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Abstract: Germany generated 54.5% of electricity from renewable energy in March 2019,
according to the data collected by the Fraunhofer Institute for Solar Energy Systems. Forecasting
power generation and consumption play an essential role in establishing a regional smart energy
market. Numerous researches contributed to the field of power forecasting using machine learning
and deep learning technologies. However, developing and perfecting energy markets lead to an
unavoidable problem of adjusting the architectures of neural networks to adapt to new situations,
e.g., new consumers or producers in the power grid. Another critical challenge is to learn new
knowledge from the sequentially collected measurements efficiently and how to integrate the
new information into the current neural network model. When retrained for a new task with a
regular training process, neural network models could perform poorly on the previously learned
tasks, which is referred to as the catastrophic forgetting problem. In this article, we design
two real-world continuous learning scenarios for those challenges. The scenarios are based on
the historical power data, which are obtained from a regional power grid in Germany. The
results show that well-known continuous learning algorithms can be used to improve power
forecasts with a sequential data stream in such scenarios. We believe that the work is the first
step towards establishing an adaptively updating forecast system to assist the highly dynamic
intelligent energy markets.

Keywords: Smart grids; Intelligent control of power systems; Modeling and simulation of
power systems

1. INTRODUCTION

Germany, as well as other countries, integrates more and
more renewable energy sources in their energy mix. Such
energy sources are more decentralized than common power
plants. This decentralization allows for more regional en-
ergy usage. Regional energy usage can put more strain
on the local power grids, hence causing faulty power grid
states. A mechanism to overcome these problems is re-
gional energy markets, as introduced in Alanne and Saari
[2006], which means the regional re-allocation of personal
responsibility, ownership, expertise, and decision in rela-
tion to energy supply. In these regional energy markets,
power consumption and generation forecasts are used to
obtain information about the future state of the power
grid. With knowledge about emerging problems, regional
energy markets can employ market mechanisms to control
the power grid before problems occur. Hence, forecasting
power generation and consumption is a crucial step in
establishing intelligent regional energy markets.

Deep learning refers to a method of machine learning,
which applies artificial neural networks (ANNs) with sev-
eral hidden layers between the input layer and output
layer, thus forming an extensive internal structure, see
in LeCun et al. [2015]. Deep learning structures, such
as deep neural network (DNN), auto-encoder (AE), and
recurrent neural networks (RNNs), have been proven to

be good at forecasting power consumption and generation,
see Gensler et al. [2017], Henze et al. [2020], and Schreiber
et al. [2019]. Current applications often use models that
are only trained on historical data of, e.g., a wind power
plant, a specific household, or a small company. Hence,
they learn behavior that might already be outdated. Even
updates to the training data sets often range several years
back, are collected every year for the upcoming billing
cycle, or might not even be available anymore due to
data protection laws. Another driver of regional energy
markets is smart meters. These smart meters collect infor-
mation about power consumption or generation of, e.g.,
a household or a solar plant. The data is collected from
a remote location over the internet. The collected data
contains more accurate and up-to-date information about
the power grid. The continuous flow of the smart meter
data, in combination with continuous learning paradigms
for neural networks, can overcome the previously stated
problems of outdated training data of new consumers,
producers, or varying grid configurations. Well-known con-
tinuous learning algorithms, such as Learning without
Forgetting (LWF), Elastic Weight Consolidation (EWC),
Online-EWC, or Synaptic Intelligence (SI), are ideal for
training neural networks with a continuous and changing
data stream. By applying these algorithms, the neural
network can adapt to new situations that are only sparsely
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or not even at all available in the historical non-data-
stream based training data sets.

In this work, we design two scenarios in regional smart
energy markets where catastrophic forgetting can occur
in real-world applications. Catastrophic forgetting hap-
pens if a neural network is trained with new information.
In such cases, neural networks can abruptly forget pre-
viously learned information, as explained by McCloskey
and Cohen [1989]. In the first scenario, the Task-Domain
Incremental (Task-DI) scenario, due to developing and
perfecting the energy market, new and previously unmea-
sured energy units (consumers or generators) have to be
integrated into the energy market as new forecasting tasks.
These tasks require to adjust the architecture and the
weights of the current neural network model to the new
forecast targets. The second scenario, the Data-Domain
Incremental (Data-DI) scenario, helps to improve already
trained models to adapt to new situations, previously not
occurring in the data. In the Data-DI scenario, changes
only occur in the distributions of the data and not in
the architecture of the power grid. In such a case, the
model architecture is maintained, but the model input and
output distributions are changing.

Based on these scenarios, we design the corresponding
experiments with continuous learning algorithms and show
how we can improve the ability of the neural network
models to learn and solve sequential tasks in both sce-
narios. With the help of our methods, the updated neural
network models can integrate new data more adaptively,
seamlessly, and flexibly into the continuously changing
and developing world of smart grids. Hence, it allows for
regional energy markets to continuously learn and adapt
to new power plants and integrate data from new smart
meters more seamlessly. The experiments are run on data
from a small power grid, with the goal in mind to allow
for local redistribution of energy. The findings of this
article can be applied to any level of the power grid, where
catastrophic forgetting can occur.

The main contributions of this article are briefly summa-
rized as follows:

• We point out two continuous learning scenarios, Task-
DI and Data-DI, in the context of smart energy
markets.
• We review some popular continuous learning ap-

proaches (LWF, EWC, Online-EWC, and SI), and
implement them in the two scenarios based on a real-
world power dataset.
• We compare their performance with baseline exper-

iments evaluated on the average MSE, the training
time, and the forgetting ratio.

The remainder of this article starts with a literature review
in Section 2 and gives an overview of previous work in
this area, with a focus on smart meter applications of
continuous learning in smart grids. Afterward, in Section 3
we introduce several continuous learning algorithms. The
algorithm introduction is followed by a presentation of
the continual learning scenarios we address in our work
in Section 4. In Section 5 we describe our dataset and
how we set up our experiments. The experimental results
with different continuous learning approaches follow in
Section 6. The article closes by providing a conclusion of

our findings in Section 7, giving implications for future
application of continuous learning in the field of smart
grids and regional energy markets.

2. LITERATURE REVIEW

In this section, we review relevant literature on artificial
neural networks, smart grids, and continuous learning,
setting the context of our work compared to other research
in the field.

The review by Raza and Khosravi [2015] gives a good
overview of the state of load demand forecasting. They
discuss artificial neural networks with a focus on integra-
tion into smart grids, and strategies to improve the whole
data mining process that leads to a load demand forecast.
According to the authors, new and improved learning
paradigms and training algorithms have to be created to
deal with the structure and availability of data in smart
grids.

Ziekow et al. [2013] highlights the importance of using
smart meter data in household load forecasting to obtain
disaggregated load data over high time resolutions. Those
data allowed them to improve demand forecasting. With
their experiments, they have identified that additional in-
home sensors are more useful to forecast demand than
higher time resolutions.

In Singh and Yassine [2018], a database is used to maintain
patterns of smart meter data to identify appliance usage
of households. The patterns are mined every 24 hours
from smart meter data using frequent pattern mining and
clustering algorithms.

In Cárdenas et al. [2012], a modeling approach is proposed,
which helps to model energy consumption in intelligent
energy management systems. The authors use an Adaptive
Network Fuzzy Interference System (ANFIS) according
to Jang [1993] and a five-step modeling approach to
continuously update their machine learning model. The
five steps are data selection, data preprocessing, ANFIS
configuration, training, and model update. A new model
replaces the current model if the new model is better than
a reference model, e.g., the currently used one. Newly
arriving data from measurement infrastructure is stored
in a database until a new training cycle starts.

Huang and Liu [2013] shows another approach to model
residential energy use. They employ single critic neural
networks with a continuous self-learning approach. Their
approach mainly uses adaptive dynamic programming and
multi-layer perceptrons to schedule battery usage based on
the modeled residential load.

Another approach to continuous learning is presented
in Bernecker et al. [2014]. The authors use sky images
to predict short term cloud movements. Their model
uses a Kalman filter to integrate previous forecasts of
cloud movements into the current forecast. Therefore, the
authors are able to forecast cloud movements in sub 3
minutes intervals and up to 10-minute intervals.

In Vrablecová et al. [2018], the authors analyze different
approaches for online load forecasting in smart grids
to their approach, which uses an online support vector
regression. Furthermore, they highlight the problem of
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batch learning methods, which often fail to learn from a
continuous flow of data.

Other approaches to continuous learning in the energy
domain include Peng et al. [1990] or Haupt and Kosovic
[2015]. Peng et al. [1990] used very simple retraining after
one day of data collection. In Haupt and Kosovic [2015]
also a continuous retraining approach is chosen to update
their forecasting models.

Parisi et al. [2019] provides a more general view on continu-
ous learning, with a focus on neural networks. The authors
summarize the challenges for artificial neural networks and
compare approaches to alleviate these challenges. Differ-
ent learning paradigms, such as lifelong learning, transfer
learning, or multisensory learning, are discussed.

Another more general approach to continuous learn-
ing, called incremental learning is discussed in Gepperth
and Hammer [2016]. They introduce incremental learning
methods and several challenges that occur during incre-
mental learning. They end their overview by providing
several general application fields, e.g., big data, robotics,
or anomaly detection.

Our work tries to use paradigms mentioned in Parisi
et al. [2019] to overcome the problem of catastrophic
forgetting described by McCloskey and Cohen [1989], e.g.,
due to complete retraining of the neural network with the
data. To do this, we design the two different scenarios,
where either the available data change or the number of
forecasting targets change. With the applied algorithms,
we aim to show that no complete retraining of the neural
network models is needed but that the neural networks
can be adapted to newly available data without losing the
information of previous training.

3. ALGORITHMS

Various continuous learning algorithms, especially for the
deep neural network architectures, were proposed in the
past years. However, currently, there are no common ter-
minology and clear objectives in the research community.
Maltoni and Lomonaco [2019] described a three-way fuzzy
categorization of the most common continuous learning
strategies:

• architectrual strategies,
• regularization strategies, and
• rehearsal strategies.

In this article, we focus on the regularization strategies, in
which the loss function is extended with loss terms of the
MSE for the current task and the weighted regularization
loss for previous tasks. Four algorithms are compared in
the experiments for the two scenarios:

Elastic Weight Consolidation (EWC): EWC was
proposed by Kirkpatrick et al. [2017]. The main idea is
to control forgetting by penalizing moving weights which
are important for previous tasks. The total loss function
in EWC is:

Lewc(Θ) = Lmse
(
y(Θ)K − ŷK

)
+
∑K−1
k=1

(∑Nparams

i=1
λ
2F

k
ii

(
Θi − Θ̂

(k)
i

)2
)
, (1)

where K−1 is the number of previous tasks and the hyper-
parameter λ

2 is the regularization strength. y(Θ)K denotes

the forecast of the current task K and the ŷK represent
the true measurement. Θi is the ith parameter optimized

after training on one batch of current task K. Θ̂
(k)
i is the

ith parameter after training on the kth previous task. The

ith diagonal element of a Fisher information matrix F
(k)
ii

can be calculated as the variance of
∂Lmse(y(Θ)k−ŷk)

∂Θi
over

all training samples of kth task .

Online-EWC: Online-EWC is a variant of EWC that
was proposed by Schwarz et al. [2018]. It overcomes the
disadvantage of EWC in which the number of quadratic
terms in regularization terms grows linearly with the
number of tasks. The total loss function of Online-EWC
is given by:

Lo−ewc(Θ) = Lmse
(
y(Θ)K − ŷK

)
+ λ

2

∑Nparams

i=1 F̃
(K−1)
ii

(
Θi − Θ̂

(K−1)
i

)2

, (2)

where F̃
(K)
ii = γF̃

(K−1)
ii + F

(K)
ii , with F̃

(1)
ii = F

(1)
ii . The

meanings of the other symbols are the same as described
above. The hyperparameter γ ≤ 1 governs a gradual decay
of each previous task’s contribution. If γ < 1, there is an
interesting side effect, the effects of the previous tasks will
be explicitly forgotten in a graceful and controlled manner.
It could be useful if the learning has not converged on an
older task. In our work, the γ is set to 1, which denotes
the effects of all previous tasks contribute equally to learn
newer tasks.

Compared to EWC, the storage of F and Θ̂ requires 2 ×
Nparams values, where Nparams is the number of model
parameters.

Synaptic Intelligence (SI): SI was proposed by Zenke
et al. [2017] to calculate the importance of parameters on-
line during training. Compared to EWC, the computa-
tional and storing overhead of SI is lower. The loss function
of SI is given as follows:

Lsi(Θ) = Lmse
(
y(Θ)K − ŷK

)
+ c

∑Nparams

i=1 ΩK−1
i

(
Θi − Θ̂

(K−1)
i

)2

, (3)

where the regularization strength c is a hyperparameter,
which is typically set equal to or smaller than 1 to
correspond to a weighting of old and new memories. The
ΩK−1
i estimates the importance of the ith parameter for

the first K − 1 tasks:

ΩK−1
i =

∑K−1
k=1

ωk
i(

∆
(k)
i

)2
+ξ
, (4)

with ∆
(k)
i = Θi

[
N

(k)
iters

]
− Θi

[
0(k)

]
, where Θi

[
0(k)

]
indi-

cates the initialized value of parameter i before training
on task k starts. The importance of a parameter Θi for a
specific task depends on two quantities:

(1) ω
(k)
i denotes how much an individual parameter con-

tributed to a drop in the loss, and

(2) ∆
(k)
i denotes how far it moved.

ωki can be further interpreted as the per-parameter con-
tribution to changes in the total loss for ith parameter in
every new task k. ξ is a dampening term and usually set
to 0.1.
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ω
(k)
i =

∑Niters

t=1

(
Θi

[
t(k)
]
−Θi

[
(t− 1)(k)

]) −∂Ltotal[t
(k)]

∂Θi
, (5)

with Niters being the total number of iterations per

task. The ω
(k)
i are updated continuously during training,

whereas the cumulative importance measures, ΩK−1
i , and

the reference weights, Θ̂K−1
i , are only updated at the end

of each task.

Learning Without Forgetting (LWF): This is a regu-
larization approach proposed by Li and Hoiem [2017]. The
input data of the current task is used not only to train
the neural network for solving the current task but also
to replay the forecasts from the outputs of the previous
tasks. The original loss function declared by Li and Hoiem
[2017] is intended to be used for classification problems:

Llwf (Θ) = (1− λ)Lcross
(
y(Θ)K − ŷK

)
+ λ

K−1

∑K−1
k=1 Lkdl

(
y(Θ)k − ŷ(Θold)

k
)
. (6)

The first term Lcross
(
y(Θ)K − ŷK

)
is a regular cross-

entropy loss function to adjust the model to the current
task K. The second term Lkdl

(
y(Θ)k − ŷ(Θold)

k
)

is a
Knowledge Distillation Loss proposed by Hinton et al.
[2015]. During learning the current task K, before starting
training one batch, the batch is used to generate forecasts
from the previous K − 1 outputs. Each output is symbol-
ized as y(Θold)

k (also called soft target). The range of k is
from 1 to K − 1, the same below. After training the batch
in current task K, the forecasts from the previous K − 1
outputs are generated again on the batch, and symbolized
as y(Θ)k. The Lkdl aims to calculate the loss between
y(Θ)k and y(Θold)

k. Minimizing the Lkdl attempts to
preserve the stability of outputs on old tasks. Li and Hoiem
[2017] mentions that Knowledge Distillation Loss can be
replaced by other reasonable losses.

In our work, we focus on solving regression problems.
Thus, we replace the cross-entropy loss and the distillation
loss with Mean-Square-Loss (MSE). Hence, the LWF total
loss function is implemented as follows:

Llwf (Θ) = (1− λ)Lmse
(
y (Θ)

K − ŷK
)

+ λ
K−1

∑K−1
k=1 Lmse

(
y (Θ)

k − ŷ (Θold)
k
)
. (7)

Baseline: Additionally, there will be a set of baseline
experiments, in which the models are trained on all tasks
consecutively. The baseline experiments will be using fine-
tuning only in a general supervised-learning setting. It
means the model, which is trained on the previous K − 1
tasks, will be directly trained on the current K task. The
loss function of the baseline experiments is:

Lbaseline(Θ) = Lmse
(
y (Θ)

K − ŷK
)
. (8)

4. CONTINUAL LEARNING SCENARIOS

We consider models that can learn several tasks sequen-
tially and perform well on previous and current tasks
without storing and recalling the observed data. In van de
Ven and Tolias [2018], different distinct scenarios are de-
signed to quickly compare the performances of numerous
methods for alleviating catastrophic forgetting. Two dis-
tinct scenarios for continual learning occur in real-world
applications, i.e., task-domain and data-domain incremen-
tal scenarios. These two different scenarios help to make

comparisons among different algorithms easier and more
interpretable, by looking at two different continuous learn-
ing paradigms.

In the first scenario, which we refer to as task-domain in-
cremental (Task-DI), new energy generators or consumers
will join the forecasting list, thus adding a new forecast
task, i.e., the neural network gets extended. The multi-
output neural network model retains its current network
structure to predict the current targets, and the new out-
put units are added to the model to account for the new
targets. In a real-world application, the number of devices
will increase as the energy market extends. In this context,
we gradually expand the structure of the neural network
to increase the performance of the old and new tasks. The
decremental case is not considered in this work. However,
it can be handled similarly, for example, by deactivating
the outputs where power units need to be removed.

In the second scenario, which we refer to as data-domain
incremental (Data-DI), the number of the targets is fixed,
and only the distribution of the data is changing. The
neural network model does not have to adapt the archi-
tecture. Instead, the model is required to incrementally
learn new knowledge from a continuous input data stream
by adjusting to the change in the data distribution of
particular forecasting tasks. In this context, the neural
network aims to continuously learn to forecast unexpected
and unexperienced relationships between weather features
and energy generation or consumption without reusing
historical data. Such scenarios occur if the residents of
a household change, or a business change from being a
restaurant to being a supermarket.

5. EXPERIMENT

This section will go into detail about our performed
experiments, detailing our data, experiment parameters,
and experimental results.

5.1 Data

All experiments in this article are conducted on a dataset
that consists of one-year power information for a regional
power grid in central Germany. The dataset includes the
following information:

• numerical weather prediction (NWP) data ,
• power data (generation and consumption).

The raw NWP dataset contains the historic regional NWP
data for one year in a six-hour temporal resolution. 27
weather features are available at each time step and the
corresponding 180-hour forecast values starting from the
measurement time point in a 3-hour resolution. Through
shifting and interpolating, we obtain NWP data in a 15-
minute resolution, which is the same temporal resolution
as of the power data. The data is normalized between 0
and 1 using min-max normalization.

The power generation of 10 renewable energy generators
and the power consumption of 10 renewable local con-
sumer plants for one year in a 15-minute resolution are
selected from the raw power data set as the targets for load
regression forecasts. The 10 renewable energy generators
consist of 3 wind parks, 6 photovoltaic generators, and 1
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Table 1. Architecture parameters of the
auto-encoder and the multi-layer perceptron.
Dropout layers are used in the auto-encoder
(from Encoder 1 to Encoder 4) with a dropout
rate 0.1 and in multi-layer perceptron (from
Layer 1 to Layer 3) with a dropout rate 0.15.

Auto Encoder

Layer Size Activation

Input 1× 27 None

Encoder 1 27× 19 Leaky ReLu

Encoder 2 19× 15 Leaky ReLu

Encoder 3 15× 12 Leaky ReLu

Encoder 4 12× 8 Leaky ReLu

Decoder 1 8× 12 Leaky ReLu

Decoder 2 12× 15 Leaky ReLu

Decoder 3 15× 19 Leaky ReLu

Output 19× 27 None

Forecasting layer

Layer Size Activation

Input 1× 18 None

Layer 1 18× 50 ReLu

Layer 2 50× 50 ReLu

Layer 3 (Output) 50× 20 None

Table 2. Hyperparameters for the training and
continuous learning algorithms in the experi-

ments.

Training

Batch Size Iteration Optimzier Learning Rate

64 2500 Adam 0.001

LWF SI

Target Loss Parameter Value

Previous MSE c 0.1

Current MSE ξ 0.1

EWC Online-EWC

Parameter Value Parameter Value

λ 1000 λ 1000

sample size 5000 sample size 5000

γ 1.0

combined heat and power plant. The produced power of
each generator is normalized using the rated capacity of
the corresponding facility. The power consumption mea-
surements are normalized between 0 and 1 using min-max
normalization.

5.2 Method

The same neural network structure and pre-processing
methods are used for comparing the performance among
the different algorithms. A multi-layer auto-encoder is
used to reduce the dimensionality of the NWP data. An
auto-encoder (AE) is a multi-layer symmetrical neural
network with a small bottleneck layer at the center. The
high-dimensional input features are compressed in the first
part of the AE, the encoder, and can be reconstructed
with the second part of the AE, the decoder. More details
of how we applied the auto-encoders can be found in
Henze et al. [2020]. An auto-encoder encodes the NWP
data at each time step with a 4-layer encoder using a
LeakyReLU with a slope parameter of 0.3 in all hidden
layers. There is a dropout layer with a dropout rate of
0.15 between a pair of encoder layers to avoid over-fitting.

Afterward, the encoded features are concatenated with 5
temporal features, i.e., month of the year, day of the year,
week of the year, day of the week, and hour of the day.
The temporal features are normalized between −1 and 1
using sine/cosine coding, resulting in 10 encoded temporal
features.

In the Task-DI scenario, we use a model with multiple
outputs to run all experiments. Every energy generator
or consumer corresponds to an output unit, which is
active only when the respective task is under consideration
during training, either the current task or the replayed task
in LWF experiments.

In the Data-DI scenario, the architecture of the model
is similar to the model in the Task-DI scenario. Multiple
output units are corresponding to each energy generator
or consumer. The one-year dataset is split into n sections
with the same number of samples. n sections, namely n
tasks, share the same outputs.

The neural network parameters, training parameters, and
the parameters of the continuous learning algorithms are
listed in Table 1 and Table 2. The main focus of this
article is on comparing the performance of the different
continuous learning algorithms. Therefore, the neural net-
work parameters are selected empirically and kept the
same in all experiments. More details about the parameter
selections can be found in our previous work, Henze et al.
[2020], and Gensler et al. [2017]. The reduced dimension
of the NWP data is 8. The encoded NWP is concatenated
with 10 encoded temporal features to form the input of
the forecasting layer.

6. RESULTS

The 10 energy generators and 10 energy consumers are
the targets. In the Task-DI scenario, 20 targets are seen
as training tasks. In the Data-DI scenario, the dataset is
split into 4 sections to create 4 tasks that are trained
consecutively. A task is a section including 3 months of
historical data for 20 targets. In both scenarios, each task
is evaluated on test datasets twice. The first time is after
training the current task. The evaluation is based only on
the test dataset of the current task and named During in
the tables below, which shows how well it learns from the
current task. The second is after training all tasks. The
evaluation is conducted on the test dataset for all tasks
and is named After in the tables below. Additionally, the
tables show how much information for each experienced
task the model retains.

6.1 Fixed task number

Each experiment is run 20 times with different random
seeds and evaluated using MSE. The average test errors
are listed in Table 3. Compared to the baseline experi-
ment, the test errors of the continuous learning algorithms
after training all tasks are lower than of the baseline
experiments. It indicates that the four continuous learning
algorithms ease the forgetting of previous tasks in both
scenarios. It should be noted that the test errors of Online-
EWC in both scenarios are the lowest. EWC is outper-
formed only by Online-EWC. More importantly, test errors
of continuous learning methods after training all tasks are
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Table 3. Average MSE loss and standard devi-
ation on the test datasets over all tasks in two

scenarios.

Algorithm
Task-DI

During After

Baseline 0.01923 (±0.01891) 0.04466 (±0.04215)

LWF 0.01836 (±0.01647) 0.03160 (±0.02278)

EWC 0.02100 (±0.01688) 0.02137 (±0.01704)

O-EWC 0.02052 (±0.01664) 0.02066 (±0.01655)

SI 0.01828 (±0.01694) 0.02446 (±0.01909)

Algorithm
Data-DI

During After

Baseline 0.02712 (±0.01095) 0.02964 (±0.01656)

LWF 0.02982 (±0.00988) 0.02479 (±0.00538)

EWC 0.02513 (±0.01175) 0.02053 (±0.00382)

O-EWC 0.02513 (±0.01176) 0.02049 (±0.00377)

SI 0.02591 (±0.01144) 0.02555 (±0.01027)
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Fig. 1. Comparsion of training time and the average MSE
on test datasets over 20 targets among algorithms
in the task-domain scenario. The dots indicate test
errors after training all tasks at individual runs.
Squares indicate the average test error for each task
during training, and stars indicate the average test
error for each task after training all tasks.

lower than during training in Data-DI scenarios, which
denotes the model performs well on new tasks without
forgetting the previous tasks, and at the same time, the
model obtains new knowledge from the new tasks, further
optimizing its weights. That is, the forecast performance is
improved on all seen tasks through the proposed methods
in this case. LWF outperforms SI in the Data-DI scenario
but is outperformed by SI in the Task-DI scenario.

In a real-world application, not only the forecast accuracy
but also the computational efficiency of algorithms should
be considered. A comparison of training times of all
methods in both scenarios are shown in Figure 1 and 2
(also see the articles of van de Ven and Tolias [2018] and
Farquhar and Gal [2018]). In the figures, dots indicate
individual runs. The squares indicate the average test error
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Fig. 2. Similiar to Figure 1, except in the Data-DI scenario,
the dataset is split into 4 sections. The dots indicate
test errors after training all tasks at individual runs.
Squares indicate the average test error for each task
during training, and stars indicate the average test
error for each task after training all tasks.

Table 4. An example of the difference between
average test error and forgetting ratio.

During After

Expriment 1

Task 1 0.45 0.46
Task 2 0.01 0.02

Average test error 0.24
Forgetting ratio 0.261

Expriment 2

Task 1 0.45 0.48
Task 2 0.01 0.03
Task 3 0.001 0.003

Average test error 0.173
Forgetting ratio 1.356

for each task during training, and the stars indicate the
average test error for each task after training all tasks. We
observe that, compared to EWC, Online-EWC does speed
up training in both scenarios. Finally, from the aspect of
computational overhead, although LWF fails in the Task-
DI scenario. In the Data-DI scenario, it outperforms the
other algorithms.

6.2 Increasing task number

Moreover, we also explore the performance of the algo-
rithms as the number of tasks increases, which is hard
to be evaluated using the average test error due to the
diverse tasks. Let us take the problem shown in Table 4
as an example. In the example, the tasks are tested during
training one task and after training all tasks separately, as
reported in Table 3. The forgetting on Task 1 and Task 2 is
increasing as the number of tasks increases. However, the
average test error is dropping, which makes us mistakingly
think that the forgetting problem vanishes. To make up for
this shortcoming, the forgetting ratio, Ratiof , is proposed
with the equation:
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Fig. 3. Performance of algorithms with increasing number
of tasks by 2 in each step in the Task-DI scenario
(Evaluated for forgetting ratio).
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Fig. 4. Same as the Figure 3, except increasing the number
of tasks by 1 in the Data-DI scenario.

Ratiof = 1
K

∑K
k=1

max(0, Lk
after−L

k
during)

Lk
during

, (9)

where K is the number of tasks and max (x1, x2) returns
the larger value of either x1 or x2. The main idea behind
the forgetting ratio is to calculate the percentage of the
incremental test error after training all tasks over the test
error during training.

From Figures 3 and 4, it can be seen that forgetting is more
problematic with increasing tasks in both scenarios. EWC
and Online-EWC keep the model performance more stable,
as they have a lower forgetting ratio. SI outperforms LWF
in the Task-DI scenario.

7. CONCLUSION

We wanted to show how catastrophic forgetting can in-
fluence forecasting results in smart grids. To do so we
presented two different scenarios where catastrophic for-
getting can happen, task domain incremental, and data
domain incremental, and showed several methods to over-
come these problems. In our experiments, the EWC and
Online-EWC algorithm kept a low forgetting ratio, yet
depending on the scenario increased the training time
compared to other algorithms.

Our work can be seen as a first step to address the ever
occuring changes in smart grids due to growing cities, e.g.,
new houses, or businesses getting introduced to the smart
grid, or ownership changes of already occupied buildings
ith subsequent behavioral changes. Such changes need to
be reflected in the forecasting algorithms, as they are
the major driving force behind a functioning intelligent
regional energy market. We made a first step to address
such changes by providing methods and scenarios which
helps to further study catastrophic forgetting in a small
controlled environment. Hence, this work could be seen as
the starting point for designing a benchmark scenario in
the field.

We plan to propose a more general framework with more
real-world requirements, which helps others to benchmark
their algorithms easily. This allows to establish continuous
learning in power forecasting for regional energy markets,
enabling forecasting algorithms to adapt to new situations.
Furthermore, we need to address decremental scenarios,
as we currently only handle addition of new forecasting
tasks. Deletion of forecasting task can occur, e.g., due to
demolition of buildings, or non-stationary power plants.
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