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Abstract:
Assessment of non-functional reliability and safety requirements in the early development phases
helps to prevent conceptually wrong decisions and, as a consequence, significantly reduces overall
development costs. The application of model-based system analysis techniques demonstrates
promising results for complex avionics systems, especially software-intensive Unmanned Aerial
Vehicles (UAV). Such systems are commonly designed to accomplish a specific mission consisting
of multiple mission phases. The concept of phased mission systems enables the specification of
individual requirements for different phases. For instance, the reliability requirements or system
specifications are different for UAV flights over an agricultural field and a highway. Therefore,
modern analytical methods have to distinguish between different mission phases and enable
the analysis of phased missions. In this paper, we propose a new model-based method that
allows system engineers to assess a conceptional design specification of the UAV concerning the
fulfillment of phase-specific requirements. The proposed approach exploits modern probabilistic
model checking techniques for the quantification of several dependability metrics. The method
supports the systematic analysis of system specifications that contain both structural and
behavioral system properties. A case study demonstrates the feasibility of the proposed method.

Keywords: Design methodologies, Flying robots, Error probability, Markov models, Reliability
analysis, Safety analysis, Stochastic modeling, System analysis, Systems engineering

1. INTRODUCTION

UAVs are getting more complex with the increase in the
number of various interacting components. The ascending
complexity of such systems makes consistent development
and communication between individual engineering disci-
plines more and more difficult. The Model-Based Systems
Engineering (MBSE) concept implies that models are used
as an integral part of the technical baseline [Bergenthal
(2011)]. The Systems Modeling Language (SysML) is a
powerful modeling paradigm that also supports the re-
quirements engineering for a broad range of complex tech-
nical systems [OMG (2017)]. SysML is commonly used by
engineers of various disciplines and offers the possibility to
extend the semantics of the language with profiles.

UAV system failures can cause catastrophic consequences.
Hence, UAVs are commonly treated as safety-critical sys-
tems and have to satisfy high dependability requirements.
They shall be developed according to safety standards like
the IEC 61508 [IEC (2010)], which concerns all systems
based on electric, electronics, and programmable electron-
ics, or the SAE ARP 4754 [SAE (2010)] and 4761 [SAE
(1996)] for civil aircraft and systems.

These standards recommend reliability evaluation meth-
ods like the Fault Tree Analysis (FTA) [Vesely et al.
(1981)] or Failure Mode and Effects Analysis (FMEA)
[Stamatis (2003)]. The integration of safety analysis into
MBSE is called Model-Based Safety Analysis (MBSA)
[Mhenni et al. (2016)]. However, the mentioned methods
are too simple for practical systems. They cannot model
common dependability patterns, such as spare manage-
ment or functional dependencies between system com-
ponents, and complex dynamic behaviors. Methods like
the Dynamic Fault Trees [Dugan et al. (1992)] partially
support these features. However, they are also limited and
not commonly used in the industry. Discrete-Time Markov
Chain (DTMC) and Probabilistic Model Checking (PMC)
[Baier and Katoen (2008)] methods are more flexible in
general. We will focus on model-based DTMC techniques
to assess the deterministic and probabilistic dependability
requirements of UAVs. Using PMC provides the user with
in-depth analysis capabilities.

The so-called Phased-Mission Systems (PMS) accom-
plish a specified task during multiple, consecutive, non-
overlapping phases of operation [Alam and Al-Saggaf
(1986)]. Thus, the system configuration, requirements,
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and/ or failure behavior are phase-specific [Xing and
Dugan (2002)].

In this paper, we propose a new probabilistic dependability
assessment approach that supports the systematic analysis
of SysML system specification against non-functional de-
pendability requirements of UAV-PMS. The remainder of
this paper is structured as follows. Section 2 discusses the
state of the art MBSA approaches and the dependability
assessment of PMS. Section 3 introduces our method and
shows a detailed insight into the subareas model-based
requirements engineering, mission-definition, transforma-
tion, and assessment. In Section 4, a case study using our
method is shown to clarify the principle. Finally, Section 5
summarizes the content of the paper.

2. STATE OF THE ART

Methods based on norms and standards: According
to IEC 61508, the safety integrity level verification is a
necessary procedure of the safety life cycle where the
probability of failure on demand must be calculated. Since
the IEC 61508 does not provide detailed information
for the calculation, Guo and Yang (2007) investigate a
method using a reliability block diagram to calculate the
probability of failure on demand of the designed system.
The works of Legendre et al. (2017) and Abdellatif and
Holzapfel (2019) refer to the requirement fulfillment of the
SAE ARP 4754 and 4761. The approach of Mhenni et al.
(2016) studies the two compositional safety techniques
recommended by all three standards mentioned above.
Furthermore, they integrate both safety techniques into
the MBSE using SysML baseline models.

Model-based fault tree analysis: Most of the works
related to the MBSA are focused on the generation of
Fault Trees or the FMEA. In the MBSE domain, multiple
metamodels and languages support the modeling of the
required system architecture, including composition and
internal connections. The best-known representatives are
the Architectural Analysis and Design Language (AADL),
MATLAB/Simulink, Unified Modeling Language (UML),
and SysML. In Joshi et al. (2007), the AADL, in combi-
nation with the Error Model Annex, is used for the gener-
ation of static fault trees, taking into account component
redundancies. Tajarrod and Latif-Shabgahi (2008) present
a methodology for the construction of static and dynamic
fault trees from a MATLAB/Simulink system model. In
Xiang et al. (2011) static fault trees are automatically
derived from the SysML system model to bridge the gap
between reliability and systems engineering. Yakymets
et al. (2013) describes a safety modeling framework for
fault tree generation that leverages features of SysML,
including facilities for semantic connections with formal
verification and FTA tools. The work of Castet et al.
(2018) describes an approach that allows system engineers
to capture failure-related information from a SysML model
to automatically generate the FMECA and FTA and takes
into account high-level mission phases. In Nordmann and
Munk (2018), prominent approaches for the facilitation of
SysML models with component fault trees to support the
FTA are adapted to propose an integration of component
fault trees with SysML Internal Block Diagrams (IBD) as
well as Activity Diagrams (ACT).

SysML + UDP 
[structural Model; annotated BDDs and IBDs] 

DEPM
[Control flow, Data flow, Fault probabilities] 

Analysis results 
[MTTF, Probability (t), ...]

Transformation

Computation

Component Failure Rates 
 (FIDES,NRPD, ERPD,
expert knowledge, …)

Component Update
Frequencies (Datasheet,expert

knowledge, …)

im
pr

ov
em
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ts

Fig. 1. Method workflow including the UAV dependability
profile [adapted from Steurer et al. (2019)].

Model checking: However, UML/ SysML is not solely
used as a basis for the generation of fault trees or FMEA.
Machida et al. (2013) describes the generation of the hier-
archical stochastic model, which is essentially the combina-
tion of state models and combinatorial models. Ghezzi and
Sharifloo (2013) describes how to use probabilistic model
checking techniques and tools to verify the non-functional
properties of different configurations of a software product
line. The product behavior is modeled with UML sequence
diagrams. These diagrams are annotated with execution
probability and energy and transformed into Markov mod-
els, which, in turn, are fed to a probabilistic model checker.
Wang and Cai (2017) combines the probabilistic model
checking and reliability analysis for flight control systems.
The flight control system is described as a continuous-
time Markov chain using the PRISM [Kwiatkowska et al.
(2011)] language that represents the system behavior.
They also provide rules for obtaining temporal logical for-
mulas from reliability requirements to check quantitative
properties using model checking.

Dependability analysis of phased-mission systems:
A UAV mission often consists of several phases, in which
different environmental influences prevail, and different
requirements are set. This fact led to the establishment
of PMS, which also require a dependability assessment.
In Alam and Al-Saggaf (1986), a quantitative reliability
model for a PMS using a Markov process is introduced.
A mission profile table characterizes the whole mission.
Within the mission profile table, a reliability block dia-
gram describes the system logic configuration. The work
of La Band and Andrews (2004) describes the use of FTA
for PMS with non-repairable components. Binary decision
diagrams are employed to quantify the likelihood of failure
in each phase.

UAV-specific model-based dependability analysis:
In our previous work [Steurer et al. (2018)] we introduced:
(i) the new domain-specific SysML UAV Dependability
Profile (UDP) that captures reliability-related properties
of UAV components, and (ii) the transformation algorithm
from profiled SysML models to the formal Dual-graph
Error Propagation Model (DEPM) [Morozov and Janschek
(2014)] for further extensive dependability analysis. The
SysML was chosen because of the extensive modeling
capabilities, inherent extensibility mechanisms (profiles),
available modeling tools, and the XML metadata inter-
change storage and exchange format. We also evaluated
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control flow commands: 
cf=e1 -> 0.5:(cf'=e2) + 0.5:(cf '=e3); 

control flow commands: 
cf=e2 -> 0.1:(cf '=e1) + 0.9:(cf '=e3); 

error propagation commands: 
(true) -> 0.9:(d1'=ok) + 0.1:(d1'=error); 

error propagation commands: 
(d1=ok) -> 0.9:(d2'=ok) + 0.1:(d2'=error); 
(d1!=ok) -> (d2'=error); 

"Failure_d1": d1=error 

"Failure_d2": d2=error 

Fig. 2. Example dual-graph error propagation model.

the applicability of this method during the early develop-
ment phases of an inertial navigation system [Steurer et al.
(2019)]. The UDP method illustrated in Figure 1 allows
adding reliability relevant information (component failure
rates and update frequencies) to a structural model cre-
ated using SysML Block Definition Diagrams (BDD) and
IBD. The component failure rates are taken from guide-
lines such as FIDES [Guide et al. (2009)], ERPD [Denson
et al. (1996)], or NRPD [Denson et al. (1994)]. The update
frequencies of the time-discrete components can be found
in the datasheets. Non-discrete components like motors
are time-discretized to the highest frequency used in the
model. Since adding the failure rates and frequencies is
the user’s task, experience, and expert knowledge can be
integrated. To realize these features we used the UML
and SysML modeling tool Papyrus [Lanusse et al. (2009)].
Afterward, the model, which is available in XML metadata
interchange format, is converted into a DEPM. Once the
DEPM is available, the required dependability metrics can
be evaluated.

Dual-graph Error Propagation Model: The DEPM
captures system control and data flow structures, and
reliability properties of system components and enables
the computation of reliability metrics using underlying
Discrete-Time Markov Chain (DTMC) models. Figure 2
shows a DEPM example. The DEPM combines two di-
rected graph models: a control flow graph and a data
flow graph. The nodes of the graphs represent executable
system elements (rounded rectangles: e1, e2, e3) and data
storages (rectangles with blue borders: d1, d2). Control
flow arcs (black lines) model control flow transitions be-
tween the elements, e.g., after the execution of e1, we will
execute either e2 or e3. Data flow arcs (blue lines) model
data transfer between the elements and data storage.
Elements connected to more than one outgoing control
flow arc contain control flow commands that specify the
triggering logic. Elements connected to data storages via
data flow contain error propagation commands. The error
propagation commands are probabilistic conditions that
specify fault activation and error propagation of the ele-
ments. The reliability metrics are computed for the defined
failures (highlighted in red) using automatically generated
DTMC models. DTMC model states describe the current
control flow state (which element will be executed next)
and the states of all data storage. Technically a DEPM
is transformed into one or several PRISM models for
numerical evaluation with stochastic model checkers like
PRISM or STORM [Dehnert et al. (2017)].

SysML system
requirements

SysML system
architecture

UDP

UAV specific annotation

transformation
transformation

DEPM graph
structure DEPM failures

SysML mission
design

success criterion

assessment

Fig. 3. Overview of the proposed approach.

<<Stereotype>> 
Requirement 

<<Stereotype>> 
UdpProbability 

<<Stereotype>> 
UdpMTTF 

<<Stereotype>> 
UdpNumberOfFailures(t) 

<<Stereotype>> 
UdpProbability(t) 

<<Stereotype>> 
UdpDowntime(t) 

<<Primitive>> 
<<EDataType>> 

Real 

<<Primitive>> 
<<EDataType>> 

String 

+value +stepRange

Fig. 4. Profile diagram with spezialized UDP requirements.

e1

<<UdpProbability>> 
e1_until_p3 

<<UdpProbability>> 
e1 

value=0.2

value=0.2

<<UdpCallBehaviorAction>> 
p3 

<<Satisfy>>

<<Refine>>

Fig. 5. Allocation of the profiled requirements to satisfying
parts and associated mission phases.

Contribution: In this paper, we propose a new proba-
bilistic dependability assessment approach. A SysML sys-
tem specification is analyzed systematically regarding the
non-functional dependability requirements of UAV-PMS.
To assess mission phase varying requirements, we extend
the UDP with the requirement and behavior modeling
by the integration of SysML ACT and Requirement Dia-
grams (REQ). Furthermore, we extend the transformation
method to DEPM, which is also discussed in this paper.
Based on our case study, the development of a quadcopter
PMS, the assessment is exemplified.

3. APPROACH

3.1 Overview

In most cases, UAVs are developed to accomplish specific
missions that consist of individual mission phases. Dif-
ferent functionality and dependability requirements can
be defined for different mission phases. Also, the UAV is
subject to different thermal or mechanical loads during the
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various mission phases. With these information available,
more realistic and trustworthy analysis results are achieved
instead of mediating the requirements and loads through-
out the mission. The structure of the proposed approach
is shown in Figure 3. To apply the proposed approach:

• The requirements to be met shall be known.
• The mission to be accomplished shall be known.
• The system architecture concept shall be known.

As mentioned above, the basic method for the analysis
of system architectures already exists. In this paper, we
extend the UDP to enable the model-based assessment of
phase-specific success criteria.

3.2 SysML model

System requirements: The tool OpenErrorPro [Moro-
zov et al. (2019)] that supports the DEPM methods allows
the user to compute the common reliability metrics Prob-
ability of failure, MTTF, Number of failures, and Down-
time. As shown in Figure 4, the stereotype requirement
is further specialized for the transformation to DEPM
using the UDP. The specialized stereotypes are extended
with the property value, which specifies the maximum
allowed quantity. All time-dependent specializations e.g.
Probability (t) are additionally enhanced with the property
stepRange that is directly usable in DEPM. The proposed
method also requires the formalization of the requirements
engineering using the REQ. An REQ example is shown in
Figure 5. Using specialized UDP stereotypes, recursively
defines DEPM verification.

The SysML provides the refine and the derive relationship
to relate the requirements to defined mission phases. The
refine relationship describes how a model element, or set
of elements, further refines a requirement. It differs from
the derive relationship in that it can exist between a
requirement and any other model element. A requirement
is assessed for all associated phases. In the example, shown
in Figure 5, e1 before p3 is related to p3, which means that
the specified value shall be higher than the computed one
before the start of p3. All requirements related to a phase
are assessed.

The SysML provides the satisfy relationship to relate
requirements to the parts that shall satisfy these require-
ments. It describes how a model element satisfies one or
more requirements specified by the system designer. These
relationships are not formal inherently and can be inter-
preted in different ways. If one part is related to more than
one requirement, this part shall satisfy all requirements. If
one requirement is related to more than one part, all parts
shall satisfy this requirement. The same applies to parts
with a multiplicity higher than one.

Mission design: The SysML offers the activity, state
machine, and sequence diagrams to model system be-
havior. We choose the ACT because the available nodes
can be assigned to the individual mission phases and
related to the defined requirements using the refine re-
lationship. The UDP specializes the CallBehaviorAction
stereotype to the UdpCallBehaviorAction stereotype with
annotated load:Real and time:Real properties. Using the
UDP, mission phase-specific environmental conditions or
system parameters can also be taken into consideration.

Adverse environmental conditions or high system loads,
for example, because of highly dynamic flight maneuvers,
increase the load property, which serves as a coefficient
for the component failure rate specified in the structural
model. The time property specifies the planned time of the
corresponding phase if a deterministic phase length is to be
modeled. Furthermore, the UDP extends the ControlFlow
stereotype to the UdpControlFlow stereotype with an-
notated causativeElement:Property, condition:Condition,
and probability:Real properties. These properties are an-
notated to formalize the modeling of stochastic and con-
ditional stochastic processes for later transformation. Fig-
ure 6 shows a UdpControlFlow that connects the decision
node after a mission phase with a merge node before the
mission phase. If the probability property is defined, the
control flow transition is activated only with this prob-
ability, which results in a stochastic mission phase time.
A causativeElement together with the condition act as a
control flow guard. The causativeElement determines the
part and the condition a possible state of the part. The
control flow transition is activated if the part is in the
defined state, which results in a conditioned stochastic
mission phase time.

System Architecture: In Steurer et al. (2018), we al-
ready described how the architectural properties are mod-
eled using the BDD and IBD. An essential extension,
however, is the use of the boundReference stereotype to
model mission phase-specific system configurations. As
shown in Figure 7, which represents the top-level BDD
of the case study, the boundReference is a property of a
general abstract block and its specializations. The type is
equal to the block of a composite part, but the multiplicity
specifies the quantity of the subpart. The allocation of the
system configuration that shall be active in the specific
phase is carried out by assigning the desired activity to
the operation property of the block, describing the config-
uration.

3.3 Transformation and assessment

As shown in Figure 7, the designed mission is mapped
to a top-level DEPM where each element represents one
phase. The state represents a set of state data. These state
data are the connection to the sub-levels that represent
the system architecture active in this phase, where each
element represents one system component. The load rep-
resents a set of mission phase loads specified in the SysML
model that influences the error propagation commands
of the component. The component error probability is
calculated as described in Steurer et al. (2018) but ad-
ditionally multiplied by the load coefficient depending on
the phase. This extension results in different component
error probabilities in different phases. From the behavior
modeled in SysML, the mission to be executed is derived.
As shown in Figure 6, the transformation follows three
different patterns. A specified SysML mission phase time
property is transformed into repetitions of the DEPM ele-
ment that represents this phase. Using a UdpControlFlow
with specified probability property the pattern is trans-
formed to a DEPM with the corresponding control flow
structure. The probability property influences the control
flow commands of the corresponding element. As described
above, the UdpControlFlow properties causativeElement
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deterministic execution pattern conditioned stochastic execution pattern stochastic execution pattern 

control flow commands: 
cf=mission_phase & sgps=ok ->
0.1:(cf'=end) + 
0.9:cf'=mission_phase);
cf=mission_phase & sgps=error ->
0.001:(cf'=end) +
0.999:(cf'=mission_phase); 

node UDP properties: 
load = 1.5 
time = 30.0 

<<UdpCallBehaviorAction>> 
mission phase 

start

end

mission_phase  x30

start

end

mission_phase

edge UDP properties: 
causativeElement = null 
condition = null 
probability = 0.999 

node UDP properties: 
load = 1.0 
time = 1.0 

<<UdpCallBehaviorAction>> 
mission phase 

<<UdpControlFlow>>

start

end

mission_phase

<<UdpCallBehaviorAction>> 
mission phase 

<<UdpControlFlow>><<UdpControlFlow>>

node UDP properties: 
load = 0.5 
time = 1.0 

edge UDP properties: 
causativeElement = gps 
condition = ok 
probability = 0.9 

edge UDP properties: 
causativeElement = gps 
condition = error 
probability = 0.999 

control flow commands: 
cf=mission_phase ->
0.01:(cf'=end) + 
0.99:(cf'=mission_phase);
 

Fig. 6. Deterministic, stochastic, and conditioned stochastic activity diagram mission patterns and their DEPM
counterpart.

top-level

second level

Mission phase 1 

... 

Mission phase n 

state

Action part 1 

... 

Action part n 

state

load

load

Fig. 7. The resulting structure of the DEPM.

and condition act like a guard. Together with the prob-
ability property, a conditioned stochastic process is the
consequence.

After setting up the DEPM structure, the requirements are
integrated. All UDP-specific requirements are transformed
into failures in DEPM. All state data of each element
are propagated to the top-level to ensure data exchange
between mission phases. That top-level propagation allows
the automatic component state storage between phases,
even if not used in the meantime. A UDP-specific re-
quirement in SysML can be related to one or more parts
and one or more phases. That leads to DEPM failures
belonging to the state data of the element related to
the part and the control flow related to the phase. If we
consider the REQ shown in Figure 5 the resulting DEPM
is shown in Figure 8. The top-level shows three sequential
executed phases. In mission phases one and three, the
same components are used. In phase two, only the e1 is in
use. For simplification, the error propagation commands of
all contained elements correspond to the illustration. The
two requirements are transformed into the DEPM failures

error propagation commands: 
(d1=ok) -> 0.9:(d1'=ok) + 0.1:(d1'=error);
(d1!=ok) -> (d1'=error);
 
 

P(Failure_e1_before_p3) = 0.19 P(Failure_e1) = 0.271

Fig. 8. Nested DEPM with SysML requirements trans-
formed to DEPM failures.

Failure e1 and Failure e1 before p3. Failure e1 is just de-
pending on the state of element e1, Failure e1 before p3
additionally on the outgoing control flow of p2 which
means the probability of this failure before the execution
of p3 is computed. The results are shown at the bottom of
the figure. As expected, the probability of an error, before
p3 is performed, is lower.

4. CASE STUDY

4.1 SysML model

Mission design: The case study mission represents a
realistic delivery mission. The UAV shall take off from a
place outside and land inside a safety-critical area. After
entering the safety-critical area, e.g., an urban area, the
UAV shall search for a spot to land. The GPS module
helps to find a landing spot. If the GPS module is already
erroneous in the phase before entering the safety-critical
area, the system shall not search for a landing spot
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  Mission 

<<UdpCallBehaviorAction>> 
takeoff 

<<UdpCallBehaviorAction>> 
fly to landing area 

<<UdpControlFlow>>

<<UdpCallBehaviorAction>> 
search for landing spot 

<<UdpControlFlow>>

<<UdpControlFlow>>

<<UdpCallBehaviorAction>> 
landing 

<<UdpControlFlow>>

causativeElement = null 
condition = null 
probability = 0.99

causativeElement = gps 
condition = error 
probability = 1.0

causativeElement = gps 
condition = ok 
probability = 0.99

causativeElement = gps 
condition = error 
probability = 0.999

load = 1.5 
time = 60.0 

load = 0.5 
time = 1.0 load = 1.5 

time = 60.0 

load = 1.0 
time = 1.0 

Fig. 9. Example delivery mission with four mission phases.

<<Block>> 
UAV 

<<BoundReference>> +CameraBR:Camera [*]

<<Block>> 
UavConfig1 

<<BoundReference>> +CameraBR:Camera [0]

<<Block>> 
UavConfig2 

<<BoundReference>> +CameraBR:Camera [1]

<<IMU1>> 
IMU 

<<Control1>> 
Control 

<<Actuator1>> 
Actuator 

<<Battery1>> 
Battery 

<<Gps1>> 
Gps 

<<Camera1>> 
Camera 

+imu +control +actuator +battery +gps +camera1 1 4 1 1 1

Fig. 10. Block definition diagram for modeling the mission phase altering configurations via bound reference.

<<Block>> 
UAV 

 

+ gps: Gps [1] 
+ imu: IMU [1] 

+ control: Control [1] 

+ actuator: Actuator [4] 

+ camera: Camera [1] 

+ battery: Battery [1] 

<<BoundReference>> 
+ cameraBR: Camera [*] 

dActuator
dBattery

dBattery

dBattery

dBattery
dGps

dImu

dControl
dCamera

dBattery

Fig. 11. Internal block diagram of abstract generalized
block with binding connector to bound reference.

gps

<<UdpProbability>> 
GPS failure before
search landing spot 

value=0.001

<<UdpCallBehaviorAction>> 
search for landing spot 

<<Satisfy>> <<Refine>>

Fig. 12. Requirements diagram necessary to assess the
representative requirement example.

but initiate the landing process directly. The case study
mission modeled with an ACT is shown in Figure 9.
The time properties of takeoff and landing are equal
to 60. Thus, these phases shall last 60 time units. The
outgoing control flow of fly to landing area is connected
to a decision node with two outgoing UdpControlFlows
and one ControlFlow. The first UdpControlFlow returns
to the merge node before phase fly to landing area and the
property probability is equal to 0.99. In other words, this
phase is executed 100 times on average. The duration of
one execution is equal to one time unit. Thus, the average
time required to fly to landing area is equal to 100 time
units. The properties causativeElement and condition are
not specified and ignored. The second UdpControlFlow
leads to the merge node before the phase landing and
the property probability is equal to one. The property
causativeElement is gps and the condition is error what
means that this flow is active with a probability of one if
the part gps takes the state error.

Similar properties are defined for the two UdpControlFlows
after phase search for landing spot. That the property
causativeElement is defined as gps applies to both Udp-
ControlFlows. However, the first UdpControlFlow specifies
the property condition as ok and probability as 0.99 and
the second specifies the condition as error and proba-
bility as 0.999. Generally spoken, this means that if the
gps is working, the phase is completed faster than if the
gps is erroneous. As mentioned above, phase-specific load
coefficients are specified depending on the environmental
conditions and the dynamic stress on the system. We
specified the load coefficients as 1.5 for takeoff, 0.5 for fly
to landing area, 1.0 for search for landing spot, and 1.5 for
landing.

System Architecture: Figure 10 shows the BDD of the
case study system. The block UAV is modeled as abstract
and contains the BoundReference CameraBR:Camera
with unspecified multiplicity. The non-abstract specializa-
tions UavConfig1 and UavConfig2, shown in Figure 10,
also contain the CameraBR BoundReference but with
specified multiplicity. Figure 11 represents the IBD of the
case study system where a BindingConnector between the
camera part and the BoundReference is shown. This con-
struct models different system configurations for different
mission phases. Only if UavConfig2 is active the camera
sends data to the part control:Control. The allocation of
the configuration to the intended mission phase is done
by assigning the called activity to the ownedOperation of
the configuration block. We have assigned the activities of
takeoff and landing to UavConfig1 and the activities of fly
to landing area and search for landing spot to UavConfig2.
This means that in phases takeoff and landing no camera
is utilized.

System requirements: ”The probability that the GPS
module will fail before the beginning of the search for
landing spot phase shall be less than 0.001” is our require-
ment in question. This requirement is interesting because
a failure of the GPS module affects the execution time of
search for landing spot. Figure 12 shows the REQ required
for this purpose, that contains the GPS failure before
search for landing spot modeled element of stereotype
UdpProbability. The refine relationship, applied to the
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P(Failure_gps_before_search_for_landing_spot)
= 0.00040852990384535824

control flow commands: 
(cf=search_landing_spot) & (sgps=ok) -> 0.01:(cf'=landing) + 0.99:(cf'=search_landing_spot);
(cf=search_landing_spot) & (sgps!=ok) -> 0.001:(cf'=landing) + 0.999:(cf'=search_landing_spot);

control flow commands: 
(cf=fly_to_landing_area) & (sgps=ok) -> 0.01:(cf'=search_landing_spot) + 0.99:(cf'=fly_to_landing_area);
(cf=fly_to_landing_area) & (sgps!=ok) -> (cf'=landing);
 

error propagation commands: 
(sbattery=ok) & (sgps=ok) &
(simu=ok) & (scontrol=ok) &
(sactuator_0=ok) & (sactuator_1=ok)
& (sactuator_2=ok) &
(sactuator_3=ok) ->
0.9886471341602611:(sbattery'=ok) &
(sgps'=ok) & (simu'=ok) &
(scontrol'=ok) & (sactuator_0'=ok) &
(sactuator_1'=ok) &
(sactuator_2'=ok) &
(sactuator_3'=ok) +  ... 

Fig. 13. Generated dual-graph error propagation model with top-level mission and phase varied nested system
architectures.

GPS failure before search for landing spot requirement,
defines that the requirement is valid before the search for
landing spot mission phase. The part gps shall satisfy this
requirement.

4.2 Transformation and assessment

The extended SysML diagrams discussed above contain all
necessary information for the generation of a DEPM using
the method explained in Section 3. The generated DEPM
is shown in Figure 13. The DEPM top-level represent the
mission and the lower levels of the system configurations of
the respective mission phases. The elements corresponding
to the phases takeoff and landing contain a system config-
uration without camera and the elements corresponding to
the phases fly to landing area and search for landing spot
contain a system configuration with camera. The phases
takeoff and landing shall last 60 time units. Therefore,
the corresponding DEPM elements are modeled using the
repetition mechanism of the DEPM. The DEPM element
is executed several times, successively before the control
flow transition to the next element is activated. A subset
of the calculated error propagation commands of takeoff is
also shown in Figure 13. The shown control flow commands
result from the information of the SysML mission ACT.
The modeled requirements appear as DEPM failures. In
this case study the UdpProbability requirement Failure
gps before search for landing spot is transformed into the
Failure gps before search for landing spot. The associated
conditions were generated from the SysML model and
are shown at the lower part of the figure. The computed
probability (0.0004085) of this failure is shown at the lower
part of the figure as well. The computed probability is less

than the required 0.001. Thus, the success criterion of the
case study is fulfilled.

5. CONCLUSION

In this paper, we proposed a probabilistic dependability
assessment approach that supports the systematic analysis
of system specifications. The focus was to assess mission
phase varying non-functional dependability requirements
of phased-mission Unmanned Aerial Vehicles (UAV) un-
der development. Therefore, we extended the UAV De-
pendability Profile, presented in our previous work, by
configuration, requirement, and behavioral modeling. As
a consequence, the approach is not limited to the static
system topology, provided by SysML Block Definition Di-
agrams and Internal Block Diagrams, but also supports
dynamic mission aspects by the integration SysML Activ-
ity Diagrams and Requirements Diagrams. Furthermore,
we extended the transformation method to the Dual-graph
Error Propagation Model and assessed quantitative and
probabilistic requirements for deterministic, stochastic, or
conditionally executable mission-phase times. To illustrate
the feasibility and benefit of our approach, we assessed a
representative requirement within a case study.
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