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Abstract: In this paper, the optimal tracking control problem is solved based on the
reinforcement learning for linear systems subject to multiple false-data-injection (FDI) attacks.
An augmented system is established, which includes the original system and reference-trajectory
generator system. The corresponding optimal control issue is formulated as a game problem
between the system and malicious adversaries. A Q-learning algorithm is proposed to solve the
game algebraic Riccati equation without requiring any knowledge about the dynamics of the
augmented system. Finally, an example is provided to show that the system output can track
the reference trajectory under cyber attacks.
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1. INTRODUCTION

Optimal tracking control is a main research field in control
theory, and the objective is to design an optimal controller
such that the system output can track a reference trajecto-
ry in an optimal sense. This can be achieved by minimizing
a predefined quadratic performance index. It should be
noted that the communication is vulnerable to attacks
launched by malicious adversaries when the controller and
the plant are linked through wireless network. Thus, it is
meaningful to consider the effect of cyber-attacks.

In Teixeira et al. (2015), cyber-secure networked control
is modeled and analyzed, and the attack space is divided
into three dimensions: the adversary’s model knowledge,
disclosure and disruption resources. Consequently, the
corresponding attacks are mainly classified into three
types, i.e., denial-of-service attacks Persis et al. (2016);
Qin et al. (2018); Ding et al. (2017), false-data-injection
(FDI) attacks Kung et al. (2017); Bai et al. (2017); Hu
et al. (2018) and replay attacks Mo et al. (2009); Zhu et al.
(2014); Chen et al. (2018). FDI attacks aim to replace
the original data with false data injected by adversaries.
Note that these injected data may deteriorate the system
performance. Moreover, FDI attacks require to know the
model knowledge and disruption resources.

The security problem for a networked control system was
investigated in Hu et al. (2018), and a new necessary and
sufficient condition for the insecurity was derived. A notion
of ε-stealthiness was given in Bai et al. (2017) to quantify
the detectability of attacks in stochastic cyber-physical
systems. Based on the entropy theory, the performance
degradation in the presence of attacks was characterized.

? This work is supported by the National Natural Science Foun-
dation of China (61703286) and the Project from the Education
Department of Liaoning Province (JYT19039).

It is noted that a Stackelberg game theory can be used
to deal with FDI attacks if the two players make their
decisions sequentially. In Li et al. (2018), the interactive
decision-making process between the defender and the
attacker were studied in a Stackelberg game framework,
and the optimal strategies for both sides were solved by
using linear programming approach.

It should be emphasized that, however, the design of
controller is rarely considered to defend FDI attacks. For
instance, the controller design problem of CPS was studied
in Ye et al. (2019) to ensure the reliability and security
when actuator faults in physical layers and attacks in
cyber layers occur simultaneously. In Ding et al. (2017),
the consensus control problem was investigated for a
class of multiagent systems with lossy sensors and cyber-
attacks, in which a dynamic output feedback controller
was designed.

As a result, optimal tracking control for discrete-time
systems under multiple FDI attacks are investigated in
this work. It is assumed that the controller can acquire
the information of the plant state and the reference signal.
Moreover, the corresponding issue is formulated into a
game problem, which can be solved by using reinforcement
learning method.

Notations: The superscript T stands for matrix transpo-
sition; Rn denotes the n-dimensional Euclidean space; I
and 0 represent the identity matrix and the zero matrix,
respectively; the notation P > 0 means that P is real
symmetric and positive definite; A ⊗ B is the Kronecker
product of A and B.

2. PROBLEM FORMULATION

Consider the following discrete-time linear systems
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xk+1 = Axk +Buk (1)

yk = Cxk (2)

where xk ∈ Rn is the system state, uk ∈ Rm is the control
input, and yk ∈ Rp is the system output. Assume that
(A,B) and (A,C) are controllable and observable pairs,
respectively.

In this paper, it is assumed that the reference input
satisfies the following model

yrk+1 = Tyrk (3)

where yrk ∈ Rp and T needs not to be Hurwitz. The aim
of controller is to make the system output yk track the
reference input yrk. Moreover, we assume that the plant and
the controller are linked through wireless network. Assume
that the wireless network communication can be attacked
by adversaries and all attackers have full knowledge of the
system. The communication between the remote controller
and the system can be eavesdropped and attacked, and the
modified data uak can be represented by

uak = uk +

q∑
j=1

Γjajk (4)

where q is the number of adversaries, ajk ∈ Rm, j ∈ Q =
{1, 2, . . . , q}, is the false-data injected by attacker j at time
step k, and matrix Γj satisfies

Γj = diag{βj1, β
j
2, · · · , βjm} (5)

where βji ∈ {0, 1}, i = 1, 2, . . . ,m, j ∈ Q. βji = 1
means that ith communication channel is attacked by
jth attacker; otherwise, the corresponding channel is not
injected false data. It should be pointed out that Γj can be
determined by using different method, such as game theory
approach, assuming βji satisfies bernoulli distribution, etc.
In this paper, it is assumed that the matrix Γj is known
in advance.

Considering modified control input (4), the equation (1)
becomes

xk+1 = Axk +Buak = Axk +Buk +

q∑
j=1

BΓjajk (6)

Now, define the following tracking error

ek = yk − yrk = Cxk − yrk (7)

Based on (6) and the reference input dynamics (3), the
following augmented system can be constructed

x̄k+1 =

[
A 0
0 T

]
x̄k +

[
B
0

]
uk +

q∑
j=1

[
BΓj

0

]
ajk

= Āx̄k + B̄uk +

q∑
j=1

Γ̄jajk (8)

where x̄k =
[
xTk , (yrk)T

]T
. Then, the tracking error ek can

be given by
ek = [C − I]x̄k = C̄x̄k (9)

Note that the controller can be designed in the form of
different types, such as state feedback, dynamic output
feedback, etc. On the other hand, the false-data injected
by adversaries can also be given in many different types,
which means that an attacker can utilizes some different
types of signals, such as the system states, the reference

input, and so on. In this paper, however, the control input
uk and the injected false data ajk are assumed to be linear
functions of xk and yrk, which can be represented as follows

uk = µ(xk, y
r
k) = K1xk +K2y

r
k = Kx̄k (10)

and
ajk = hj(xk, y

r
k) = Lj1xk + Lj2y

r
k = Lj x̄k (11)

where j ∈ Q, K and Lj are constant feedback gain
matrices to be determined. The advantage of such design
can be seen in the following analysis.

The objective of the defender, i.e., the controller, is to
minimize the following reward function at time step k

Rd(xk, yrk, uk) =

∞∑
i=k

γi−k
(
eTi Qeei + uTi Rui

)
(12)

where Qe > 0, R > 0 and γ ∈ (0, 1) is the discount factor.
It is noted that γ = 1 can be chosen if matrix T is Hurwitz.
Therefore, the optimal control policy can be obtained by
solving

u∗k = arg min
uk

Rd(xk, yrk, uk) (13)

Similarly, the reward for the attacker j at time step k is

Ra(xk, y
r
k, a

j
k) =

∞∑
i=k

γi−k
(
eTi Qeei − ϑj(a

j
i )
T (aji )

)
(14)

where ϑj > 0 is a pre-defined weighting parameter, and it
is assumed that both players know the reward functions of
their opponents. The optimal attack policy for jth attacker
can be given by

aj,∗k = arg max
aj
k

Ra(xk, y
r
k, a

j
k), j ∈ Q (15)

Remark 1. Equations (13) and (15) show that the defend-
er aims to reduce the tracking error and consume less
energy; while the purpose of jth attacker is to increase the
tracking error. Therefore, the objectives of both players
are opposite.

3. MAIN RESULTS

Define the following functions

J(x̄k, uk, a
1
k, · · · , a

q
k)

=J(xk, y
r
k, uk, a

1
k, · · · , a

q
k)

=

∞∑
i=k

γi−k(eTi Qeei + uTi Rui −
q∑
j=1

ϑj(aji )
T (aji )) (16)

J̄ = inf
uk

sup
a1
k
,··· ,aq

k

J(x̄k, uk, a
1
k, · · · , a

q
k) (17)

J = sup
a1
k
,··· ,aq

k

inf
uk

J(x̄k, uk, a
1
k, · · · , a

q
k) (18)

If J∗ = J̄ = J , then J∗ is called the value of the corre-
sponding game and (u∗k, a

1,∗
k , · · · , aq,∗k ) is the Nash equilib-

rium at time step k, namely, the saddle-point solution.

Then, calculating (13) and (15) is equivalent to find the

saddle point (u∗k, a
1,∗
k , · · · , aq,∗k ) such that

J∗(xk, y
r
k) = min

uk

max
a1
k
,··· ,aq

k

J(xk, y
r
k, uk, a

1
k, · · · , a

q
k)

= max
a1
k
,··· ,aq

k

min
uk

J(xk, y
r
k, uk, a

1
k, · · · , a

q
k) (19)
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Define the following utility function at time step k

rk = rk(xk, y
r
k, uk, a

1
k, · · · , a

q
k)

= x̄TkQxx̄k + uTkRuk −
q∑
j=1

ϑj(ajk)T (ajk) (20)

where Qx = C̄TQeC̄. Considering the state feedback
control, then one can obtain from (16) that

J(x̄k) = J(x̄k, µ(x̄k), h1(x̄k), · · · , hq(x̄k)) (21)

=

∞∑
i=k

γi−krk(x̄k, µ(x̄k), h1(x̄k), · · · , hq(x̄k))

Through a simple calculation, (21) can be re-written as

J(x̄k) =rk(x̄k, µ(x̄k), h1(x̄k), · · · , hq(x̄k)) + γJ(x̄k+1)

=x̄TkQxx̄k + uTkRuk −
q∑
j=1

ϑj(ajk)T (ajk) + γJ(x̄k+1)

(22)

which is the Bellman equation of optimal control. Accord-
ing to the Bellman optimality principle, the value function
J(x̄k) is quadratic in the state x̄k at time step k, and can
be represented as

J(x̄k) = x̄Tk Px̄k (23)

where P ∈ R(n+p)×(n+p) is positive definite and to be
determined. Then, the Bellman equation (22) becomes

x̄Tk Px̄k =x̄TkQxx̄k + uTkRuk −
q∑
j=1

ϑj(ajk)T (ajk)

+ γx̄Tk+1Px̄k+1 (24)

For simplicity, we can define ϑ = diag{ϑ1, ϑ2, · · · , ϑq},
Γ̄ = [Γ̄1 Γ̄2 · · · Γ̄q] and ak = [(a1

k)T (a2
k)T · · · (aqk)T ]T .

Therefore, the optimal strategies satisfy[
R+ γB̄TPB̄ γB̄TP Γ̄
γΓ̄TPB̄ γΓ̄TP Γ̄− ϑ⊗ I

] [
uk
ak

]
= −

[
γB̄TPĀ
γΓ̄TPĀ

]
x̄k (25)

The following optimal policies for both players can be
obtained by solving (25)

u∗k = K(P )x̄k =
(
R+ γB̄TPB̄ − ΩB̄

)−1
ΩĀx̄k (26)

and
a∗k = L(P )x̄k = −(ΘΓ̄− ϑ⊗ I)−1ΘĀx̄k (27)

where

Ω = γ2B̄TP Γ̄
(
γΓ̄TP Γ̄− ϑ⊗ I

)−1
Γ̄TP

Θ =
[
(Θ1)T (Θ2)T · · · (Θq)T

]T
Θj = γ(Γ̄j)TP

[
I − γB̄(R+ γB̄TPB̄)−1B̄TP

]
L(P ) =

[
(L1(P ))T (L2(P ))T · · · (Lq(P ))T

]T
and P satisfies the following game Riccati equation

P =Qx + γĀTPĀ− γ2
[
ĀTPB̄ ĀTP Γ̄

]
(28)

×
[
R+ γB̄TPB̄ γB̄TP Γ̄
γΓ̄TPB̄ γΓ̄TP Γ̄− ϑ⊗ I

]−1 [
B̄TPĀ
Γ̄TPĀ

]
In order to obtain the optimal strategies for both sides,
the knowledge of system dynamics (A,B,Γ, T ) is needed.
In this paper, a Q-function is given for the game between
the defender and attackers, which does not need to know

(A,B,Γ, T ). Define the following Q-function Bellman e-
quation

Q(x̄k, uk, a
1
k, · · · , a

q
k)

= rk(x̄k, uk, a
1
k, · · · , a

q
k) + γJ(x̄k+1)

= x̄TkQxx̄k + uTkRuk −
q∑
j=1

ϑj(ajk)T (ajk) + γJ(x̄k+1)

= x̄TkQxx̄k + uTkRuk − aTk (ϑ⊗ I)ak

+ γQ(x̄k+1, uk+1, a
1
k+1, · · · , a

q
k+1) (29)

which can be re-written as the following compact form

Q(x̄k, uk, a
1
k, · · · , a

q
k) = Q(x̄k, uk, ak)

= ηTk

[
Hx̄x̄ Hx̄u Hx̄a

Hux̄ Huu Hua

Hax̄ Hau Haa

]
ηk = ηTkHηk (30)

where

H = HT , ηk = [x̄k uk ak]
T

=
[
x̄k uk a

1
k · · · a

q
k

]T
,

Hx̄a = [Hx̄a1 Hx̄a2 · · · Hx̄aq ] , Hx̄aj = γĀTP Γ̄j ,

Hua = [Hua1 Hua2 · · · Huaq ] , Huaj = γB̄TP Γ̄j ,

Haa =

Ha1a1 · · · Ha1aq

...
. . .

...
Haqa1 · · · Haqaq

 ,
Haiaj =

{
γ(Γ̄i)TP (Γ̄j), i 6= j
γ(Γ̄j)TP (Γ̄j)− ϑj ⊗ I, i = j

.

The optimal policies for both the defender and attackers
can be obtained by solving the following equations for uk
and ajk.

∂Q(x̄k, uk, a
1
k, · · · , a

q
k)

∂uk
= 0 (31)

∂Q(x̄k, uk, a
1
k, · · · , a

q
k)

∂ajk
= 0, j ∈ Q (32)

which yields

u∗k =
(
Huu −HuaH

−1
aa Hau

)−1

×
(
HuaH

−1
aa Hax̄ −Hux̄

)
x̄k (33)

and

a∗k =
(
Haa −HauH

−1
uuHua

)−1

×
(
HauH

−1
uuHux̄ −Hax̄

)
x̄k (34)

where a∗k =
[
(a1,∗
k )T (a2,∗

k )T · · · (aq,∗k )T
]T

.

Next, the aim is to express the Q-function given in (30) in
terms of input-output data instead of the system state x̄k.

Lemma 2. Assume the system (2) and (8) is observable.
Then, the system state can be re-written in terms of
measured input/output sequences as

x̄k =Meēk−1,k−N +Muūk−1,k−N

+

q∑
j=1

M j
a ā

j
k−1,k−N (35)

where
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ēk−1,k−N =
[
eTk−1 e

T
k−2 · · · eTk−N

]T
,

ūk−1,k−N =
[
uTk−1 u

T
k−2 · · · uTk−N

]T
,

ājk−1,k−N =
[
(ajk−1)T (ajk−2)T · · · (ajk−N )T

]T
,

Me = ĀN
(
V TN VN

)−1
V TN ,

Mu = U1
N −MeW

1
N , M j−1

a = U jN −MeW
j
N ,

VN =
[
(C̄ĀN−1)T (C̄ĀN−2)T · · · (C̄Ā)T C̄T

]T
,

U1
N =

[
B̄ ĀB̄ · · · ĀN−1B̄

]
,

U jN =
[
Γ̄j−1 ĀΓ̄j−1 · · · ĀN−1Γ̄j−1

]
,

W 1
N =


0 C̄B̄ C̄ĀB̄ · · · C̄ĀN−2B̄
0 0 C̄B̄ · · · C̄ĀN−3B̄
...

...
...

. . .
...

0 0 0 · · · C̄B̄
0 0 0 · · · 0

 ,

W j
N =


0 C̄Γ̄j−1 C̄ĀΓ̄j−1 · · · C̄ĀN−2Γ̄j−1

0 0 C̄Γ̄j−1 · · · C̄ĀN−3Γ̄j−1

...
...

...
. . .

...
0 0 0 · · · C̄Γ̄j−1

0 0 0 · · · 0

 ,
j = 2, 3, . . . , q + 1.

Proof. The proof can be easily completed and omitted
here due to the space limitation.

It should be pointed out that there exists a constant κ such
that rank(VN ) < n+p forN < κ and that rank(VN ) = n+
p for N ≥ κ, where κ is the observability index. Conse-
quently, one can choose N ≥ κ, and VN has full column
rank n+p. In addition, ēk−1,k−N , ūk−1,k−N and ājk−1,k−N
are the tracking error output, control input and jth false-
data input, respectively. VN is the observability matrix,
and U iN , i = 1, 2, . . . , q+ 1 are the controllability matrices
with respect to control and attacks. W i

N , i = 1, 2, . . . , q+1
are the Toeplitz matrices. It can be seen from Lemma 1
that the augmented system state x̄k is represented as the
measured input-output sequences. Next, the Q-function
(30) will be described by the same input-output sequences.

Define the following vector

ξk =


ēk−1,k−N
ūk−1,k−N
āk−1,k−N

uk
ak

 ∈ R[(m+1)p+m]N+(p+1)m (36)

Then, the Q-function can be re-written in the form of
(37), where Ma =

[
M1
a M

2
a · · · Mq

a

]
. As a result, the

optimal defender’s policy u∗k and attackers’ policy a∗k can
be obtained by solving (31) and (32) simultaneously, where
Q(x̄k, uk, ak) = Q(ξk), which yields

u∗k =
(
H̄uu − H̄ua(H̄aa)−1H̄au

)−1

×
(
H̄ua(H̄aa)−1φk−1,k−N − ψk−1,k−N

)
(38)

and

a∗k =
(
H̄aa − H̄au(H̄uu)−1H̄ua

)−1

×
(
H̄au(H̄uu)−1ψk−1,k−N − φk−1,k−N

)
(39)

where

φk−1,k−N =H̄aēēk−1,k−N + H̄aūūk−1,k−N

+ H̄aāāk−1,k−N ,

ψk−1,k−N =H̄uēēk−1,k−N + H̄uūūk−1,k−N

+ H̄uāāk−1,k−N ,

āk−1,k−N =
[
(ā1
k−1,k−N )T · · · (āqk−1,k−N )T

]T
.

The following theorem can be obtained immediately from
the above analysis, and the proof is omitted here.

Theorem 3. Assume the augmented systems (8)-(9) are
observable. The optimal policies for both defender and
attackers can be calculated according to (38) and (39), re-
spectively, which are functions of measured input/output
sequences and independent of the system state.

By combining (29) and (37), the input/output form of
Bellman equation for Q-function can be re-written as

ξTk H̄ξk = x̄TkQxx̄k + uTkRuk − aTk (ϑ⊗ I)ak

+ γξTk+1H̄ξk+1 (40)

where uk+1 and ak+1 can be calculated by

uk+1 =
(
H̄uu − H̄ua(H̄aa)−1H̄au

)−1

×
(
H̄ua(H̄aa)−1φk,k−N+1 − ψk,k−N+1

)
and

ak+1 =
(
H̄aa − H̄au(H̄uu)−1H̄ua

)−1

×
(
H̄au(H̄uu)−1ψk,k−N+1 − φk,k−N+1

)
Now, we linearly parameterize the Q-function as follows

ξTk H̄ξk =H̄11(ξ1
k)2 + 2H̄12ξ

1
kξ

2
k + · · ·+ 2H̄1`ξ

1
kξ
`
k

+ H̄22(ξ2
k)2 + 2H̄23ξ

2
kξ

3
k + · · · 2H̄2`ξ

2
kξ
`
k

+ · · ·+ H̄``(ξ
`
k)2

=hT ξ̄k (41)

where

H̄ = H̄T , ξk =
[
ξ1
k ξ

2
k · · · ξ`k

]T
,

` = [(m+ 1)p+m]N + (p+ 1)m,

h =
[
H̄11 2H̄12 · · · 2H̄1` H̄22 · · · 2H̄2` · · · H̄``

]T
,

ξ̄k =
[
(ξ1
k)2 ξ1

kξ
2
k · · · ξ1

kξ
`
k (ξ2

k)2 · · · ξ2
kξ
`
k · · · (ξ`k)2

]T
.

It should be emphasized that the unknown matrix H̄ ∈
R`×` has 1

2`(` + 1) unknown elements due to H̄ij = H̄ji.
From (40) and (41), one can obtain that

hT ξ̄k = x̄TkQxx̄k + uTkRuk − aTk (ϑ⊗ I)ak + hT ξ̄k+1 (42)

which is a key equation in the following Q-learning algo-
rithms. Now, we are ready to use the Q-learning approach
to learn the corresponding Q-function matrix H̄. Policy
iteration and value iteration algorithms using Q-learning
technique are given in Algorithms 1 and 2, respectively.
In Algorithms 1 and 2, ajk, φj+1

k−1,k−N and ψj+1
k−1,k−N are

defined as follows

ajk =[(a1,j
k )T , (a2,j

k )T , · · · , (aq,jk )T ]T

φj+1
k−1,k−N =H̄j+1

aē ēk−1,k−N + H̄j+1
aū ūk−1,k−N

+ H̄j+1
aā āk−1,k−N

ψj+1
k−1,k−N =H̄j+1

uē ēk−1,k−N + H̄j+1
uū ūk−1,k−N

+ H̄j+1
uā āk−1,k−N
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Q(ξk) = ξTk


MT
e Hx̄x̄Me M

T
e Hx̄x̄Mu M

T
e Hx̄x̄Ma M

T
e Hx̄u M

T
e Hx̄a

MT
u Hx̄x̄Me M

T
u Hx̄x̄Mu M

T
u Hx̄x̄Ma M

T
u Hx̄u M

T
u Hx̄a

MT
a Hx̄x̄Me M

T
a Hx̄x̄Mu M

T
a Hx̄x̄Ma M

T
a Hx̄u M

T
a Hx̄a

Hux̄Me Hux̄Mu Hux̄Ma Huu Hua

Hax̄Me Hax̄Mu Hax̄Ma Hau Haa

 ξk = ξTk


H̄ēē H̄ēū H̄ēā H̄ēu H̄ēa

H̄ūē H̄ūū H̄ūā H̄ūu H̄ūa

H̄āē H̄āū H̄āā H̄āu H̄āa

H̄uē H̄uū H̄uā H̄uu H̄ua

H̄aē H̄aū H̄aā H̄au H̄aa

 ξk (37)

Algorithm1 : Policy Iteration Using Q-Learning
1. Initialization : Set j = 0, select stabilizing

defender’s policy u0
k and attackers’ policy a0

k,
and choose H0 = (H0)T

2. PolicyEvaluation : Solve for hj+1

−(hj+1)T ξ̄k + x̄TkQxx̄k + (ujk)TR(ujk)

−(ajk)T (ϑ⊗ I)(ajk) + γ(hj+1)T ξ̄k+1 = 0
3. Policy Improvement :

uj+1
k =

(
H̄j+1
uu − H̄j+1

ua (H̄j+1
aa )−1H̄j+1

au

)−1

×
(
H̄j+1
ua (H̄j+1

aa )−1φj+1
k−1,k−N − ψ

j+1
k−1,k−N

)
aj+1
k =

(
H̄j+1
aa − H̄j+1

au (H̄j+1
uu )−1H̄j+1

ua

)−1

×
(
H̄j+1
au (H̄j+1

uu )−1ψj+1
k−1,k−N − φ

j+1
k−1,k−N

)
4. Stop if
‖H̄j+1 − H̄j‖ < ε

Algorithm2 : Value Iteration Using Q-Learning
1. Initialization : Set j = 0, select any defender’s

policy u0
k and attackers’ policy a0

k, and choose
H0 = (H0)T

2. PolicyEvaluation : Solve for hj+1

(hj+1)T ξ̄k = x̄TkQxx̄k + (ujk)TR(ujk)

−(ajk)T (ϑ⊗ I)(ajk) + γ(hj)T ξ̄k+1

3. Policy Improvement :

uj+1
k =

(
H̄j+1
uu − H̄j+1

ua (H̄j+1
aa )−1H̄j+1

au

)−1

×
(
H̄j+1
ua (H̄j+1

aa )−1φj+1
k−1,k−N − ψ

j+1
k−1,k−N

)
aj+1
k =

(
H̄j+1
aa − H̄j+1

au (H̄j+1
uu )−1H̄j+1

ua

)−1

×
(
H̄j+1
au (H̄j+1

uu )−1ψj+1
k−1,k−N − φ

j+1
k−1,k−N

)
4. Stop if
‖H̄j+1 − H̄j‖ < ε

In order to solve H̄j+1 by using (40) recursively, the
number of samples ξ̄k should satisfy υ ≥ 1

2`(` + 1). Let

Ξ =
[
ξ̄1
k, ξ̄

2
k, · · · , ξ̄υk

]
and Λ = [ρ1

k, ρ
2
k, · · · , ρυk ], where

ρik = [x̄TkQxx̄k + (ujk)TR(ujk)−ϑ(ajk)T (ajk)]i + γ(hj)T ξ̄ik+1,

i = 1, 2, . . . , υ. Then, one can obtain that (hj+1)TΞ = Λ,
which results in

hj+1 =
(
ΞΞT

)−1
ΞΛT (43)

It is noted that, however, the defender’s policy uk and the
attacker’s policy ak are dependent on the measured input-
output ek−1,k−N , uk−1,k−N and ak−1,k−N . Consequently,
the matrix ΞΞT is not invertible. To address this issue,
probing noise should be added into the system dynamics,
and the following persistence of excitation (PE) condition
must be satisfied.

Definition 4. A q-vector sequence h = [h1, h2, · · · , hq]T is
said to be persistently exciting over an interval [k+1, k+l]
if for some constant δ > 0

k+l∑
i=k+1

hi(hi)
T ≥ δI (44)

In order to satisfy the persistence of excitation condition,
the actual defender’s policy and attacker’s policy are
generated by

ûk = uk + n1
k, âjk = ajk + n2,j

k (45)

where n1
k and n2,j

k , j = 1, 2, . . . , q, are probing noise
signals.

Remark 5. If the state almost converges to the desired
position and becomes stationary, then the persistence of
excitation condition is no longer satisfied. An exploratory
signal consisting of sinusoids of varying frequencies can
be added to the policies of the defender and attackers
to ensure PE qualitatively. Consequently, n1

k and n2,j
k in

(45) can be chosen as sinusoids of varying frequencies,
exponentially decaying noise, or Gaussian noise.

According to the method given in Rizvi et al. (2018),
the following theorem can be easily obtained, and the
corresponding proof is omitted here.

Theorem 6. Assume the system is controllable and observ-
able. The sequences ujk and ai,jk , i ∈ Q, j = 1, 2, . . . ,∞,
generated by Q-learning Algorithm 7 or Algorithm 8, can
converge to the optimal strategies (38) and (39) for the
defender and the attackers when the system is sufficiently
excited.

4. AN ILLUSTRATIVE EXAMPLE

In this section, an example is given to demonstrate the
main results proposed in this paper.

A linear discrete-time system is given as

xk+1 = Axk +Buk +B(Γ1a1
k + Γ2a2

k)

yk = Cxk
with

A =

[−1.5 0.3 1
1.1 0.7 −0.5
0.5 −0.2 1.9

]
, B =

[
0.2 −0.3
0.6 −1
−1.1 0.8

]
,

Γ1 =

[
1 0
0 0

]
, Γ2 =

[
0 0
0 1

]
, C = [1 1 1].

Note that the eigenvalues of system matrix A are λ1 =
−1.8021, λ2 = 0.8380 and λ3 = 2.0641. Therefore, the
open-loop system is unstable. The reference trajectory is
generated by

yrk+1 = −yrk
Other parameters are given as follow.

γ = 0.88, θ1 = 0.83, θ2 = 0.81, ε = 10−6,

Qe = 0.9, R =

[
0.25 0

0 0.001

]
.

The simulation results can be obtained according to Algo-
rithm 2 and are depicted in Fig.1 - Fig.4, which show that
the tracking error can converge to zero, i.e., the system
output yk can track the reference input yrk.
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Fig. 2. False-data injected by attacker 1
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Fig. 3. False-data injected by attacker 2
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Fig. 4. System output and the reference trajectory

5. CONCLUSION

In this paper, game theory was used to investigated the
optimal tracking control problem in the presence of false-
data-injection attacks. Then, the Q-learning method was
developed to solve the GARE online without requiring
the knowledge of augmented system dynamics. Moreover,
the Q-function was expressed in terms of only measured
input-output data, and the policies for both sides were

generated by Q-learning algorithm, where the system was
assumed to be sufficiently excited. The simulation results
have shown that the system output can track the given
reference trajectory under FDI attacks.

REFERENCES

A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson.
A secure control framework for resource-limited adver-
saries, Automatica, 51, 135–148, 2015.

D. Persis, and P. Tesi. Networked control of nonlinear
systems under denial-of-service, Syst. Contr. Lett., 96,
124–131, 2016.

J. H. Qin, M. L. Li, L. Shi, and X. H. Yu. Optimal denial-
of-service attack scheduling with energy constraint over
packet-dropping networks, IEEE Trans. Autom. Con-
trol, 63(6), 1648–1663, 2018.

K. M. Ding, Y. Z. Li, D. E. Quevedo, S. Dey, and L. Shi.
A multi-channel transmission schedule for remote state
estimation under DoS attacks, Automatica, 78, 194–201,
2017.

E. Kung, S. Dey, and L. Shi. The performance and lim-
itations of ε-stealthy attacks on higher order systems,
IEEE Trans. Autom. Control, 62(2), 941–947, 2017.

C. Z. Bai, V. Gupta, and F. Pasqualetti. On Kalman
filtering with compromised sensors: Attacks stealthiness
and performance bounds, IEEE Trans. Autom. Control,
62(12), 6641–6648, 2017.

L. Hu, Z. D. Wang, Q. L. Han, and X. H. Liu. State
estimation under false data injection attacks: Security
analysis and system protection, Automatica, 87, 176–
183, 2018.

Y. L. Mo, and B. Sinopoli. Secure control against replay
attacks, In Proc. 47 Annual Allerton Conference, pp.
911-918, 2009.

M. H. Zhu, and S. Martnez. On the performance analysis of
resilient networked control systems under replay attacks,
IEEE Trans. Autom. Control, 59(3), 804–808, 2014.

B. Chen, D. W. C. Ho, G. Hu, and L. Yu. Secure fusion
estimation for bandwidth constrained cyber-physical
systems under replay attacks, IEEE Trans. Cybern.,
48(6), 1862–1876, 2018.

C. Z. Bai, F. Pasqualetti, and V. Gupta. Data-injection
attacks in stochastic control systems: Detectability and
performance tradeoffs, Automatica, 82, 251–260, 2017.

Y. Z. Li, D. W. Shi, and T. W. Chen. False data injection
attacks on networked control systems: A Stackelberg-
game analysis, IEEE Trans. Autom. Control, 63(10),
3503–3509, 2018.

S. A. A. Rizvi, and Z. L. Lin. Output feedback Q-learning
for discrete-time linear zero-sum games with application
to the H-infinity control, Automatica, 95, 213–221, 2018.

D. Ye, S. P. Luo. A co-design methodology for cyber-
physical systems under actuator fault and cyber attack,
J. Franklin Inst., 356, 1856–1879, 2019.

D. R. Ding, Z. D. Wang, D. W. C. Ho, and G. L Wei.
Observer-based event triggering consensus control for
multi-agent systems with lossy sensors and cyber at-
tacks, IEEE Trans. Cybern., 47(8), 1936–1947, 2017.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3612


