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Abstract: The extended Kalman filter (EKF) is one of the most widely used nonlinear filtering
technique for a system of differential algebraic equations (DAEs). In this work we propose
an alternate EKF approach for state estimation of nonlinear DAE systems that addresses
shortcomings of the EKF approaches available in literature (Becerra et al., 2001; Mandela
et al., 2010). The proposed approach is based on the idea that since the algebraic equations
are assumed to be exact, the error covariance matrix of only the differential states needs to
be directly propagated during the prediction step. The error covariance matrix for algebraic
states and cross covariance matrix between the errors in differential and algebraic states, which
are required to incorporate effect of prior algebraic state estimates on the update step, can be
computed from the differential state error covariance matrix alone using the linearized algebraic
equations. The update step of the proposed work also follows a similar philosophy and ensures
that the covariance update is not approximate. The efficacy of the proposed EKF approach is
evaluated using benchmark case studies of a Galvanostatic charge process and a drum boiler.

1. INTRODUCTION

Modeling of various physical and chemical processes often
gives rise to nonlinear differential algebraic equations
(DAEs). For a process involving different time scales, the
fast rate phenomena are usually modeled using quasi-
steady state approximation to yield algebraic equations
that are coupled with differential equations.

State estimation of DAEs has received relatively less at-
tention compared to the estimation of systems described
by ordinary differential equations (ODEs). For system
with linear DAE models, Nikoukhah et al. (1992) applied
Kalman filter (KF) approach for state estimation. In case
of nonlinear DAE systems, Becerra et al. (2001) presented
an EKF approach in square-root form. In their approach,
an implicit stochastic differential equation (SDE) model
is derived from the linearization of DAEs to propagate
the error covariance matrix of differential states. However,
they assumed that only the differential states are measured
and hence their method cannot incorporate the informa-
tion available via measurements of algebraic states during
the EKF update step. To address this issue, Mandela
et al. (2010) developed an alternate EKF approach that
can incorporate measurements of both differential and
algebraic states. In their work, an augmented state vector
consisting of both differential and algebraic state variables
is considered. The corresponding error covariance matrix
of the augmented state is propagated using an implicit

SDE model which is derived from the linearization of
DAEs. Their approach enabled incorporation of algebraic
states since the augmented prior covariance matrix was
considered during the update step. However, the update
step uses an approximate method to update the aug-
mented covariance matrix to avoid singular augmented
covariance matrix. Some other approaches have been re-
ported for estimation of a DAE system, such as unscented
Kalman filter (Mandela et al., 2010), ensemble Kalman
filter (Puranik et al., 2012), particle filter (Haßkerl et al.,
2016) and iterative EKF (Purohit and Patwardhan, 2018).
Although these approaches provide improved performance,
they are computationally more complex than the existing
EKF approaches.

In the current work, we propose an alternate EKF ap-
proach which avoids the drawbacks of approaches avail-
able in literature. In particular, our approach can incor-
porate measurements of both differential and algebraic
states as well as does not use an approximate method
to obtain error-covariance matrix during the update step.
The approach is based on the key idea that since the
differential equations are assumed to be stochastic while
the algebraic equations are considered to be exact, it is
more appropriate to propagate the error covariance matrix
of only the differential states during the prediction step.
The error covariance matrix of algebraic states and the
cross-covariances of differential and algebraic state errors
can be computed from the error covariance matrix of the
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differential states since the algebraic and differential states
are related through the deterministic algebraic equations.
Thus, the error-covariance matrix of the augmented state
vector, which is required in the update step, is computed
from the error covariance matrix of the differential states
alone. A similar philosophy of directly updating only the
differential state error covariance matrix during the mea-
surement update step is followed. The effectiveness of pro-
posed EKF approach is demonstrated on two benchmark
case studies.

The rest of the paper is organized as follows. Section
2 introduces the problem at hand and summarizes the
relevant EKF approach from literature. Section 3 presents
the proposed EKF approach for state estimation of non-
linear DAE systems. Section 4 applies the proposed EKF
approach on two benchmark case studies. The paper is
concluded in Section 5.

2. PROBLEM FORMULATION AND RELEVANT
EKF APPROACH

2.1 Problem formulation

Consider a process described by a set of index one semi-
explicit nonlinear differential algebraic equations

dxd

dt
= f

(
xd(t), xa(t)

)
+ w(t) (1a)

0 = g
(
xd(t), xa(t)

)
(1b)

yt = h
(
xd(t), xa(t)

)
(1c)

where xd ∈ Rnd and xa ∈ Rna represent the differential
and algebraic state variables respectively; yt ∈ Rnm

represents the true measured variables. The continuous-
time white Gaussian process noise is denoted by w(t). The
known nonlinear differential, algebraic and measurement
functions are represented by f, g and h respectively. With
the assumption that measurements are available regularly
at the sampling interval Ts and are corrupted with white
Gaussian noise vk, above DAE model equations (1a)-(1c)
can be represented in discrete-time form as,

xd
k = xd

k−1 +

∫ kTs

(k−1)Ts

f
(
xd(t), xa(t)

)
dt+ wk−1 (2a)

0 = g
(
xd
k, xa

k

)
(2b)

yk = h
(
xd
k, xa

k

)
+ vk (2c)

wk−1 ∼ N (0,Qk−1), vk ∼ N (0,Rk), xd
0 ∼ N (x̄0,P

d
0)
(2d)

Here at time tk = kTs, the discretized process noise wk−1,
measurement noise vk and initial conditions xd

0 for the
differential states are assumed to be mutually indepen-
dent Gaussian random variables. The corresponding initial
conditions xa

0 for the algebraic states are assumed to be
consistent with the differential states initial conditions,
i.e. (2b) is satisfied. The differential equation (2a) and
measurement model (2c) are assumed to involve stochas-
tic uncertainties, while the algebraic relationship (2b) is
assumed to be exact.

The estimation problem is to estimate the states xd
k and

xa
k at kth time instant using process model (2a)-(2b) and

measurements yk (2c) available till the kth time instant.

2.2 Relevant EKF approach (Mandela et al., 2010)

State augmentation has been used in Mandela et al. (2010)
to apply EKF on a nonlinear DAE system (2a)-(2c). In
their work, the error covariance matrix of an augmented

state vector xaug =
[
(xd)T (xa)T

]T
is propagated during

the prediction step to get an augmented error covariance
matrix containing the auto and cross-covariance terms of
differential and algebraic states.

Let at time tk−1 = (k − 1)Ts, x̂d
k−1|k−1 and x̂a

k−1|k−1 be

the differential and algebraic state estimates respectively.
Let Paug

k−1|k−1 be the error covariance matrix of the aug-

mented state vector. The algorithm is summarized for one
complete cycle from time instant tk−1 to tk.

Prediction step: With the initial conditions x̂d
k−1|k−1

and x̂a
k−1|k−1, the following set of coupled equations are

numerically integrated from time instant tk−1 to tk to
obtain predicted state estimates x̂d

k|k−1 and x̂a
k|k−1:

dx̂d

dt
= f

(
x̂d(t), x̂a(t)

)
; 0 = g

(
x̂d(t), x̂a(t)

)
(3)

To propagate the augmented error covariance matrix, an
implicit linearized stochastic differential equation (SDE)
model is derived by first linearizing DAE process model
(1a)-(1b) around updated state estimates (x̂d

k−1|k−1 and

x̂a
k−1|k−1) and then differentiating the linearized algebraic

equation to give an augmented system[
ẋd

ẋa

]
=

[
Fd Fa

−(Ga)−1GdFd −(Ga)−1GdFa

] [
xd

xa

]
= Jaug xaug

(4)
with the linearization matrices defined as ,Fd Fa

Gd Ga

 =


df

dxd

df

dxa

dg

dxd

dg

dxa


x̂d
k−1|k−1

, x̂a
k−1|k−1

(5)

The state transition matrix Φk = exp(Jaug Ts) is used to
compute augmented predicted error covariance matrix by

Paug
k|k−1 = Φk Paug

k−1|k−1 ΦTk + Γ Qk−1 ΓT (6)

where, Γ =

[
I

Ga)−1Gd

]
(7)

It should be noted that the full covariance matrix of
the entire augmented state vector is directly propagated
through the SDE model even though the algebraic and
differential states are related through the deterministic
algebraic equations (2b).

Update step: Let Haug
k be the linearized measurement

model evaluated around the augmented state estimate

(x̂aug
k|k−1)T =

[
(x̂d
k|k−1)T (x̂a

k|k−1)T
]
. Then, the augmented

Kalman gain matrix is computed as

Lk = Paug
k|k−1(Haug

k )T
[
Haug
k Paug

k|k−1 (Haug
k )T + Rk

]−1
(8)

The updated differential state estimate is given by,

x̂d
k|k = x̂d

k|k−1 + Ld
k

[
yk − h(x̂aug

k|k−1)
]

(9)

where Ld
k is the Kalman gain corresponding to the differ-

ential states which is a matrix with first nd rows of Lk.
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The updated algebraic state estimate is determined from

the differential state estimate x̂d
k|k using g

(
x̂d
k|k, x̂

a
k|k

)
= 0.

The augmented error covariance matrix is updated as:

Paugk|k = [I− LkHaug
k ] Paug

k|k−1 (10)

It can be noted that the covariance update (10) in the
above approach is approximate. Although the updated al-
gebraic estimates are determined from the algebraic equa-
tions and not through Kalman update (9), the covariance
update (10) does not take this into consideration while es-
timating the error covariance matrix of updated estimates.
In particular, the error covariance matrix of algebraic
states and its cross-covariance terms in the augmented
error covariance matrix do not represent the uncertainty
associated with the updated algebraic state estimates. The
approximate value of augmented error covariance matrix
may adversely affect the state estimates at subsequent
time instants. One possible remedy suggested in Mandela
et al. (2010) is to compute error covariance of algebraic
states and error cross-covariances using linearization of
algebraic equations. However, this will produce a singular
augmented error covariance matrix which will have to be
propagated through the process model in the prediction
step and this has not been pursued in their work.

3. PROPOSED EKF APPROACH

In this work, we present a modified EKF approach for state
estimation of nonlinear DAE systems that ensures better
approximation of error covariance matrix during both
prediction and update steps. The proposed approach is
based on the observation that since the algebraic equations
are assumed to be exact, the algebraic and differential
states are not independent. In particular, the algebraic
states can be computed from the differential states so as
to satisfy the algebraic equations. Thus, the uncertainties
associated with the algebraic states can be computed from
the uncertainties in the differential states. Therefore, in the
present work, we propose the following ideas for covariance
matrix computations:

(1) Prediction step: In this step we propose to directly
propagate the error covariance matrix of only the
differential states. Towards this end, the linearized
algebraic equations are used to express the algebraic
states in terms of differential states. Subsequent sub-
stitution of the resulting expressions in the differential
equations, leads to a stochastic differential equation
involving the differential states alone. This equation is
then used to propagate the error covariance matrix of
the differential states. The error covariance matrix of
the algebraic state, and the cross-covariance matrices
of errors in algebraic and differential states at the
end of the prediction step are obtained using the
linearized algebraic equations (evaluated around the
predicted state estimates).

(2) Update step: Similar to the philosophy in the pre-
diction step, only the error covariance matrix of the
differential states is directly updated upon availability
of the measurements. The error covariance matrix
of the updated algebraic states is not needed in the
subsequent prediction step and is thus directly not
computed. However, if needed it can be computed us-

ing the linearized algebraic model (evaluated around
the updated state estimates).

Details of these steps are discussed next.

3.1 Prediction Step

To propagate the error covariance of differential states,
the process model (1a)-(1b) is linearized around the state
estimates x̂d

k−1|k−1 and x̂a
k−1|k−1 as

ẋd− ˙̂x
d

k−1|k−1 = Fd(xd−x̂d
k−1|k−1)+Fa(xa−x̂a

k−1|k−1)+w(t)

(11a)

0 = Gd(xd − x̂d
k−1|k−1) + Ga(xa − x̂a

k−1|k−1) (11b)

where ˙̂x
d

k−1|k−1 = f
(

x̂d
k−1|k−1, x̂

a
k−1|k−1

)
and the lin-

earization matrices are evaluated similar to (5). An im-
plicit SDE model involving differential states is derived
by eliminating the perturbed algebraic state variable(

xa − x̂a
k−1|k−1

)
in (11a) using its value obtained from

(11b) as,

ẋd − ˙̂x
d

k−1|k−1 = Jd
(

xd − x̂d
k−1|k−1

)
+ w(t) (12)

where, Jd =
[
Fd − Fa (Ga)−1 Gd

]
(13)

Let Pd
k−1|k−1 be the error covariance of the differential

states at time tk−1. The predicted error covariance of
differential states at time tk can now be obtained from
discretization of (12) as,

Pd
k|k−1 = Φk Pd

k−1|k−1 ΦTk + Qk−1 (14)

where Φk = exp(Jd Ts) is the state transition matrix. It
should be noted that the implicit SDE model (12), and
differential state error covariance matrix (14) are similar
to the work of Becerra et al. (2001). But in their work,
the predicted algebraic state estimate or the uncertainties
associated with it are not employed in the correction step
and thus the effect of predicted algebraic estimates is
completely ignored. In the proposed work, we account for
this effect by computing an augmented error covariance
matrix incorporating auto and cross error covariance terms
of differential and algebraic states. The error covariance of
algebraic states and the error covariances between differ-
ential and algebraic states are determined using linearized
algebraic model (11b) as:

Pa
k|k−1 =

[
(Ga

k|k−1)−1Gd
k|k−1

]
Pd
k|k−1

[
(Ga

k|k−1)−1Gd
k|k−1

]T
(15a)

Pda
k|k−1 = −Pd

k|k−1

[
(Ga

k|k−1)−1Gd
k|k−1

]T
,Pad

k|k−1 =
[
Pda
k|k−1

]T
(15b)

where Gd
k|k−1, Ga

k|k−1 are the linearization matrices of the

algebraic equations as mentioned in (5) evaluated around
x̂d
k|k−1, x̂a

k|k−1. Further, let x̂d
k−1|k−1 and x̂a

k−1|k−1 be the

estimated states at time tk−1. The predicted estimates of
the states at time tk, i.e. x̂d

k|k−1 and x̂a
k|k−1 are obtained

by numerically integrating the following coupled equations
from time instant tk−1 to tk:

dx̂d

dt
= f

(
x̂d(t), x̂a(t)

)
; 0 = g

(
x̂d(t), x̂a(t)

)
(16)

with the initial conditions x̂d
k−1|k−1 and x̂a

k−1|k−1. Thus,

at the end of the prediction step, the predicted state
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estimates and the predicted error covariance matrix are
available as

x̂aug
k|k−1 =

[
x̂d
k|k−1

x̂a
k|k−1

]
, Paug

k|k−1 =

[
Pd
k|k−1 Pda

k|k−1
Pad
k|k−1 Pa

k|k−1

]
(17)

3.2 Update step:

The predicted state estimates x̂d
k|k−1 and x̂a

k|k−1 are prop-

agated through the measurement model (2c) to provide
the predicted measurement ŷk|k−1:

ŷk|k−1 = h
(

x̂d
k|k−1, x̂a

k|k−1

)
(18)

The linearized measurement model is

yk−ŷk|k−1 = Hd
k (xd

k−x̂d
k|k−1)+Ha

k (xa
k−x̂a

k|k−1)+vk (19)

where Hd
k =

dh

dxd
, Ha

k =
dh

dxa
are the linearization matrices

evaluated around the predicted state estimate x̂aug
k|k−1.

Defining Haug
k =

[
Hd
k Ha

k

]
and E as the expectation

operator, the augmented Kalman gain is computed from
(17) and (19) as follows,

Lk = Pεe [Pee]
−1

(20)

where, Pεe = E

[([
xd
k − x̂d

k|k−1
xa
k − x̂a

k|k−1

]) (
yk − ŷk|k−1

)T]
= Paug

k|k−1(Haug
k )T (21)

Pee = E
[(

yk − ŷk|k−1
) (

yk − ŷk|k−1
)T ]

= Haug
k Paug

k|k−1 (Haug
k )T + Rk (22)

The updated differential state estimate is given by,

x̂d
k|k = x̂d

k|k−1 + Ld
k

[
yk − ŷk|k−1

]
(23)

where Ld
k defines the Kalman gain corresponding to dif-

ferential states which is a matrix with first nd rows of Lk.
The updated algebraic state estimate is determined from
the updated differential state estimate using

g
(

x̂d
k|k, x̂

a
k|k

)
= 0 (24)

Since the algebraic state estimate is dependent on the
estimate of the differential states, the covariance update
is performed only for the differential states. To derive
this covariance update expression, consider the estimation
error in differential states which is simplified using (23) as:

εdk|k = xd
k − x̂d

k|k = xd
k − x̂d

k|k−1 − Ld
k

[
yk − ŷk|k−1

]
(25)

Defining prediction errors as εdk|k−1 = xd
k − x̂d

k|k−1 and

εk|k−1 = xaug
k − x̂aug

k|k−1, the estimation error (25) is

expressed using the linearized measurement model (19) as,

εdk|k = εdk|k−1 − Ld
k

[
Haug
k xaug

k + vk −Haug
k x̂aug

k|k−1

]
= [Ind×nd 0nd×na] εk|k−1 − Ld

k Haug
k εk|k−1 − Ld

k vk

= [̃I− Ld
k Haug

k ]εk|k−1 − Ld
k vk (26)

where Ĩ = [Ind×nd 0nd×na]

Using estimation error expression (26), the updated error
covariance matrix of the differential states is obtained as,

Pd
k|k = E

[
εdk|k(εdk|k)T

]
=
[
Ĩ− Ld

kHaug
k

]
Paug
k|k−1

[
Ĩ− Ld

kHaug
k

]T
+ Ld

k Rk [Ld
k]T (27)

The error covariance matrix of the algebraic states is not
needed for prediction step at next time instant, but if
required, can be computed similar to (15a) but with lin-
earization performed around the updated state estimates
x̂d
k|k and x̂a

k|k.

3.3 Summary of proposed EKF for online implementation

A brief summary of online implementation (one cycle) of
the proposed EKF approach is presented next.
Given: Consistent estimates x̂d

k−1|k−1 and x̂a
k−1|k−1 and

error covariance of differential states Pd
k−1|k−1.

Step 1: Integrate the coupled equations (16) numerically
to get the predicted state estimates x̂d

k|k−1 and x̂a
k|k−1.

Step 2: Propagate the error covariance of differential
states using (14). Using (15a)-(15b), obtain the prediction
error covariance in augmented form Paug

k|k−1 (17).

Step 3: Compute the augmented Kalman gain (20). Use
it in (23)-(24) to obtain the updated state estimates x̂d

k|k
and x̂a

k|k.

Step 4: Update the error covariance of differential states
Pd
k|k from (27).

One cycle is now completed. Go to Step 1 for the next
cycle with k = k + 1.

4. RESULTS AND DISCUSSION

The proposed modified EKF approach is applied for state
estimation of two DAE case studies: 1) Galvanostatic
charge process and 2) Drum boiler. To obtain reliable
results, the estimation is performed for multiple Monte-
Carlo simulation runs and the performance is compared
with the existing EKF approach (Mandela et al., 2010)
based on the following metrics:
(1) Average Root Mean Squared Error (ARMSE):

ARMSEi =
1

M

M∑
j=1

√√√√ 1

N

N∑
k=1

(
x
aug(j)
k,i − x̂

aug(j)
k|k.i

)2
(28)

where, x
aug(j)
k,i and x̂

aug(j)
k|k,i denote the augmented true

and estimated ith state at kth time instant for the jth

simulation run. N is number of sampling instants while
M is number of Monte-Carlo simulation runs.
(2) Non-credibility Index (NCI) (Kottakki et al., 2016):
Varies with time instant and provides a relative evaluation
of the estimation error using updated error covariance
matrix. NCI ≈ 0 denotes balanced performance implying
that the filter uncertainty associated with state estimate
is commensurate with the actual uncertainty.

All the computations are performed in MATLABR© version
9.7 running on Ubuntu 18.04 operating system on a
computer with Intel Octa Core i7 processor and 8 GB
RAM. The state prediction equations (16) are numerically
integrated using 4th order Runge-Kutta method.

4.1 Galvanostatic charge process

A two state DAE model of a Galvanostatic charge pro-
cess is available in Mandela et al. (2010). x1 and x2 are
the differential and algebraic states, respectively with x2
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Table 1. Results: Galvanostatic charge process

Method ARMSE:
diff. state x1

ARMSE:
alg. state x2

Avg. CPU
time (sec)

EKF-existing 0.0264 0.0032 0.0028
EKF-proposed 0.0206 0.0027 0.0029

0 50 100 150 200 250 300

0.4

0.5

0.6

0.7

0.8

0.9

True state

EKF estimate (present work)

 EKF estimate Mandela et al.(2010)

0 50 100 150 200 250 300

0.42

0.44

0.46

0.48

True state

EKF estimate (present work)

 EKF estimate Mandela et al.(2010)

Fig. 1. State estimates: Galvanostatic charge process

0 50 100 150 200 250 300
-4

-2

0

2

4

6

8

10
NCI: proposed EKF

NCI: Mandela et al.(2010) EKF

Fig. 2. NCI: Galvanostatic charge process

measured. Initial estimate for both EKF estimators is
x̂aug
0|0 = [0.5322 0.4254]

T
. In the Monte Carlo simulations

performed in this work, the initial true state xaug
0 for

each simulation run was different and was obtained by
adding Gaussian noise with zero mean and process noise

covariance Q to the steady state [0.35024 0.4071]
T

. The
relevant filter parameters are Ts = 15 sec, Q = 1e−5, R =
1e−4, Paug

0 = 0.005 I2×2. Note that the proposed EKF
uses the initial guess only for the differential state error
covariance. The ARMSE values (M = 100) and average
computational times are reported in Table 1. It can be
noted that the proposed EKF outperforms the existing
EKF (Mandela et al., 2010) and results in 22% and 15.6%
reduction in ARMSE values respectively for the two states
relative to the existing EKF with similar computational
effort. The improvement is also evident from the estima-
tion results for a typical simulation run (Fig. 1) with the
proposed EKF tracking the true states very quickly when
compared with the existing EKF. The NCI values (Fig.
2) with proposed EKF (stays close to zero throughout)
show balanced performance when compared to existing
EKF (transits to negative between 40-90 instants).

4.2 Drum boiler

A DAE model of the drum boiler system (Astrom and Bell,
2000) is summarized in (29a)-(29c) with 4 differential and

Table 2. Operational data: Drum boiler

Parameter Value

Drum volume Vd 40 m3

Riser volume Vr 37 m3

Downcomer volume Vdc 11 m3

Drum area Ad 20 m2

Total mass of metal tubes and drum mt 300,000 kg
Total riser mass mr 160,000 kg
Friction coefficient k 25
Residence time of steam in drum Td 12 sec
Parameter β in empirical equation 0.3
steam volume under the drum level at
no condensation V ◦sd

7.793 m3

Total rate of steam condensation qct 11 kg/sec
Metal specific heat Cp 0.5 kJ/kg K
Downcomer area Adc 0.38 m2

mass of drum md 10, 000 kg

2 algebraic states. The differential states are drum pressure
(P ), total water volume (Vwt), steam-mass fraction (αr)
and steam volume in the drum (Vsd). The algebraic state
variables are downcomer flow rate (qdc) and water volume
in steam drum (Vwd).e11 e12 0 0
e21 e22 0 0
e31 0 e33 0
e41 0 e43 e44




dP
dt
dVwt

dt
dαr

dt
dVsd

dt

 =


qf − qs

Qu + qfhf − qshs
Qu − αrhc qdc

ρs
Td

(V ◦sd − Vsd) +
hf − hw
hc

qf


(29a)

1

2
k q2dc − ρw Adc (ρw − ρs) g ᾱv Vr = 0 (29b)

Vwt − Vdc − Vwd − (1− ᾱv)Vr = 0 (29c)

where, hc = hs − hw. The terms eij in coefficient matrix
in (29a) are functions of the state variables (Astrom and
Bell, 2000). Notation is q: mass flow rate, h: enthalpy, ρ:
density, A: Area, V : volume, m: mass, t: temperature,
ᾱv: steam volume fraction, Qu: heat input to the risers
and g: gravitational acceleration with consistent SI units.
The subscripts s, w, f, d, r, dc used are for steam, water,
feedwater, drum, riser and downcomer respectively. The
measurements available from the drum boiler system are

the drum pressure (P ) and the drum level l =
Vsd + Vwd

Ad
.

Drum boiler is simulated using the operational data listed
in Table 2 (Astrom and Bell, 2000; Emara-Shabaik et al.,
2009). For evaluating variables hs, hw, ρs, ρw, ts and
their partial derivatives at pressure P , quadratic approx-
imations of the steam table obtained using simple linear
regression technique over the range P = 6 − 15 MPa, are
employed (Parikh, 2008):

hs = −0.9337P 2 + 0.9375P + 2812.1 (30a)

hw = −0.8903P 2 + 62.21P + 875.21 (30b)

ρs = 0.2309P 2 + 2.3688P + 8.6275 (30c)

ρw = 0.0524P 2 − 18.145P + 864.52 (30d)

ts = −0.2908P 2 + 13.378P + 206.32 (30e)

In our work, the response of drum boiler system to
step change (10% increase) in steam mass flow rate (qf)
is simulated with a sampling interval (Ts) of 1 sec.
The nominal values of input are: u0 = [qf Q qs]0 =

[49.9 kg/s 8604.8 kJ/sec 49.9 kg/s]. The true initial states
for the Monte-Carlo simulations were generated in a man-
ner similar to the case study in Section 4.1. The initial
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Table 3. Drum boiler: Results (ARMSE (e))

Algorithm e1×102 e2×102 e3×104 e4×102 e5 e6×102

EKF-existing 0.76136 4.8057 2.3540 4.4334 1.8775 6.8223
EKF-proposed 0.76135 2.9632 0.9473 1.9455 0.7710 3.2134

guess to EKF estimators x̂aug
0|0 and steady state values are:

x̂aug
0|0 = [8.6 57.1 0.0520 4.9884 1192.6 19.1596]

T
, xaug

s =

[8.5 57.0 0.0510 4.8884 1194.5 19.0316]
T

. The relevant fil-
ter parameters used in EKF estimators are:

Paug
0 = diag(0.01, 0.01, 1.0358× 10−6, 0.01, 3.567, 0.01638),

Q = 10−5 × diag(4, 4, 10−4, 4), R = 10−5 × diag(4, 4)

Table 3 lists the results and shows superior performance
of the proposed EKF. In particular, the reduction in
ARMSE values obtained with the proposed EKF relative
to the existing EKF are 38%, 59.7%, 56%, 58% and 53%
respectively for states 2 − 6. Avg. computational times
are similar (existing- 0.0275 sec, proposed- 0.0281 sec).
The tracking performance for a typical simulation run
(Fig. 3) also shows that the existing EKF approach takes
more time to track actual states than the proposed EKF
approach. The NCI values (Fig. 4) with the proposed EKF
approach quickly converge near zero and remain there
indicating balanced performance. In case of existing EKF
approach, the NCI values transit from large positive peak
to negative at the beginning and remain there implying
pessimistic performance.
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Fig. 3. State estimates: Drum boiler

5. CONCLUSION

In this work, we have presented a modified EKF approach
for state estimation of nonlinear DAE systems where the
differential equation is stochastic while the algebraic equa-
tion is deterministic. The proposed approach exploits the
deterministic nature of the algebraic equation by directly
computing the error covariance matrix of only the differen-
tial states during the estimation cycle since the algebraic
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Fig. 4. NCI: Drum boiler

and differential states are related through the determin-
istic algebraic equations. The error covariance matrix of
the algebraic states and its cross error covariances with
the differential states are obtained from the error covari-
ance matrix of the differential states using the linearized
algebraic equations. This in turn enables incorporation of
measurements of both differential and algebraic states in
the update step of the presented approach. Application of
the proposed approach for state estimation of two bench-
mark case studies reveals its superior performance over
existing EKF approach in literature.
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