
Practical method to complete Learning
Model Predictive Control with

generalization capability

Ferenc Török ∗ Tamás Péni ∗

∗ Institue for Computer Science and Control (SZTAKI)
H-1111, Budapest, Kende u. 13-17, Hungary

E-mails: ferenc.torok@sztaki.mta.hu, peni.tamas@sztaki.mta.hu

Abstract: The paper presents a practical method to complete Learning Model Predictive
Control (LMPC) with generalization capability. LMPC has been developed by F. Borrelli and
his co-authors for systems performing iterative tasks. The method is based on saving the state
trajectories of successful runs and using this database to improve the control performance in
the future iterations. When the controller faces a new task, the database is cleared and the
learning phase starts over. This paper addresses the question of how a general knowledge base
can be built to warm start the learning process. As a potential solution, a practical method
is proposed. The algorithm is tailored specifically to the autonomous racing application, but
the concept can be extended to a wider class of control problems. The procedure includes the
construction of special teaching tracks, on which the trajectory database is generated and a
multi-step migration procedure for transferring the learned trajectories onto any new track.
The efficiency of the method is demonstrated by numerical simulations.

Keywords: model predictive control, nonlinear control, iterative and repetitive learning
control, autonomous racing

1. INTRODUCTION

Designing learning based controllers for autonomous driv-
ing is popular and challenging research field. The majority
of the papers published in this topic are focusing on the
problems of autonomous traffic and consider highway or
urban scenarios, where the goal is the safe navigation
among the other moving entities Gao et al. (2012); Kuwata
et al. (2019). Some researchers however are interested in
designing controllers for autonomous racing, where the
goal is to operate the vehicle close to its physical limits and
achieve higher speed and better lap times on specific race-
tracks Liniger et al. (2015a) Kapania and Gerdes (2015)
Kabzan et al. (2019) Brunner et al. (2017).

Learning Model Predictive Control (LMPC) is one promis-
ing control design method in this field. The algorithm was
presented by F. Borrelli and his co-authors in Rosolia et al.
(2017); Brunner et al. (2017). The method is originally
developed for systems performing iterative tasks (Roso-
lia and Borrelli (2017)); its concept follows the iterative
learning control (ILC) scheme Bristow et al. (2006). The
procedure is based on saving the trajectories of successful
runs and using them to improve the control performance in
the future iterations. Technically the saved trajectories are
used to construct a local, polytopic terminal set for a short
horizon MPC evaluated online at each time instant. The
convergence of the learning process is proved in Rosolia
and Borrelli (2017).

Though the algorithm has several attractive features, still
there is a room for improvement. One possible direction is
the generalization of the knowledge base. In the original
LMPC framework whenever the controller faces a new
task, i.e. the vehicle has to run on a previously unseen
track, the database is cleared and the learning phase starts
over. In this paper, a practical procedure is proposed for

building a generalized knowledge base that can be used
to warm start the learning process when a new track is
given. First, a set of special teaching tracks have to be
constructed on which the learning is performed. Second,
a multi-step data migration procedure is proposed that
transfers the learned trajectories onto the new track to
construct an initial database. It is important to mention
that the method also allows to reuse the knowledge ac-
quired through repetitive learning on non-recursive tracks
as well hence allowing to use the power of LMPC for
non-iterative tasks. The applicability and efficiency of the
procedure are demonstrated by numerical simulations.

The paper is organized as follows. Section 2. gives a
precise formulation of the control problem to be solved.
Section 2. summarizes the key elements of the LMPC
algorithm. These two sections are based mainly on Rosolia
and Borrelli (2017); Rosolia et al. (2017); Brunner et al.
(2017). The novel contributions of the paper are presented
in Section 3. Numerical simulations performed with the
proposed method are analyzed in Section 4. Finally, the
paper closes by drawing the most important conclusions.

2. LEARNING MPC FOR AUTONOMOUS RACING

LMPC is designed for systems performing iterative tasks.
It is constructed to learn from the iterations, that is
to improve the control performance in each turn. In
case of autonomous racing this means the vehicle runs
multiple laps on a closed track and improves the driving
performance, e.g. decreases the lap time in each run. The
detailed description and in-depth theory of the LMPC
method is described in Rosolia and Borrelli (2017); Rosolia
et al. (2017) while its extension to autonomous racing is
discussed in Brunner et al. (2017). This section gives a brief
summary of the LMPC framework: only the main elements
that are necessary to follow the next sections are recalled.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 14582

s, vs, as

F

p

q

v, a
θ, ω, ε

Fig. 1. Coordinate frames, states and inputs.

Note that this version differs at some points from the
original algorithm: small improvements and modifications
are made to make the procedure more suitable for our
purposes.

Vehicle model. The discrete-time nonlinear dynamical
model of the vehicle is given in the usual state space form
as follows

xk+1 = f(xk, uk), (1)

where xk and uk collect the states and inputs at the kth

time instant:

xk = [pk qk θk ωk vk sk vsk]
T

uk = [ak εk ask]
T
. (2)

The equations of motion of the vehicle are expressed in a
moving frame, attached to the centerline of the track (Fig.
1), so f(·) is given as follows:

f(xk, uk) =

pk + Ts (−vsk (1− c(sk)qk) + vk cos θk)
qk + Ts (−c(sk)vskpk + vk sin θk)

θk + Tsωk
ωk + Ts

(
εk − c(sk)ask − g(sk)vs

2
k

)
vk + Tsak
sk + Tsvsk
vsk + Tsask

(3)

The state variables pk, qk, θk and ωk represent the posi-
tion, orientation and angular velocity of the vehicle in F
respectively. vk is the scalar velocity of the vehicle, sk and
vsk are the distance and the velocity of the origin of F
along the centerline of the path. The inputs ak, εk and ask
quantify the scalar acceleration, angular acceleration (in
the world frame) and the acceleration of the origin of F
along the centerline respectively. The function c(s) is the
curvature along the centerline and g(s) = ∂c(s)/∂s. Ts is
the discrete time step. Note that, the vehicle model above
is simpler than that is used in Rosolia et al. (2017). This
model has been chosen to simplify the presentation of our
results. The proposed algorithms can however be easily
extended for more complex vehicle dynamics as well.

Receding Horizon Control. To obtain the control inputs at
each time instant k, LMPC requires to solve the following
finite horizon optimization problem:

JLMPC,j(xjt) = min
ut|t,...,ut|t+N−1

t+N−1∑
k=t

h(xt|k, ut|k)+

+Qj−1(xjt,t+N)

s.t.

(4a)

xt|k+1 =f(xt|k, ut|k), ∀k ∈ {t, . . . , t+N − 1} (4b)

xt|t =xjt (4c)

xt|k ∈X , ut|k ∈ U , ∀k ∈ {t, . . . , t+N − 1} (4d)

xt|t+N ∈SSj−1 (4e)

where xjt denotes the state at time t of the jth iteration.
Let the optimal solution of (4) be

x∗,jt|t:t+N =
{
x∗,jt|t , . . . x

∗,j
t|t+N

}
(5a)

u∗,jt|t:t+N =
{
u∗,jt|t , . . . u

∗,j
t|t+N−1

}
. (5b)

Then at time t of the jth iteration the first input u∗,jt|t of the

optimal solution is applied to the plant. The optimization
(4) is then solved again at time instance t + 1, yielding a
receding horizon control.

The main components of (4) are detailed as follows.

Parameterization of s. In order to use the LMPC method,
the system has to start (at least closely) from the same
initial state at each iteration. This can be easily satisfied
by most of the state variables, except sk. Since vk is
nonnegative, sk is continuously increasing. In order to
prevent sk from growing unboundedly, its value is reset
after every lap. The resetting has to be carefully performed
in order to avoid jumps in the vicinity of the finish line. For
this, s is parameterized to vary in the interval [−2Lpath, 0],
where Lpath is the length of the centerline. Let sit denote
the 6th coordinate of the state vector (2) at time t of the
jth iteration. With this parametrization we can determine
time t?j when the vehicle crossed the finish line: t?j is
the first time instant satisfying the following conditions:
sjt?

j
−1 ∈ [−2Lpath,−Lpath[and sjt?

j
∈ [−Lpath, 0]. The

transformation that maps the last state of an iteration to
the initial state of the next iteration can then be defined
as follows:

xj+1
0 = xjt?

j
− [0, 0, 0, 0, 0, Llap, 0]

T
, (6)

This choice of parametrization allows the objective func-
tion to decrease as the vehicle travels towards the finish
line and avoids jumps in the state trajectory at the end of
the iterations.

Objective function. Instead of penalizing only the lap time,
as it is done in Rosolia et al. (2017); Brunner et al. (2017),
a quadratic cost function is used:

h(xk, uk) = xTk Pxk + uTkQuk +RTxk + STuk (7)

where P,Q � 0 (positive semidefinite). The quadratic
structure offers larger freedom in performance specifica-
tion. The goal of the controller is to minimize the lap
time while keeping ε as small as possible and satisfying
the state- and input constraints. In order to fulfill these
requirements, the quadratic cost (7) is constructed with
the following considerations Lam et al. (2010); Liniger
et al. (2015b): a.) The cost of pk is chosen to be large
compared to the other state variable costs in order to
guarantee that F is always placed in the point of the path
closest to the vehicle; b.) the costs on the states sk and εk
are chosen to be higher then on the rest of the states.

This cost results in maximizing the progress of the origin
of F along the path, while keeping it in the nearest point
of the centerline to the vehicle (High cost on p).

Sampled Safe Set. The key element of the LMPC algorithm
is the Sampled Safe Set of past trajectories. To formally
define this set, let

xj =
[
xj0 x

j
1 . . . x

j
t?
j
−1

]
, uj =

[
uj0 u

j
1 . . . u

j
t?
j
−1

]
(8)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14583

collect the control inputs applied to the vehicle model (1)
and the resulting states at iteration j. With these vectors,
the Sampled Safe Set of the jth iteration is defined as

SSj =

{ ⋃
i∈Mj

∞⋃
t=0

xit

}
(9)

where M j is the set of all iteration indexes, in which
iterations the vehicle has successfully crossed the finish
line. In this respect, SSj is technically the collection of all
the trajectories along which the vehicle has completed a
lap until the jth iteration. At the very first iteration SS1

is initialized with a trajectory which is calculated as if the
car would track the centerline perfectly with a sufficiently
small constant velocity, so that all the state and input
constraints are fulfilled.

Iteration Cost. The cost-to-go value at time t of the jth

iteration is originated from the closed loop trajectory and
the corresponding input sequence as follows:

Jjt→t?
j
(xjt) =

t?j∑
k=t

h(xjk, u
j
k) (10)

The cost-to-go function Qj(·) is introduced to assign the
minimum cost-to-go value to the points of SSj along its
trajectories. Formally, Qj(·) is defined as follows:

Qj(x) =

{
min

(i,t)∈F j(x)
J it→t?

j
(x), if x ∈ SSj

∞, otherwise
(11)

where F j(x) is defined as:

F j(x) =
{

(i, t), i ∈ [0, j] , t ≥ 0 with x = xit, for xit ∈ SSj
}
.

(12)
Before the very first iteration, Q1 is initialized using (10)
and (11) along SS1.

SS update step. At the end of a successful iteration, the
sampled safe set SS is updated as follows:

SSj = SSj−1 ∪
{
xj−1, x̃j−1

}
(13)

where xj−1 is the trajectory of the system at the j − 1-th
iteration and x̃j−1 is a modification of xj−1 for augmenting
the SS beyond the finish line:

x̃j−1 = xj−1 + slape61
1×Nj−1

(14)

where N j−1 is the number of trajectory points in xj−1 and

11×Nj−1

= [1, ..., 1] ∈ R1×Nj−1

row vector.

Relaxations. The LMPC problem (4) with the cost func-
tion (7) is a quadratic program with integer variables (4e)
and nonlinear (4b) constraints. It is therefore numerically
demanding. To cast it to a computationally tractable
problem, some relaxations on (4) are applied. First, the
nonlinear system dynamics (3) is approximated by an LTV
system

xk+1
∼= Akxk +Bkuk + gk (15)

where Ak, Bk and gk are computed by linearizing (3)
around a trajectory obtained at the previous iteration
(Lam et al. (2010); Liniger et al. (2015b)).

Second, the terminal state constraint (4e) is relaxed to
the convex hull of SSi−1 and Qj−1(·) is approximated by
using barycentric approximation detailed e.g. in Warren
et al. (2007) and Ju et al. (2005).

It is proven in Rosolia and Borrelli (2017) that with
these relaxations, the convergence of the LMPC to a local
optimum is still guaranteed.

3. BUILDING KNOWLEDGE BASE TO ADD
GENERALIZATION CAPABILITY

It is not efficient that every time the controller faces an
unknown track, the learning process is re-started from
the beginning and the knowledge acquired on the past
tracks is not exploited. In this section a practical method
is proposed to overcome this limitation.

In our framework, we assume that all tracks the vehicle can
face are constructed from a priori known track-primitives.
In the first step a set of teaching-tracks is constructed
from the track-primitives. The controller is then trained
on these tracks by LMPC. The SS trajectories learned
are saved in a database. When the vehicle faces a new
track, called test-track, the trajectories of this database
are migrated to the new track, hence forming an initial SS
set for further learning. Hence the LMPC controller can
use the knowledge acquired earlier and there is no need to
start from scratch. It is important to note that although
the teaching- and the test-tracks have to be built from
the same types of track-primitives, the lengths of these
primitives do not have to coincide.

Remark: Tracks built from track-primitives can be quite
useful in many real scenarios, not limited to the au-
tonomous vehicle racing application. Sufficiently flexible
tracks composed of primitives can easily be designed by a
high level routing algorithm for example for AGVs, robot
arms or laser profiling tools.

To simplify the presentation, we restrict our attention to
tracks composed of straight sections and 90◦ turns. We
present the main steps of our algorithm on this specific
problem. The procedures, however, can be easily extended
to more complex tracks built from a larger set of track-
primitives.

Track-primitives and teaching-tracks. Since the directions
of two successive turns have effect on the optimal trajec-
tory between them, we choose straight sections with 45◦

turns at their both ends for track-primitives. The turns
are created using quintic splines Piazzi et al. (2002) for
sufficient differentiability. Depending on the direction of
the turns, this would make 4 track-primitives, but due to
the symmetricity it is sufficient to distinguish only two:
one with two same turns at its ends and one with different
turns (see Fig. 2).

A

B

L

Fig. 2. The track-primitives.

Each teaching-track focuses on a single type of primitive
with a specific length L. Several tracks with different
length L are constructed. A track contains several pieces
of these primitives isolated with sufficiently long straight
sections, so that the successive primitives do not influence
each other. Examples of teaching-tracks can be seen in Fig.
3.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14584

(a)
A-type

(b) B-type

Fig. 3. Schematic drawings of A and B type teaching-
tracks. The track-primitives are marked on the fig-
ures.

3.1 Post-processing of the learned SS

Recall that our goal is to use the knowledge acquired
on teaching-tracks on previously unknown tracks by mi-
grating the learned SS set onto it. The SS migration is
a series of post-processing steps carried out on the SS
trajectories learned on teaching-tracks. These post pro-
cessing steps include the trimming of the relevant sections
from the learned SS trajectories; resampling the points
of the trimmed sections; creating etalon trajectories from
the resampled trajectories; interpolating between etalon
trajectories for reaching a specified length primitive; prun-
ing the interpolated (generalized) trajectories and creating
bridge trajectories between the successive track-primitives.
The steps, that are detailed in this section have to be
carried out on each SS trajectory but are only shown
for the jth one. In this way, the index j of the iteration
number, is omitted in this and the next subsections.

Trimming. The relevant sections of the teaching-tracks
(marked red in Fig. 3) have to be cut out from the total
trajectory. The ith relevant section on the teaching-track
x̂πL,i is selected by using the curvilinear abscissa as follows:

x̂πL,i =
{
x ∈ xπL : xT e6 ∈ [sπi , s

π
i]
}
, ∀i = 1, ...,M (16)

where π ∈ {A,B} and L ∈ Lπ are the type and length of
the learned primitive. Lπ is the set of learned lengths from
primitive π. i ∈ 1, ...,M is the index of the learned prim-
itive on the teaching-track; M is the number of learned
primitives from type π and length L. sπi , s

π
i are the lower

and upper boundaries of the curvilinear abscissa, between
which the ith learned primitive (”relevant” section) lies
on the teaching-track. xπL is a complete trajectory on
the teaching-track, from which the ”relevant” sections
x̂πL,i i = 1, ...,M are trimmed out.

Resampling and etalon trajectories. In this step, the etalon
trajectory x̄πL of the track-primitive of type π and length
L is created from the trimmed trajectories x̂πL,i, i ∈
{1, . . . ,M}. For this, all x̂πL,i trajectory segments are
normalized in the s coordinate. Then, they are resampled
(interpolated and evaluated) at K equidistantly placed
points at s = [0, 1, ...K − 1]/(K − 1). The resampling
ensures that all trajectories are represented by the same
number of points placed at same locations. (K is typically
chosen to be a few times multiple of the number of
samples representing the longest learned primitive before
resampling.)

After x̂πL,i is normalized and resampled, the etalon tra-
jectory x̄πL of a track-primitive of type π and length L is
obtained by taking the average of the learned trajectories:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s [-]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

q
[m

]

Deviation from the centerline

Trimmed trajectories
Etalon trajectory

(a) Path deviation profiles.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s [-]

-4

-3

-2

-1

0

1

2

3

4

 [r
ad

/s
]

angular velocity

Trimmed trajectories
Etalon trajectory

(b) Angular velocity pro-
files.

Fig. 4. State profiles of the trimmed and the etalon
trajectories along an A-type track-primitive with L =
2 [m].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s [-]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 [-
]

Orientation

Learned
Generalized

(a) Orientation profiles.EF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s [-]

-5

-4

-3

-2

-1

0

1

2

 [-
]

Angular velocity

Learned
Generalized

(b) Angular velocity pro-
files.

Fig. 5. State profile of the learned etalon trajectory and
the generalized B-type primitive with L = 5.5 [m].

x̄πL =

K⋃
j=1

{
M∑
i=1

1

M
x̂πL,i,j

}
(17)

where x̂πL,i,j is the jth point of x̂πL,i. As an example, the
angular velocity and path deviation profile of the trimmed
trajectories and the etalon trajectory of an A-type turn
with L = 2 [m] can be seen in Fig. 4.

The etalon trajectories represent the knowledge acquired
on the teaching-tracks. They are stored in a database and
recalled when the vehicle faces a new (previously unseen)
track.

3.2 SS migration

Interpolation. Assume a database storing a set of etalon
trajectories is available and a new track is given. The
goal is to construct an initial sampled safe set by using
the knowledge stored in the database. For this, suppose
the new track contains a track-primitive of type π of
length Ldes. The trajectory segment x̃πLdes

corresponding
to this track-primitive can be constructed from the etalon
trajectories of type π by linear interpolation as follows:

x̃πLdes
=

K⋃
j=1

{
L− Ldes
L− L

x̄πL,j +
Ldes − L
L− L

x̄π
L,j

}
(18)

where x̄πL,j is the jth point of the etalon trajectory of the
primitive of type π and length L and

L = sup {L ∈ Lπ : L ≤ Ldes}
L = inf {L ∈ Lπ : L > Ldes} .

(19)

By performing several experiments we have found that
linear interpolation provides a suitable initial guess for the
optimal trajectory so it can be used to initialize the safe
set.

Scaling and resampling. The trajectory segments con-
structed by (18) are still normalized in s. Therefore, they
have to be rescaled to fit to the actual length of the corre-
sponding track-primitives. Note also that these trajectory

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14585

5 6 7 8 9 10 11

[m]

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

[m
]

Bridge trajectory

Trajectory 1
Trajectory 2
Bridge trajectory

Fig. 6. Bridge trajectory between two successive primi-
tives.

segments still contain K points. This can be unnecessary
large, making it difficult to properly evaluate J(·) andQ(·).
Therefore, the trajectory segments are ”downsampled”
such that the distance between any two successive points
be smaller than the distance the vehicle can travel in one
discrete time step.

Bridge trajectories. At this point we have trajectory seg-
ments for every track-primitive of the new track. However,
the continuity of the state trajectories between two succes-
sive primitives is not guarantied. To remedy this issue and
generate continuous state trajectories bridge trajectories
are constructed to connect the successive track-primitives.
These trajectories can be obtained by solving the LMPC
problem (4) from the last point of each migrated trajec-
tory section with the following modification: In (4e) use
the already migrated trajectory segment points instead
of SSj−1. The solution of the LMPC problem defines a
feasible state trajectory that starts from the last state of a
track-primitive and ends among the states of the primitives
following it. An example of a bridge trajectory can be
seen on Fig. 6. The migrated SS set is composed from
the migrated trajectory segments together with the bridge
trajectories.

4. CASE STUDY

In this section a numerical example is presented to demon-
strate the efficiency and applicability of the proposed
method.

4.1 Teaching and test tracks

We considered race-tracks, built from track primitives
A and B that are depicted in Fig. 2. For learning, 10
different teaching tracks were constructed with length
Lπ = {1, 2, 3, 5, 10} [m] where π = {A,B}. The structure
of the teaching-tracks are illustrated in Fig. 3. The time
step of the simulation was Ts = 0.05 [s] and the prediction
horizon during the teaching process was N = 15. The
training was run until the iteration cost converged to a
steady state (minimal) value.

The performance of the LMPC controller with migrated
SS was then analyzed on two test tracks that can be seen
in Fig. 7. These tracks contain A and B-type primitives
of lengths different from the learned ones. Results of
simulations on these tracks with and without migrated
SS set are presented next. We have achieved very similar
results on both test tracks, regarding the performance of
the controller with SS migration. Due to the shortage of
space, we only detail the results of the first track.

4.2 Performance on unknown tracks

The learning process took an average of 8 laps on each
teaching-track and lasted for approximately 80 [min] on
the 10 tracks. (The relatively long, N = 15, horizon allows

0 10 20
[m]

5

10

15

20

[m
]

(a) Test track 1.

0 10 20
[m]

-10

-5

0

5

10

[m
]

(b) Test track 2.

Fig. 7. The test tracks on which the SS migration was
tested.

the controller to converge to the optimum in only a few
iterations.) After the learning was completed, we have
carried out the post processing steps of the SS migration
to reach the etalon trajectories which were then saved.
After these, obtaining the migrated SS from the saved
etalon trajectories took approximately 2.7 [s] on the test-
tracks.

Then, we run the LMPC controller on the test-tracks
with and without migrated SS. In both cases we run the
controller with N = 7, 10 and 15 and logged the iteration
costs. These iteration costs on test-track 1 without and
with migrated SS can be seen in Fig. 8. In general, it
can be said that the final performance of the LMPC
controller is approximately the same in all cases. The
major difference between the controllers with and without
migrated SS is the number of iterations required for the
iteration cost to converge. With migrated SS the controller
reaches the local optimal solution much faster and already
starts from a near optimal iteration cost. In these cases, the
costs of the very first iterations differed from the minimal
value by less than 5%. The times required for convergence
in the different setups can be examined in Table 1.

Table 1. Convergence times and optimal values
reached with and without SS migration with

different horizon lengths.

Without SS migration With SS migration
Conv.
time

Minimal
cost

Conv.
time

Minimal
cost

N = 7 374.5[s] 2.18 · 107 45.6[s] 1.97 · 107

N = 10 276.1[s] 2.12 · 107 45.3[s] 1.94 · 107

N = 15 220.8[s] 1.93 · 107 44.6[s] 1.93 · 107

Apart from the convergence time, SS migration also has
an effect on the minimal value of the iteration cost. This
is in connection with the fact that the final locally optimal
control law slightly depends on the length of the prediction
horizon as it is visualized in the subfigure of Fig. 8. The
longer the prediction horizon is, the faster the iteration
cost converges and the smaller minimal iteration cost is
achieved. One of the appealing features of SS migration is
that the teaching can be carried out with a long prediction
horizon and then, after SS migration, the controller can
run with a much shorter one which is computationally
cheaper. After a long horizon teaching, a controller with a
short prediction horizon can reach smaller iteration costs
than one with the same horizon length but without the
migrated SS. (It also reaches this minimum much faster,
as it was detailed previously.) This feature of the SS
migration is illustrated in Table 1, from which one can
read that the controller with N = 7, 10 converges to a
lower iteration cost if SS migration is applied. On the
other hand, the costs to which the controllers with N = 15
converge differ from each other with 6.4·10−3 % in the two

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14586

2 4 6 8 10 12
iteration number

0

5

10

15

ite
ra

tio
n

co
st

107

N = 7
N = 10
N = 15

8 10 12
2

2.2
2.4

107

(a) Learning from scratch.

1 2 3 4
iteration number

1.94

1.96

1.98

2

ite
ra

tio
n

co
st

107

N = 7
N = 10
N = 15

(b) Learning after SS migra-
tion.

Fig. 8. The iteration costs of the LMPC controller on
teaching-track 1. without and with SS migration.

cases. This is due to the fact, that the teaching process was
also carried out with N = 15.

To summarize the experiences of the case study, we can say
that an LMPC controller with migrated SS converges to a
minimal cost much faster than the same controller without
SS migration. Furthermore, if the controller has a shorter
horizon than that was used for teaching, the controller will
reach a better final performance if SS migration is used.
Also, if the teaching and the testing horizon length is the
same, the final performance is identical with and without
SS migration.

5. CONCLUSION

A practical procedure for generalizing the knowledge ac-
quired by learning model predictive control has been pre-
sented. The method is tailored specifically to the au-
tonomous racing application. It has been shown if the
race-tracks are built from a-priori known track-primitives,
a set of teaching tracks can be constructed on which
the optimal motion profile (the SS set) for each track
primitive can be learned. An efficient, multi-step strategy
is proposed to migrate the SS trajectories learned on
teaching tracks to a different, a priori unknown track, to
initialize the further learning. This initialization allows the
LMPC controller to make generalizations from its acquired
knowledge during training. The proposed strategy has
several attractive features. First, the number of iterations
required for learning the optimal control on a track largely
depends on the prediction horizon N of the LMPC control.
As N increases, the number of iterations until optimality
decreases meanwhile the computational costs heavily grow.
This leads to a compromise between learning rate and
computational expenses, which are mightily limited in real
time applications. With SS migration however, this issue
is remedied. Although it is practical to use a long LMPC
horizon during the learning process, it is sufficient to use a
much shorter one on the new tracks. Moreover, it has been
shown that the controller with shorter horizon outperforms
the same controller without migrated SS.

Although the learning process may take considerable time,
as the simulation results of section 6 show, a good perfor-
mance can be achieved in the very first lap on any new
track by using only the migrated trajectories. This allows
to entirely skip the learning process on the new tracks.
This is especially useful in situations when the track on
which the vehicle has to run changes frequently or if the
track is long. Learning a very long track from scratch
would take tremendous time while the migration process
can be performed very quickly. Note also that the learned
SS can be migrated to non-recursive paths as well. This
allows to use the power of LMPC for non-iterative tasks.

6. ACKNOWLEDGEMENT

This work was partially supported by the János Bolyai Re-
search Scholarship of the Hungarian Academy of Sciences
and the ÚNKP- 19-4 New National Excellence Program
of the Ministry for Innovation and Technology. It was also
supported by the research program titled ”Exploring the
Mathematical Foundations of Artificial Intelligence (2018-
1.2.1-NKP-00008)”.

REFERENCES

Bristow, D.A., Tharayil, M., and Alleyne, A.G. (2006).
A survey of iterative learning control. IEEE Control
Systems Magazine, 26(3), 96–114.

Brunner, M., Rosolia, U., Gonzales, J., and Borrelli, F.
(2017). Repetitive learning model predictive control:
An autonomous racing example. In Proceedings of the
Conference on Decision and Control (CDC), 2545–2550.

Gao, Y., Gray, A., Frasch, J.V., Lin, T., Tseng, E.,
Hedrick, J.K., and Borrelli, F. (2012). Spatial predic-
tive control for agile semi-autonomous ground vehicles.
In Proceedings of the International Symposium on Ad-
vanced Vehicle Control.

Ju, T., Schaefer, S., Warren, J.D., and Desbrun, M.
(2005). A geometric construction of coordinates for
convex polyhedra using polar duals. In Symposium on
Geometry Processing, 181–186.

Kabzan, J., Hewing, L., Liniger, A., and Zeilinger, M.N.
(2019). Learning-based model predictive control for
autonomous racing. IEEE Robotics and Automation
Letters, 4(4), 3363–3370.

Kapania, N.R. and Gerdes, J.C. (2015). Path tracking of
highly dynamic autonomous vehicle trajectories via iter-
ative learning control. In American Control Conference
(ACC), 2753–2758.

Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E.,
and How, J.P. (2019). Real-Time Motion Planning With
Applications to Autonomous Urban Driving. IEEE
Transactions on Control Systems Technology, 17(5),
1105–1115.

Lam, D., Manzie, C., and Good, M. (2010). Model
predictive contouring control. In Proceedings of the
Conference on Decision and Control (CDC), 6137–6142.

Liniger, A., Domahidi, A., and Morari, M. (2015a). Opti-
mization based autonomous racing of 1:43 scale rc cars.
Optimal Control Applications and Methods, 628–647.

Liniger, A., Domahidi, A., and Morari, M. (2015b).
Optimization-based autonomous racing of 1: 43 scale rc
cars. Optimal Control Applications and Methods, 36(5),
628–647.

Piazzi, A., Bianco, C.G.L., Bertozzi, M., Fascioli, A.,
and Broggi, A. (2002). Quintic G2-splines for the it-
erative steering of vision-based autonomous vehicles.
IEEE Transactions on Intelligent Transportation Sys-
tems, 3(1), 27–36.

Rosolia, U. and Borrelli, F. (2017). Learning model pre-
dictive control for iterative tasks. a data-driven control
framework. IEEE Transactions on Automatic Control,
63(7), 1883–1896.

Rosolia, U., Carvalho, A., and Borrelli, F. (2017). Au-
tonomous racing using learning model predictive con-
trol. In Proceedings of the American Control Conference
(ACC), 5115–5120.

Warren, J., Schaefer, S., Hirani, A.N., and Desbrun, M.
(2007). Barycentric coordinates for convex sets. Ad-
vances in computational mathematics, 27(3), 319–338.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14587

