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Abstract: In the field of longitudinal train dynamics the brake process is not only a safety
critical aspect but it also determines the capacity of the rail network. Therefore, a reduction of
the brake distance increases the safety level and the network capacity at the same time. However,
to implement an advanced brake control set-up, the knowledge of the wheel-rail adhesion and the
brake pad-disc friction is usually necessary. Since the direct measurement of these determining
parameters is not reasonable due to technical and economic reasons, the present work presents an
estimator framework for their online identification. To ensure a robust and reliable performance
of the estimator, a generic wagon model is designed and the observability of the nonlinear system
is evaluated. Furthermore, a reasonable synthesis of an extended Kalman filter is discussed that
takes account of the system characteristics. In the end, the test results from a roller rig verify
the accurate and robust performance of the developed estimator and confirm the great potential
of such a concept in the context of mechatronic railway systems.
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1. INTRODUCTION

Railway vehicles offer some essential benefits in com-
parison to other transportation systems such as motor-
ized individual transportation. From a societal point of
view the currently most relevant benefits are the higher
capacity in urban traffic and the better ecological bal-
ance, see Umweltbundesamt (2019). However, in the long-
distance sector the rail traffic capacity is limited by strin-
gent restrictions related to the distance between trains.
To overcome this limitation, the European Train Control
System (ETCS), which slowly but surely finds its way
into the railway network, allows for an operation with
absolute braking distance. To fully exploit the potential of
this concept and further increase the capacity of the exist-
ing railway infrastructure, the minimum distance between
trains might be reduced by an optimized brake control.

In contrast to existing brake control systems, like wheel-
slide protection (WSP) and load-dependent brake systems,
an advanced control set-up requires additional information
on the varying system properties. As shown in Schwarz
et al. (2019a) the two most relevant parameters that have
to be identified during the braking process are the wheel-
rail adhesion and the friction coefficient in the brake pad
and disc interface. Since there is no direct way to measure
either of these parameters, in Ricciardi et al. (2017) a
method is described to identify the brake unit friction via
an estimator. Also for the wheel-rail adhesion estimation
a row of elaborate concepts are proposed, like Charles
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et al. (2008); Shrestha et al. (2019); Strano and Terzo
(2018); Ward et al. (2012). Based on these works the au-
thors developed a wheel-rail adhesion estimation concept
for a running gear with independently rotating wheels
in Schwarz and Keck (2019). The approaches presented
in Schwarz et al. (2019a,b) show first promising results
of the simultaneous friction and adhesion estimation in
a test rig environment and for track tests. Nevertheless,
the combined, simultaneous estimation of both phenomena
is not yet fully investigated, since in Schwarz and Keck
(2019) the brake friction is not considered and in Schwarz
et al. (2019a,b) only good adhesion conditions are tested.
Therefore, the following work presents how to improve the
robustness, reliability, and accuracy of an adhesion and
friction estimator in the face of challenging scenarios like
wheel-slide protection and sanding, what is necessary for
a safe operation in the rough railway environment.

First of all, a generic model of the longitudinal dynamics of
a railway vehicle is illustrated in section 2. Furthermore,
the observability of the nonlinear system is analyzed, to
verify the reliable functionality of the estimator in the
entire operating range. In section 3 the applied observer
concept and the test rig environment are described. Af-
terwards section 4 presents and discusses the estimation
results of the challenging test scenarios. In the end, sec-
tion 5 draws a conclusion, highlights the contributions to
the field of mechatronic railway systems, and names the
upcoming tasks that have to be tackled.

2. MODELING AND OBSERVABILITY ANALYSIS OF
LONGITUDINAL RAILWAY DYNAMICS

The focus of the presented investigation on the longitu-
dinal dynamics allows us to neglect the lateral dynamics.
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This substantially reduces the computational effort of the
estimator algorithm and makes the transfer to a control
unit a lot easier. According to this 2-D system consid-
eration in the x − z plane the longitudinal and vertical
wheel-rail forces of the left and right wheel of one wheelset
are merged into one Fx and one Fz, respectively. The
same holds for the multiple brake units of one wheelset,
so that Fig. 1 shows the scheme of a wagon as it is used
in this work. The subscripts f and r represent the front
and rear part of the wagon, i.e. Fx,i using the index i=f, r
denotes the longitudinal wheel-rail force at the front and
rear wheelset, respectively. Analogously the vertical wheel-
rail force is Fz,i. The other variables and parameters are
described in the following paragraph. Considering only one
wagon seems appropriate, since this enables a distributed
estimator design for each specific wagon. This offers an
advantage especially in case of an electric multiple unit,
where the adhesion behavior varies between the heavy
motor and light trailer cars.

To set up the nonlinear formulation of the system, the first
step is to define the longitudinal force equilibrium

m · v̇x = FTR + kd · v2x + Fx,f + Fx,r, (1)

with the wagon mass m, the translational velocity vx, the
track resistance force FTR, see Schindler (2014), and the
drag factor kd that includes the drag coefficient, drag area,
and mass density of air. The longitudinal creep forces are
influenced by the wheel-rail adhesion coefficient µW

Fx,i = µW · Fz,i. (2)

Only one µW is stated for the wagon, since it is assumed
that the adhesion conditions do not significantly vary
between the two wheelsets. The dynamic behavior of
µW could be implemented according to well-established
theories like Polach (2005). However, the parametrization
of these models fits only for one specific condition, e.g. wet
or dry. In order to prevent the observer prediction model
from being wrongly parametrized, µW is implemented as

µ̇W = 0, (3)

so that the time varying behavior of the adhesion coeffi-
cient is not regarded in the estimator prediction step but
solely in the correction step. The wheelset load Fz,i and
its variation, respectively, depend on the construction and
positioning of the traction rod. In the following a generic
relation between Fz,i and the longitudinal acceleration v̇x
is chosen

Fz,i =
m

2
· g ± h

a
·m · v̇x, (4)

with gravity constant g, height of the wagon’s center of
mass h and longitudinal wheelset distance a. Combin-
ing (1)-(4) leads to

v̇x =
1

m

(
FTR + kd · v2x

)
+ µW · g

2
. (5)

After the definition of the longitudinal force equilibrium
the moment equilibria of the wheelsets around their lateral
axes are considered

Jy · ω̇i = FB,i · rB + Fx,i · rW +MW,i. (6)

The parameters in (6) are the wheelset inertia Jy, the
brake radius rB, and the wheel radius rW. The dynamic
variables are the angular wheelset velocity ωi, the brake
force FB,i, and the additional wheel torque MW,i, which
includes for example the motor torque as well as the

bearing/rolling resistance, see Schindler (2014). Analog
to (2) the brake force

FB,i = µB,i · F⊥,i (7)

depends on the friction coefficient in the brake unit in-
terface µB,i and the pressing force of the brake pad F⊥,i.
The implementation of the brake friction dynamics can be
done in the same way as it is described for the wheel-rail
adhesion, i.e.

µ̇B,i = 0. (8)
Another reasonable formulation of the brake friction dy-
namics is a first order characteristic

µ̇B,i =
µB,0 − µB,i

tµ · µB,i
, (9)

with the initial estimation of the brake friction coefficient
µB,0 and the time constant tµ. This implementation of
µ̇B,i is a significantly simplified version of the approach
presented in Ostermeyer (2003). The decision whether to
use (8) or (9) is a trade-off between an easier implemen-
tation in (8) (since there are no additional parameters to
be defined) and a slightly more accurate modeling in (9).
As mentioned at the beginning of this section it is tried
to keep the system as simple as possible for the sake of
real-time capability so that the variant in (8) is used. The
angular acceleration is

ω̇i =
1

Jy
(µB,i · F⊥,i · rB + µW · fsub · rW +MW,i) , (10)

with the substitution

fsub =
m

2
· g
(

1 ± 2 · h
a
· µW

)
± h

a

(
FTR + kd · v2x

)
. (11)

Assuming that usually 2 · ha ·µW � 1 the nonlinear system
with an additional linear input uuulin reads

ẋ̇ẋx = fff (xxx,uuu) +BBBuuulin =

=



1

Jy

(
rBx4u1 + rWx6

(
mg

2
+
h
(
u3 + kdx

2
3

)
a

))
1

Jy

(
rBx5u2 + rWx6

(
mg

2
−
h
(
u3 + kdx

2
3

)
a

))
1

m

(mg
2
x6 + u3 + kdx

2
3

)
0
0
0


+


1

Jy
0 0 0 0 0

0
1

Jy
0 0 0 0


T

uuulin,

(12)
with the state vector

xxx = [ωf , ωr, vx, µB,f , µB,r, µW]
T

(13)

and the nonlinear and linear input vectors

uuu = [F⊥,f , F⊥,r, FTR]
T
, uuulin = [MW,f ,MW,r]

T
. (14)

The measurement signals are the longitudinal wagon veloc-
ity and the angular wheelset velocities, so that the linear
output equation is

yyy = CCCxxx =

[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]
xxx. (15)

After the description of the system design the observability
has to be evaluated, to ensure the reliable performance
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Fig. 1. Forces, torques and kinematics of a generic wagon

of the estimator framework. Equation (12) reveals the
nonlinearities of the system, which demand for a nonlinear
observability analysis according to Gauthier et al. (1992);
Hermann and Krener (1977). There it is stated that a
nonlinear system is observable, if hhh−1 (zzz) exists, with

zzz = hhh (xxx) =
[
yyy, ẏyy, · · · , yyy(n−1)

]T
. (16)

The parameter n denotes the system dimension, which is
in our case n = 6. To verify the observability, it is often
not necessary to calculate the (n− 1)th derivation of yyy.
For the system (12) and (15) the first derivation already
allows for the formulation of hhh−1 (zzz). Neglecting the linear
input, the inversion of hhh (zzz) is

xxx =



z1
z2
z3

Jyz4 − rWfsub,z

(
1 +

2h(u3+kdz
2
3)

amg

)
rBu1

Jyz5 − rWfsub,z

(
1 − 2h(u3+kdz

2
3)

amg

)
rBu2

2

mg
fsub,z


, (17)

with the substitution

fsub,z = mz6 − u3 − kdz
2
3 . (18)

Lines four and five of (17) reveal that the system is not
observable, when u1 = 0 and u2 = 0. This aspect has to be
taken into account especially in case of a braking scenario
with wheel-slide protection, where the pressing force is
abruptly reduced and the contact between pad and disc is
lost. An estimator set-up that shows a reliable performance
in this critical state is described in the following section.

3. TEST FRAMEWORK AND ESTIMATOR SET-UP

In order to find a robust estimator parametrization and
to verify the reliable and accurate performance of the
estimator, a test rig environment offers some deciding
benefits in contrast to track tests. First of all, challenging
environmental conditions, like a wet and slippery interface
between wheel and rail, can be regulated via the controlled
injection of water and oil, respectively. The second benefit
is the extended set of measurement equipment that allows
for a quantitative evaluation and validation of the wheel-
rail adhesion. The authors are aware of the fact that
the reduction to a single wheelset prevents a general

verification of the estimator performance with respect to
an entire train. Nevertheless, a performance test within
this reduced and reproducible test rig environment seems
to be a reasonable first step before executing track tests
that require an extensive technical and economic effort.
Thus, the roller rig illustrated in Fig. 2 and described
in Schwarz et al. (2019a) is used for the estimator tests.
On this test rig only a single wheelset is operated and
therefore the system in (12) has to be reduced by the
second wheelset. The resulting state vector is

xxx = [ωW, vx, µB, µW]
T
, (19)

with the angular wheelset velocity ωW and the virtual
longitudinal velocity vx = ωRollerrRoller. Amongst other
signals the longitudinal and vertical wheel-rail contact
forces are measured via load cells mounted in the longitu-
dinal and vertical cylinders, highlighted in orange in Fig. 2.
Thus, according to (2) the actual adhesion coefficient is the
quotient of the measured longitudinal and vertical wheel-
rail force. Furthermore, additional torques can be applied
directly to the roller and the wheelset, to reproduce inertia
and other resistance effects. In the presented configuration
only the roller is affected by an additional torque that
imitates drag resistance and the longitudinal inertia of a
wagon.

As described in the previous section the system is non-
linear, so that a nonlinear estimator has to be used. A
well-established method that proves its worth for a rail-
way application in Schwarz et al. (2019b) is the extended
Kalman filter (EKF). For a detailed discussion of the

Fig. 2. Digital twin of the roller rig at Knorr-Bremse in
Munich
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EKF see Simon (2006) and Brembeck et al. (2014). The
estimator behavior can be influenced via two covariance
matrices, which are usually defined as diagonal matrices.
The first one is the system noise covariance matrix QQQ,
which describes how much the estimator relies on the
prediction model (12). The second covariance matrix RRR
refers to the measurement noise, i.e. low diagonal entries
Rll correspond to a high trust in the measurement signals
yyy. According to the number of system states and outputs
at the test rig there are four system noise parameters Qjj
and two measurement noise parameters Rll.

Typical values for Qjj and Rll range from 10−9 (high trust
in the system state or measurement signal) to 101 in case
of a very low trust in the respective state or measurement
signal. Thus, to achieve a good estimator performance, the
tuning of the covariance matrices has to consider the sys-
tem design and the physical characteristics of the states.
Determining the estimator parameters via a numerical
optimization as done in Schwarz and Keck (2019) would
involve two significant concerns. Firstly, the optimization
result highly depends on the objective function and in
the present case it is anything but trivial to identify a
reasonable objective function, since three aspects have
to be simultaneously considered: adhesion, brake friction,
and kinematics, i.e. wheel and roller velocities. Secondly,
the nonlinearity of the brake friction, which is not taken
into account in Schwarz and Keck (2019), usually leads to
several solutions of the optimization problem and, thus,
the found optimum might be a local optimum. Therefore,
in the present work the noise covariance matrices are man-
ually defined in accordance with physical and technical
system properties

QQQ =


101 0 0 0
0 10−5 0 0
0 0 10−3 0
0 0 0 10−1

 , RRR =

[
10−9 0

0 10−7

]
. (20)

The parameter Q44 referring to the wheel-rail adhesion
is set to a high value, since the generic definition of µ̇W

in (3) does not describe the actual adhesion behavior
in an overbraking scenario when the adhesion abruptly
changes. In contrast, the dynamic behavior of the brake
friction coefficient µB is comparably slow, so that the
trust in (8) is higher than in (3) and Q33 has got a
value of 10−3. The two parameters R22 and Q22 related
to vx are set in a medium range with 10−7 and 10−5,
respectively. This means the modeling comprises most of
the influences but not all of them like for example wind,
which cannot be reasonably integrated in the dynamic
model. Regarding the parameters related to ωW the trust
in the measurements is rated higher than the trust in
the model, i.e. R11 = 10−9 < Q11 = 101, due to the
simplifications made in the system design. The definition
of the parameter values at the upper and lower end of the
range turns out to be necessary to achieve reliable adhesion
results, what can be explained with the help of Fig. 3.
The critical situation for the estimator arises in point 2,
when the wheel-slide protection (WSP) becomes active. In
a real railway system two relevant aspects can be observed
after that point: the wheelset accelerates, i.e. ω̇ > 0, and
µW goes the same way back to point 1 that it took from
point 1 to point 2 before the WSP activation. If R11 is
too high or Q11 is too low, the estimator suggests that

Fig. 3. Qualitative scheme of a typical adhesion over slip
characteristic

an increasing wheelset velocity is induced by a decreasing
adhesion just as it is the case when we go from point 1 to
point 3. To prevent this misleading estimation result, R11

has to be set to a very low value although this sacrifices
the noise reducing property of the Kalman filter. After
the description and discussion of the estimator set-up the
following section highlights some results of the test rig
experiments.

4. RESULTS OF THE ESTIMATOR TESTS

For the estimator analysis at the test rig two different test
types are executed. In one case an almost continuous WSP
is provoked and in the other case sanding is activated.
With these challenging scenarios the robustness and reli-
ability of the estimator in rough operating conditions can
be validated. In the following, one representative scenario
of each test type is presented. The velocity and pressing
force profiles of the WSP test are illustrated in the upper
part of Fig. 4. In the beginning between 18s and 33s there
are three distinct, short-time brake applications and at
about 42s the stop brake application is induced. The low
pressing force in combination with the high slip indicates a
low adhesion level, what is confirmed by the lower diagram.
In this lower diagram the measured and estimated adhe-
sion is shown together with the estimated brake friction.
Both adhesion profiles almost identically depict the three
brakings at the beginning and the low adhesion phase
between 42s and 110s with values of only 0.02-0.05. The
high-frequency oscillations from about 110s until the end
are good approximated as well. The only deviation occurs
in the first few tenths of a second, when the initialization
errors of the estimator are corrected. The friction profile
illustrated by the solid red line shows the typical increasing
behavior from 110s on that correlates with the decreasing
wheelset velocity. Since it is not possible to measure the
actual value of µB at the test rig, the friction results
could only be qualitatively verified by brake experts on
an experience base. Thus, one of the remaining tasks is
to confirm the friction estimation in dynamometer tests.
We skip the estimations of ωW and vx, since there is no
remarkable difference between the measured and estimated
data, what is expected due to the use as estimator inputs.

The input and measurement data for the estimator in
the sanding scenario are shown in the upper plot of
Fig. 5. The initial velocity is with 200km/h higher than
in the first scenario with 120km/h. Furthermore, the WSP
application is reduced in contrast to the first scenario what
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Fig. 4. Top: System input and measurement data provided to the observer; bottom: Estimation results together with
measured adhesion in the wheel-slide protection scenario

Fig. 5. Top: System input and measurement data provided
to the observer; bottom: Estimation results together
with measured adhesion in the sanding scenario

results in a lower frequency of the pressing force changes.
This difference is founded in the sanding application what
leads to an increased adhesion level, see the lower part of
Fig. 5. Before discussing the adhesion results the focus is
on the brake friction estimation. The larger oscillations of
µB occur due to the aforementioned lower frequency of F⊥.
This means the slow dynamic of µB is in this scenario able

to follow the different pressing force levels. This aspect and
the increasing behavior of the brake friction from 55s until
the end verify the plausibility of the friction estimation.

The wheel-rail adhesion shows at the beginning the same
initialization behavior like in Fig. 4. However, the probably
most relevant part is between 4s and 11s, when firstly
the adhesion drops from its maximum at 0.1 to 0.05 and
then the pressing force is released so that µW jumps
back to 0.1 before it falls down to 0. This is exactly
the critical behavior discussed in the previous section
along with Fig. 3. Analog to Fig. 3 the estimated and
measured adhesion results are illustrated in Fig. 6 in
an adhesion-over-slip diagram. It can be seen that over
the entire slip range the correlation between the two
adhesion profiles is high and the decreasing behavior
of the adhesion coefficient is well imitated. The lower
plot shows the estimation error between measured and
estimated adhesion coefficients and confirms the good
performance of the estimator for each slip level. The only
peak higher than 0.02 occurs during wheel-slide protection.
This deviation is identified by the observer within 0.1s,
what is faster than the usual wheel-slide protection control
with a response time of about 0.2s. In the end, the
robustness and reliability of the presented estimator set-up
are verified by two different test cases and in both of them
the results of the adhesion estimation are highly accurate.

5. CONCLUSIONS AND OUTLOOK

The previous sections describe in detail the design process
of an estimator for the adhesion and friction dynamics
of a railway vehicle. After the description of a nonlinear
estimator model its observability is analyzed and the
estimator set-up is discussed. The presented test rig results
reveal a reliable and accurate performance of the estimator

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8584



Fig. 6. Top: Comparison of adhesion-over-slip results in
a sanding scenario; bottom: Absolute error between
estimated and measured adhesion

in challenging scenarios with rough operating conditions.
In the end, this work highlights the benefits of mechatronic
components in railway systems and especially the potential
of an estimator in terms of an advanced longitudinal
dynamics control.

To bring this concept one step further towards the applica-
tion in modern trains, there are some tasks to be tackled.
First of all, the estimator has to be implemented on a real-
time control unit what we will go about in the context of
the upcoming test rig construction at our institute. Sec-
ondly, the new estimator set-up has to be closely examined
during the operation of a train on a real track. Finally, the
fields of application have to be demonstrated that allow for
the exploitation of the adhesion and friction estimations.
For the sake of an increased rail network capacity the adhe-
sion estimation might be integrated into an improved and
extended wheel-slide protection and anti-skid system, so
that the required train distances can be reduced. Since this
use case accounts for an expensive homologation process,
another idea that might be easier to realize is to define
a monitoring strategy for brake and traction components.
The advantage of such a system is that there is no need
for a new homologation process, since there is no direct
feedback on the vehicle dynamic behavior.
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