves

minimize
u

J(x, t, u)

subject to ẏ(s) = f(y(s), u(s)),

y(t) = x,

u ∈ U .
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Here, we assume the following conditions for the dynamics
f(y, u) and the terminal cost g(y):

(A1) f : Rn × U → Rn is continuous;
(A2) f is Lipschitz continuous in the state variable, uni-

formly in the control variable, i.e., there exists a
constant L such that

∥f(y, u)− f(z, u)∥ ≤ L∥y − z∥ (3)

for all y, z ∈ Rn and u ∈ U;
(A3) g : Rn → R is continuous.

Assumptions (A1) and (A2) guarantee the existence and
the uniqueness of a solution to the differential equation (2);
see (Bardi and Capuzzo-Dolcetta, 2008). Assumption (A3)
is used to guarantee the continuity of the value function,
which is defined by

V (x, t) ≜ inf
u∈U

J(x, t, u), x ∈ Rn, t ∈ [0, T ].

Remark 1. In (Ikeda and Kashima, 2019), the authors deal
with slightly different framework. To be more precise, the
cost functional is given by

J̃(x, t, u) ≜
∫ t

0

ψ0(u(s))ds+ g(y(T ))

where y(s) is a solution to

ẏ(s) = f(y(s), u(s)), s > 0

y(0) = x.
(4)

The corresponding value function is defined by

Ṽ (x, t) ≜ inf
u∈U

J̃(x, t, u), x ∈ Rn, t ∈ [0,∞).

Noting that V (x, t) = Ṽ (x, T−t) for all (x, t) ∈ Rn×[0, T ],

the results for Ṽ in (Ikeda and Kashima, 2019) are also
true for our value function V .

For the continuity of the value function, the following holds
(Ikeda and Kashima, 2019, Theorem 1):

Theorem 1. Fix T > 0. Under assumptions (A1), (A2),
and (A3), the value function V is continuous on Rn×[0, T ].
If in addition the terminal cost g is Lipschitz continuous,
then V is locally Lipschitz continuous.

Moreover, it is revealed that V is a viscosity solution to
the associated HJB equation:{

−vt(x, t) +H(x,Dxv(x, t)) = 0 in Rn × (0, T ), (5)

v(x, T ) = g(x) in Rn, (6)

where H : Rn × Rn → R is defined by

H(x, p) ≜ sup
u∈U

{−f(x, u) · p− ψ0(u)}, (7)

vt denotes the partial derivative with respect to the last
variable and Dxv denotes the gradient with respect to the
first n variables. Thanks to this property, the equivalence
between the L0 optimality and the L1 optimality and a
sufficient and necessary condition for the L0 optimality
are also derived. Furthermore, the bang-off-bang property
of the optimal control is shown. We emphasize again that
the continuity of the value function V makes it easier to
show that V is a viscosity solution. Hence, it is a crucial
step in the study of the sparse optimal control to prove
that V is continuous.

3.2 Stochastic L0 optimal control

We next formulate the sparse optimal control problem for
stochastic systems. Compared to the deterministic case,
more delicate analysis is required for the stochastic case.
Specifically, we have to vary not only control processes but
also probability spaces in order to adopt the dynamic pro-
gramming approach; for details see e.g., (Yong and Zhou,
1999; Nisio, 2014). We consider the following stochastic
system where the state is governed by a stochastic differ-
ential equation valued in Rn:

dys = f(ys, us)ds+ σ(ys, us)dws, s > t

yt = x.
(8)

Here, x is a deterministic initial state. The range of the
control U ⊂ Rm is a compact set that contains 0 ∈ Rm,
and we fix a finite horizon 0 < T <∞.

As in the deterministic case, we are interested in the
optimal control that minimizes the cost functional

J s(x, t, u) ≜ E

[∫ T

t

ψ0(us)ds+ g(yT )

]
. (9)

For each fixed t ∈ [0, T ), we denote by U s[t, T ] the set of
all 5-tuples (Ω,F ,P, {ws}, {us}) satisfying the following
conditions:

(i) (Ω,F ,P) is a complete probability space,
(ii) {ws} is a d-dimensional Wiener process on (Ω,F ,P)

over [t, T ] (with wt = 0 almost surely),
(iii) The control {us} is a {F t

s}s≥t-progressively measur-
able and U-valued process on (Ω,F ,P) where F t

s is
the σ-field generated by {wr : t ≤ r ≤ s},

(iv) Under {us} and for any x ∈ Rn, the equation (8) has
a unique solution {ys} on (Ω,F , {F t

s}s≥t,P),
(v) g(yT ) is F t

T -measurable and E[|g(yT )|] < +∞ is
satisfied.

For notational simplicity, we write u ∈ U s[t, T ] instead
of (Ω,F ,P, {ws}, {us}) ∈ U s[t, T ]. Note that in (9) the
expectation E is with respect to P. For given (x, t) ∈ Rn×
[0, T ] and u ∈ U s[t, T ], we denote by yt,x,us the unique
solution of (8).

Then, the main problem for the stochastic case is formu-
lated as follows:

Problem 2. Given x ∈ Rn, T > 0, and t ∈ [0, T ], find a
5-tuple u ∈ U s[t, T ] that solves

minimize
u

J s(x, t, u)

subject to dys = f(ys, us)ds+ σ(ys, us)dws,

yt = x,

u ∈ U s[t, T ].

We assume the following conditions for functions f, σ, g:

(B1) There exist positive constants L, M̄ and a nonde-
creasing function m̄ ∈ C([0,+∞)) such that f : Rn ×
U → Rn and σ : Rn×U → Rn×d satisfy the following
condition:

∥f(y, u)− f(z, v)∥+ ∥σ(y, u)− σ(z, v)∥
≤ L∥y − z∥+ m̄(∥u− v∥) (10)

for all y, z ∈ Rn, u, v ∈ U, where m̄(·) ≤ M̄ and
m̄(0) = 0;
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(B2) There exist constants Ĉ > 0 and p ≥ 2 such that
g : Rn → R satisfies the following growth condition:

|g(y)| ≤ Ĉ(1 + ∥y∥p) (11)

for all y ∈ Rn;
(B3) g : Rn → R is continuous.

Note that assumption (B1) ensures the existence and path-
wise uniqueness of a solution to the stochastic differen-
tial equation (8) with any deterministic initial condition
yt = x, (t, x) ∈ [0, T ] × Rn and any progressively mea-
surable process {us}; see (Nisio, 2014). In addition, under
assumptions (B1) and (B2), the cost functional J s(x, t, u)
is finite for any (x, t, u) ∈ Rn× [0, T ]×U s[t, T ]; see Remark
4. Assumption (B3) is introduced to show the continuity
of the value function defined by

V s(x, t) ≜ inf
u∈U s[t,T ]

J s(x, t, u), x ∈ Rn, t ∈ [0, T ],

which is illustrated in Theorem 2.

Remark 2. In Problem 2, we vary probability spaces. This
problem formulation is called a weak formulation. This
formulation is convenient for proving the dynamic pro-
gramming principle. On the other hand, the problem where
we fix a probability space and vary only control processes
is referred to as a strong formulation. It is known that,
under some conditions, the value function of the weak for-
mulation coincides with the one of the strong formulation;
see (Fleming and Soner, 2006).

4. CONTINUITY OF VALUE FUNCTION

In this section, we derive the continuity of the value
function V s. First, we supply a lemma to estimate p-th
order moments of the state governed by the stochastic
system (8) (Nisio, 2014, Theorem 1.2).

Lemma 1. Assume (B1) and let p ≥ 2 be given. Then
there exists a positive constant Kp such that the following
estimates hold:

(i) For any (t, x) ∈ [0, T ]× Rn,

E
[

sup
t≤s≤T

∥yt,x,us ∥p
]
≤ Kp(1 + ∥x∥p), ∀u ∈ U s[t, T ].

(12)
(ii) For any x, z ∈ Rn and t ∈ [0, T ],

E
[

sup
t≤s≤T

∥yt,x,us − yt,z,us ∥p
]
≤ Kp∥x−z∥p, ∀u ∈ U s[t, T ].

(13)
(iii) For any 0 ≤ t1 ≤ t2 ≤ T and x ∈ Rn,

E
[

sup
t2≤s≤T

∥yt1,x,us − yt2,x,us ∥p
]
≤ Kp(1 + ∥x∥p)(t2 − t1)

p
2 ,

∀u ∈ U s[t1, T ]. (14)

Remark 3. By applying Hölder’s inequality, we can obtain
the estimates for the first order moments, that is, (12), (13)
and (14) also hold for p = 1.

Remark 4. The estimate (12) implies E[∥yt,x,uT ∥p] < +∞
for any p ≥ 2. Note also that

E

[∫ T

t

ψ0(us)ds

]
≤ m(T − t)

where we used the boundedness of ψ0. Hence, the
growth condition in (B2) ensures that the cost functional

J s(x, t, u) has a finite value for any (x, t, u) ∈ Rn× [0, T ]×
U s[t, T ].

Here, we are ready to state the main result:

Theorem 2. Fix T > 0. Under assumptions (B1), (B2),
and (B3), the value function V s is continuous on Rn ×
[0, T ]. If in addition the terminal cost g is Lipschitz
continuous, then V s(x, t) is Lipschitz continuous in x
uniformly in t, and locally 1/2-Hölder continuous in t for
each x.

Proof. First, we show the continuity of V s(x, t) in t. Let
0 ≤ t1 ≤ t2 ≤ T and fix t1. For given ε > 0 and r > 0, fix
any x ∈ B(0, r) and u ∈ Us[t1, T ], and set

Rε,r ≜
(
Kp(1 + rp)ε−1

)1/p
,

where p ≥ 2 and Kp > 0 satisfy (11) and (12)–(14),
respectively. For notational simplicity, we denote yt,x,us by
y(s, t). If necessary, we denote it by y(s, t;ω) for ω ∈ Ω
explicitly. Then, for any x ∈ B(0, r) and t ∈ [0, T ], we
have

P
(

sup
t≤s≤T

∥y(s, t)∥ > Rε,r

)
≤ E

[
sup

t≤s≤T
∥y(s, t)∥p

]
R−p

ε,r

< ε, (15)

where Chebyshev’s inequality and (12) are applied.

Next, choose δ0 = δ0(ε, r) satisfying for any c, d ∈
B̄(0, Rε,r),

|g(c)− g(d)| < ε (16)

whenever ∥c − d∥ < δ0. In fact, such δ0 exists since g is
uniformly continuous on B̄(0, Rε,r) by assumption (B3).

Fix any t2 ∈ [t1, T ]. Then,

P
(

sup
t2≤s≤T

∥y(s, t1)− y(s, t2)∥ > δ0

)
≤ E

[
sup

t2≤s≤T
∥y(s, t1)− y(s, t2)∥p

]
δ−p
0

≤ Kp(1 + ∥x∥p)(t2 − t1)
p
2 δ−p

0 (17)

holds where (14) is applied. Now, we define Ωi, Ω̃ by

Ωi ≜
{
ω ∈ Ω : sup

ti≤s≤T
∥y(s, ti;ω)∥ ≤ Rε,r

}
, i = 1, 2,

(18)

Ω̃ ≜
{
ω ∈ Ω : sup

t2≤s≤T
∥y(s, t1;ω)− y(s, t2;ω)∥ < δ0

}
.

(19)

It follows from (15) and (17) that

P(Ωi) > 1− ε, i = 1, 2 (20)

and

P(Ω̃) ≥ 1− ε (21)

whenever (t2 − t1)
p
2 ≤ εδp0K

−1
p (1 + ∥x∥p)−1.

Now, let us evaluate

I(t1, t2) ≜ |J s(x, t1, u)− J s(x, t2, u)| . (22)

Here, we have

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7264



I(t1, t2) =

∣∣∣∣E [∫ t2

t1

ψ0(us)ds+ g(y(T, t1))− g(y(T, t2))

]∣∣∣∣
≤ m(t2 − t1) + E [|g(y(T, t1))− g(y(T, t2))|]︸ ︷︷ ︸

≜I2(t1,t2)

.

(23)

For the second term I2, by splitting the sample space Ω
and using (B2), we obtain

I2(t1, t2) = E
[
|g(y(T, t1))− g(y(T, t2))| ,Ω1 ∩ Ω2 ∩ Ω̃

]
+E

[
|g(y(T, t1))− g(y(T, t2))| ,Ωc

1 ∪ Ωc
2 ∪ Ω̃c

]
≤ E

[
|g(y(T, t1))− g(y(T, t2))| ,Ω1 ∩ Ω2 ∩ Ω̃

]
+ ĈE

[
2 + ∥y(T, t1)∥p + ∥y(T, t2)∥p,Ωc

1 ∪ Ωc
2 ∪ Ω̃c

]
(24)

where Ĉ > 0 satisfies (11). Thanks to (16), (18) and (19),

E
[
|g(y(T, t1))− g(y(T, t2))| ,Ω1 ∩ Ω2 ∩ Ω̃

]
< ε. (25)

For the second term of the right-hand-side of (24), we have

E
[
∥y(T, ti)∥p,Ωc

1 ∪ Ωc
2 ∪ Ω̃c

]
≤

(
E
[
∥y(T, ti)∥2p

])1/2 · (P(Ωc
1 ∪ Ωc

2 ∪ Ω̃c)
)1/2

,

≤
(
E
[
∥y(T, ti)∥2p

])1/2 · (P(Ωc
1) + P(Ωc

2) + P(Ω̃c)
)1/2

,

i = 1, 2 (26)

where (1) is applied. Using (20), (21), (12) and noting that√
1 + r2p < 1 + rp, we get

E
[
∥y(T, ti)∥p,Ωc

1 ∪ Ωc
2 ∪ Ω̃c

]
<

√
K2p ·

√
3ε (1 + rp)

(27)
whenever

t2 − t1 <

(
ε

Kp(1 + rp)

) 2
p

δ20 . (28)

Moreover, under (28), it holds that

ĈE[2,Ωc
1 ∪ Ωc

2 ∪ Ω̃c] = 2Ĉ · P(Ωc
1 ∪ Ωc

2 ∪ Ω̃c)

< 6Ĉε. (29)

By (24), (25), (27) and (29), we can choose c0 > 0
satisfying

I2(t1, t2) <

{
c0
√
ε(1 + rp), if ε < 1

c0ε(1 + rp), if ε ≥ 1

whenever (28) holds. This evaluation and (23) imply that,
for any ε > 0 and r > 0, we can find δ1 = δ1(ε, r) > 0 such
that, for all u ∈ U s[t1, T ] and x ∈ B(0, r),

|J s(x, t1, u)− J s(x, t2, u)| < ε (30)

whenever t2 − t1 < δ1. Note that, for any x, z ∈ Rn and
0 ≤ t1 ≤ t2 ≤ T ,

|V s(x, t1)− V s(z, t2)| ≤ inf
u∈U s[t1,T ]

|J s(x, t1, u)− J s(z, t2, u)|.

(31)

Therefore, (30) implies the continuity of V s(x, t) in t.

Next, we show that V s(x, t) is continuous in x. Fix any
t ∈ [0, T ], u ∈ Us[t, T ] and z ∈ B(0, r). For simplicity, we
denote yt,x,us by y(s, x). For the same Rε,r and δ0 as above,

we define Ωx, Ω̃x by

Ωx ≜
{
ω ∈ Ω : sup

t≤s≤T
∥y(s, x;ω)∥ ≤ Rε,r

}
for x ∈ B(0, r),

Ω̃x ≜
{
ω ∈ Ω : sup

t≤s≤T
∥y(s, x;ω)− y(s, z;ω)∥ < δ0

}
.

It follows from the same discussion as above that, for any
x ∈ B(0, r),

P(Ωx) > 1− ε, P(Ωz) > 1− ε (32)

and
P(Ω̃x) ≥ 1− ε (33)

whenever
∥x− z∥p ≤ εδp0K

−1
p .

Thus, we can evaluate

Ĩ(x, z) ≜ |J s(x, t, u)− J s(z, t, u)|
≤ E [|g(y(T, x))− g(y(T, z))|]

similarly to the above discussion, that is, we can choose
c1 > 0 satisfying

Ĩ(x, z) <

{
c1
√
ε(1 + rp), if ε < 1

c1ε(1 + rp), if ε ≥ 1

whenever

x, z ∈ B(0, r) and ∥x− z∥ <
(
ε

Kp

) 1
p

δ0.

This implies that, for any ε > 0 and r > 0, we can
find δ2 = δ2(ε, r) > 0 such that, for all t ∈ [0, T ] and
u ∈ U s[t, T ],

|J s(x, t, u)− J s(z, t, u)| < ε (34)

whenever x, z ∈ B(0, r) and ∥x − z∥ < δ2. By using (31)
again, we get the continuity of V s(x, t) in x. The continuity
of V s(x, t) in t and in x leads to the continuity in (x, t) since

|V s(x, t1)− V s(z, t2)|
≤ |V s(x, t1)− V s(x, t2) + V s(x, t2)− V s(z, t2)|
≤ |V s(x, t1)− V s(x, t2)|+ |V s(x, t2)− V s(z, t2)|

holds for any x, z ∈ Rn and t1, t2 ∈ [0, T ].

Next, let g be Lipschitz continuous. Fix any (x, t) ∈
Rn × [0, T ] and take any bounded neighborhood Dx,t that
contains (x, t). Take any (w, s) ∈ Dx,t and (z, τ) ∈ Dx,t

such that τ ≤ s. For given ε > 0, we can take ū ∈ U s[τ, T ]
satisfying

V s(z, τ) + ε ≥ J s(z, τ, ū)

by definition. Then we have

V s(w, s)− V s(z, τ) ≤ J s(w, s, ū)− J s(z, τ, ū) + ε

= E
[∫ s

τ

ψ0(us)ds+ g(ys,w,ū
T )− g(yτ,z,ūT )

]
+ ε

≤ m(s− τ) +GE
[
∥ys,w,ū

T − yτ,z,ūT ∥
]
+ ε (35)

where G > 0 is the Lipschitz constant of g. For the second
term of the right-hand-side of (35), it holds that

E
[
∥ys,w,ū

T − yτ,z,ūT ∥
]

= E
[
∥ys,w,ū

T − yτ,w,ū
T + yτ,w,ū

T − yτ,z,ūT ∥
]

≤ K1(1 + ∥w∥)(s− τ)
1
2 +K1∥w − z∥

≤ K1(1 + r̄)(s− τ)
1
2 +K1∥w − z∥

where we apply (13) and (14), and define r̄ ≜ sup{∥w∥ :
(w, s) ∈ Dx,t for some s}, which is finite from the bound-
edness of Dx,t. Therefore, we obtain
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V s(w, s)− V s(z, τ)

≤ m|s− τ |+G
(
K1(1 + r̄)|s− τ | 12 +K1∥w − z∥

)
+ ε

≤ Ḡ|s− τ | 12 +GK1∥w − z∥+ ε

where Ḡ > 0 depends on Dx,t. Note that GK1 does
not depend on Dx,t. The similar discussion for V s(z, τ)−
V s(w, s) holds. The arbitrariness of ε completes the proof.
2

Remark 5. Note that the Lipschitz continuity of g shows
the local Lipschitz continuity of the value function V in
the deterministic case (Theorem 1). This property ensures
that V is differentiable almost everywhere. On the other
hand, we cannot expect the local Lipschitz continuity of
the value function V s in the stochastic case even under
the Lipschitz continuity of g. This is essentially because∫ t

0
σdw is only of order t1/2.

5. CONCLUSION

In this paper, we formulated a stochastic L0 optimal
control problem and derived the continuity of the value
function for this problem. The continuity is nontrivial due
to the discontinuity of L0 norm. The obtained continuity
helps us to show that the value function is a viscosity so-
lution of the associated HJB equation and to characterize
the stochastic L0 optimal control. This will be discussed
in future work.
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