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Abstract: Adaptivity in civil engineering structures is realized by the integration of sensors,
actuators and a control scheme. The large dimensions of such structures cause high installation
effort for cabling and challenges in control through transmission delays. Furthermore, modern
lightweight structures typically include elements that bear tension forces only, leading to a
nonlinear model for control design. In this contribution, we propose a decentralized control
scheme for civil engineering structures which can handle nonlinearities through tension-
only elements in control design. A large structure is subdivided into local substructures,
incorporating nonlinear elements each. The Craig-Bampton model order reduction is applied to
the substructures, which can only be conducted by intelligent separation of degrees of freedom
for inner and boundary nodes, where degrees of freedom influenced by tension-only elements
are set as boundary nodes. Linearizing input transformations are designed by means of local
substructures, forcing the nonlinear model to the dynamics of a local linear target system. Linear
feedback controllers can be designed based on the linear target system. These decentralized
linearizing input transformations and feedback controllers are applied to the combined nonlinear
structure. This approach is illustrated numerically on an adaptive high-rise structure.
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1. INTRODUCTION

Adaptive structures featuring sensors, actuators and con-
trol algorithms, are an opportunity to reduce the immense
resource and energy consumption as well as waste and
emission production of the construction sector (UN En-
vironmental Program (2011)). Assuming a proceeding ur-
banization and a substantial growth of world’s population,
our planet cannot meet the needs of the predicted con-
struction boom. Thus, efficient and save application of civil
engineering adaptive structures are indispensable (Sobek
and Teuffel (2001)). Such structures have been researched
since years (Yao (1972)) and overviews are given, among
others, in Korkmaz (2011) or Housner et al. (1997).

Just as traditional structures, adaptive buildings can
include elements, which only bear tension forces, e. g. real-
ized by flat steel or cables to stiffen the main load carrying
elements. Applying compression forces to such elements is
impossible due to slack, under which these elements do not
contribute to a structure’s stiffness any more, described
in Alart et al. (2007). In this contribution, link elements,
which bear normal forces and no bending forces, are re-
garded as tension-only elements. Tension-only elements
can be controlled by a linearizing input transformation,
forcing a structure onto desired (linear) target dynamics.
Subsequently, linear control techniques can be used for
vibration damping, as introduced in Wagner et al. (2019).
A further aspect of adaptive structures is the perpetual
operation. At any time, they need to withstand loads
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Fig. 1. Rendering of an adaptive high-rise structure (right)
and an access and supply tower (ILEK).

to guarantee an undamaged structure and safety for the
inhabitants. Decentralized control units contribute to this
goal by distributing the control hardware across the large
structure.
In control of nonlinear systems, input transformations
are a powerful method, especially linearizing a system’s
dynamics onto an integrator chain, describe in the theory
of flat systems (Fliess et al. (1995)). Another method re-
garding input output linearization for multi-input/multi-
output systems is given in Kravaris and Soroush (1990),
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where static state feedback is calculated. Comparison to
other input/output transformations is given and the the-
ory is applied to a numerical example of a semi-batch
reactor. An approximate input/output linearization is de-
signed in Hauser et al. (1992) for systems that do not have
a well defined relative degree. Coming to decentralized con-
trol, such approaches are used since quite some time, e. g.
Babuska and Craig Jr (1993) makes use of a decentralized
control approach, based on local reduced order models,
to save the ancient limited computation power to design
a global controller. A more recent article researching on
decentralized control in civil engineering structures is pre-
sented in Bakule et al. (2016). A model order reduction
(MOR) after Guyan is applied to submodels to design a
switching control for earthquake excited structures. The
authors Monajemi-Nezhad and Rofooei (2007) present a
sliding mode control for a multistory building and proof
global system’s stability, where decentralized controllers
are designed for substructures of the building. The appli-
cation of substructuring and MOR for nonlinear system
to achieve decentralized models is also found in literature.
Bathe and Gracewski (1981) shows substructuring via
static condensation by separating the linear and nonlin-
ear part of the nonlinear system equations. The authors
Kuether et al. (2017) perform substructuring of mechani-
cal models with geometric nonlinearities as a non-intrusive
method on top of commercial finite element (FE) software.
They separate the nonlinear part and derive a transfor-
mation to achieve a reduced order model accounting for
geometric nonlinearities in an example of coupling elastic
plates. Wenneker and Tiso (2014) use two substructuring
methods, within the Craig-Bampton method to calculate
reduced order models, which accounts also for geometric
nonlinearities. An insight in the literature on decentralized
control of nonlinear systems, especially for civil engineer-
ing systems is given in the following. A decentralized model
predictive control approach for a discrete time system
is proposed by Magni and Scattolini (2006), where local
controllers help to reduce the larger optimization problem.
Udwadia et al. (2014) introduces a decentralized control
approach for nonlinear systems via sliding mode control.
In a first step, local asymptotically stable controllers are
designed for a subsystem using only local information and
in a second step interconnections are considered. In Lynch
et al. (2002), different decentralized controllers are applied
to a civil engineering structural system under earthquake
excitations, which show acceptable control performance.

Main Contribution and Overview This article con-
tributes to model order reduction (MOR) of substruc-
tured systems with tension-only elements by extending
the Craig-Bampton method to partly nonlinear systems.
Furthermore, a decentralized nonlinear control approach
is introduced based on linearizing input transformations,
which can globally stabilize the structure.
In section 2, the nonlinear equations of motion are derived,
which contain the effects of tension-only elements. The
system is substructured and a MOR is performed by means
of the Craig-Bampton method, preserving the nonlinear
properties of the tension-only elements. Section 3 gives the
equations for the linearizing input function for nonlinear
systems and in section 4 performance of the decentralized
nonlinear control approach is illustrated using an exem-
plary civil engineering structure.

2. SYSTEM MODELING

In this section, a truss structure with tension-only ele-
ments is modeled and via nonlinear MOR a simulation
model is derived. For decentralized nonlinear control de-
sign, local models are deduced by substructuring.

2.1 Nonlinear Equations of Motion

Civil engineering structures are commonly modeled by
means of the FE method. A second order mechanical
model with possibly large, but limited number of degrees
of freedom (DOF) q(t) ∈ Rn is achieved

Mq̈(t) +Dq̇(t) +Kq(t) = f(t), t > 0,

q(0) = q0, q̇(0) = q1,
(1)

where the positive definite mass and stiffness matri-
ces M , K ∈ Rn×n are determined by FE analysis. Exter-
nal forces and the system’s input are summarized in f(t).
The damping matrix is approximated by the Rayleigh
approach (Rayleigh (1877),O’Kelly and Caughey (1965))
for classical and proportional damping

D = α1M + α2K, (2)

with the coefficients α1 and α2, which need to be deter-
mined experimentally. The external forces on the structure
are specified by

f(t) = Fu(t) + z(t), (3)

with the input matrix F ∈ Rn×m and the input forces
u(t) ∈ Rm, which are realized by structure-integrated ac-
tuators. Actuator dynamics do not significantly influence
the closed loop system behavior. External disturbances are
captured in z(t) and neglected in presentation of the feed-
back control for decentralized control because disturbance
dynamics are not known.

In case of nonlinear system behavior, the linear equa-
tions of motion are not sufficient. Within an FE software,
structural analysis model equations are solved iteratively
and therefore not exportable for control design. However,
for the purpose of control design for nonlinear systems,
the reduced order model equations are required. Starting
from the linear equations (1) without tension-only ele-
ments, the nonlinear behavior of tension-only elements
is included. Such elements only transmit normal forces,
meaning tension and compression forces. If such an ele-
ment is compressed, its contribution to the stiffness and
damping matrix vanishes. Therefore, the stiffness ki of a
tension-only element i is equal to the stiffness of the linear
model in case of tension and zero in case of compression:

ki(q(t)) =

{
ki, ∆li(q(t)) ≥ 0

0, ∆li(q(t)) < 0
i = 1, ..., nt. (4)

The condition to switch between tension and compression
is stated by means of the length difference of an element,

∆li(q(t)) =
√

∆q̃ᵀi (t) ∆q̃i(t)−
√

∆qᵀi,0 ∆qi,0. (5)

The second term is the initial element length with ∆qi,0 =
qi,1,0−qi,2,0 where qi,1,0 and qi,2,0 are the initial positions
of the nodes element i is attached to. The first term covers
the displacements according to movements of the structure

∆q̃i(t)= q̃i,1(t)−q̃i,2(t), with q̃i,1(t)=qi,1,0+qi,1(t), (6)

q̃i,2(t) respectively. The relative displacements of the at-
tached nodes qi,1(t) ⊂ q(t) and qi,2(t) ⊂ q(t) are a subset
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of the DOF vector. Based on the changes in the elements’
stiffness, the stiffness matrix is assembled, depending on
the actual q(t). Damping of the structure is approximated
as in (2), where the damping matrix is dependent on q(t),
as inherited from K(q(t)). The inertia M is assumed to
remain unchanged because an element is physically still
available and changes in mass distribution are supposed
to be small. For example, if a tension-only element is
under tension, the inertia matrix coming from the FE
tool fits perfectly. If such an element is slack, it only
hangs on the upper node and the inertia matrix is slightly
different. However, this is neglectable because the main
effect which appears in the inertia matrix is dominated by
the location of an element within the structure. Therefore,
the nonlinear equations of motion yield:

Mq̈(t) +D(q(t))q̇(t) +K(q(t))q(t) = Fu(t), t > 0,

q(0) = q0, q̇(0) = q1.
(7)

2.2 Simulation Model

For simulation purposes, a reduced order model is used
to achieve acceptable simulation time. To preserve the
nonlinear model behavior, MOR is conducted by means of
a transformation to a lower dimensional space. In a proper
orthogonal decomposition (POD), a simulation data ma-
trix ydata is factorized by a singular value decomposition

ydata = V ΣW ∗, (8)

where V ∈ Rn1×n1 is a unitary matrix, which comprises
the left eigenvectors of ydata. Σ ∈ Rn1×n2 covers the
singular values and W ∗ ∈ Rn2×n2 the conjugate transpose
of a unitary matrix W , where the columns are the right
eigenvectors of ydata. MOR is performed by transforming
q(t) = Vrζ(t) with ζ(t) ∈ Rnr , a column matrix Vr ⊂ V
and left-multiplying by V ᵀ

r

Mr ζ̈(t) + V ᵀ
r D(Vrζ(t))Vr ζ̇(t) + V ᵀ

r K(Vrζ(t))Vrζ(t)

= Fru(t), t > 0, ζ(0) = V −1r q0, ζ̇(0) = V −1r q1.
(9)

2.3 Substructuring

For decentralized control, the system needs to be sub-
structured in local models. The ith substructure for i =
1...nS is derived by substructuring q(t) = Ci

q
ᵀ
qi(t) in (7)

with qi(t) ∈ Rni

. The binary selection matrix Ci
q chooses

the states comprising this substructure. The decentralized
nonlinear model equations for the ith substructure yield

M iq̈i(t) +Ki(qi(t))qi(t) = F iui(t), t > 0,

qi(0) = Ci
qq0, q̇i(0) = Ci

qq1,
(10)

with M i = Ci
qMCi

q
ᵀ
, Ki(qi(t)) = Ci

qK(qi(t))Ci
q
ᵀ
. The

damping for the control design model is introduced in
section 2.4. The local input forces ui(t) capture the mi

actuators of a substructure, achieved by the transforma-
tion u(t) = Ci

uu
i(t). The binary selection matrix for the

input is Ci
u and thus F i = Ci

qFC
i
u
ᵀ

holds.

2.4 MOR for Substructures

For control design, a low order model is desirable, which
captures the main characteristics of a substructure. For
linear MOR for mechanical systems, the Craig-Bampton
method is well established, where the DOF vector is sepa-
rated into boundary and inner nodes (see Fig 2). It can be

...

x
y

z

1st substructure
actuators m1 = 4
4 columns

2nd substructure
actuators : m2 = 4
4 columns

3rd substructure
actuators : m3 = 4

4 columns

4th substructure
not actuated

Fig. 2. Sketch of a full/substructured high-rise building
including tension-only elements (orange) with bound-
ary nodes (red) and the DOFs used in the results in
section 4 (light blue).

extended to the case presented here, where some elements
exhibit nonlinear dynamics. Thereby, analogously to the
linear Craig-Bampton approach, boundary nodes qib(t) ∈
Rni

b are selected, comprising not only physical boundaries,
but also nodes where actuators are attached to and nodes,
where nonlinear elements are attached to. This is impor-
tant because after the transformation, all boundary nodes
of qb(t) are still available and can be accessed for nonlinear
evaluation during control. The dynamics of the remaining

inner nodes qii (t) ∈ Rni
i , where only linear elements are

attached to, are approximated via modal analysis. There-
fore, the nonlinear substructures can be reduced, while the
nonlinearities and physical coupling to other structures are
preserved and captured completely in Ki

bb(qi(t)), which is
dependent on the boundary nodes qib(t). Without loss of
generality, qi(t) is assumed to be in the right order through
proper choice of Ci

q. The rearranged equations of motion
from (7) are stated as:[
M i

bb M
i
bi

M i
ib M i

ii

][
q̈ib(t)
q̈ii (t)

]
+

[
Ki

bb(qi(t)) Ki
bi

Ki
ib Ki

ii

][
qib(t)
qii (t)

]
=

[
0
0

]
(11)

The quasi-stationary solution of the second line of (11)
leads to the rigid-body modes of the substructure

qii (t) = Φi
cq

i
b(t) with Φi

c = −Ki
ii

−1
Ki

ib. (12)

The inversion is guaranteed due to the positive definite-
ness and linearity of Ki

ii. The inner nodes with linear
connections are approximated through a reduced number

of modal coordinates ηi(t) ∈ Rni
i,r , which are calculated

by solving the general eigenvalue problem of the second
line of (11) for qib(t) = 0. A low dimensional column
space of the eigenvector matrix of the inner DOF Φi =
[ϕ1, ...,ϕni

i,r
] is chosen for transformation. The Craig-
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Bampton transform applied to nonlinear systems yields:[
qib(t)
qii (t)

]
≈ T iqic(t), T

i =

[
I 0

Φi
c Φi

]
, qic(t)=

[
qib(t)
ηi(t)

]
, (13)

with transformed coordinates qic(t) ∈ Rni
c . The order nic of

the reduced model is determined by the number of bound-
ary nodes, defined by the system’s structure including the
nonlinear elements, and by the number of modal coordi-
nates used for reducing the dynamics of the inner nodes.
Applying this transformation to (11) and left multiplying
with T i leads to

M i
c q̈

i
c(t) +Ki

c(q
i
c(t))q

i
c(t) = F i

cu
i(t), t > 0,

qic(0) = qic,0 , q̇ic(0) = qic,1 ,
(14)

withM i
c = T iᵀM iT i, the blockdiagonal matrixKi

c(q
i
c(t))

= T iᵀKi(T iqic(t))T
i and F i

c = T iᵀF i. In contrast to the
Craig-Bampton reduction for linear systems, the extension
to structures with nonlinear elements requires a modified
selection of boundary nodes. Additionally – at each time
step – the nonlinear dynamics have to be evaluated in
the original state space and subsequently transformed into
the reduced space. In (14), this holds for Ki

c(q
i
c(t)). This

kind of nonlinear MOR by means of the Craig-Bampton
method values the physical coupling and the preservation
of nonlinearities, especially beneficial for large structures
including a limited number of, in this case, tension-only
elements. The damping matrix is defined as in (2)

Di
c(q

i
c(t)) = α1M

i
c + α2K

i
c(q

i
c(t)). (15)

with α1 and α2 according to (2), which is equivalent to an
earlier definition.

2.5 Elimination of Rigid-Body Modes

In general, substructuring may yield modules that are
not fixed by supports any more, leading to rigid-body
modes. In the previous section, the method of Craig-
Bampton regards these rigid-body modes in Φi

c. However,
in Craig and Bampton (1968) the boundary nodes are not
distinguished between constraint coordinates and rigid-
body coordinates, contrary to Hurty (1965). In a civil en-
gineering sense, the subsystem is statically overdetermined
and the number of statical overdeterminacy is equal to the
number of rigid-body coordinates nic,rb, which is the same
as the number of uncontrollable zero eigenvalues of the
substructured model. The concept of statical indetermi-
nacy is not defined for nonlinear dynamic structures, such
as (14). Since the nonlinear system is feedback controlled,
the assumption of reaching qib(t) = 0 is justified. There-
fore, (14) is evaluated for Ki

c(0) and Di
c(0) to determine

the rigid-body and constraint coordinates of this linearized
system, which leads to a transformation matrix Φi

l . Using
the transformation qic(t) = Φi

lq
i
l (t) with the new DOF

vector ql(t) ∈ Rnl and nil = nic − nic,rb, the model for local
control design is:

M i
l q̈

i
l (t) +Di

l (q
i
l (t))q̇

i
l (t) +Ki

l (q
i
l (t))q

i
l (t)

= F i
l u

i(t) , t > 0 , qil (0) = qil,0 , q̇il (0) = qil,1,
(16)

with the matrices without static modes for mass M i
l =

Φi
l
ᵀ
M i

cΦ
i
l , stiffness Ki

l (q
i
l (t)) = Φi

l
ᵀ
Ki

c(Φ
i
lq

i
l (t))Φ

i
l and

damping Di
l (q

i
l (t)) = Φi

l
ᵀ
Di

c(Φ
i
lq

i
l (t))Φ

i
l , and input ma-

trix F i
l (t) = Φi

l
ᵀ
F i
c (t).

Ki
LQR gi

+
gid Σi

z(t)

ui(t)wi(t)

gi
+
(
f i
d(xi(t))−f i(xi(t))

)
xi
d(t) ei(t) xi(t)

− +

Fig. 3. Structure of the control loop for subsystem Σi.

System (16) is transferred to general state space represen-

tation using state xi(t) = [qil (t), q̇
i
l (t)]

ᵀ ∈ R2ni
l :

ẋi(t) = f i(xi(t)) + gi(xi(t))ui(t), t > 0, xi(0) = xi
0,

f i(xi(t))=

[
0 I

−Ki
l (q

i
l (t)) −Di

l (q
i
l (t))

]
xi(t), gi=

[
0
F i
l

]
, (17)

where gi is not state-dependent, in this case. This system
is assigned as control design model in the following section.

3. CONTROL DESIGN

The term decentralized control refers to a separate control
design for each substructure, derived in 2.3-2.5. At first,
a linear control scheme is given for comparison, designed
for the linear system using K(0) and D(0). Second, a
nonlinear control scheme is presented, where the nonlin-
ear substructure is forced onto the dynamics of a linear
substructure by use of a linearizing input transformation.
Afterward, linear control schemes can be applied to the
linearized system.

3.1 Linear Decentralized Control

To show the performance of the decentralized nonlinear
control scheme introduced in 3.2, a linear decentralized
approach is given. The tension-only elements are treated as
linear link elements, thus (17) is evaluated for qil (t) = 0 to
achieve linear substructured models. We use here a linear
quadratic regulator (LQR), with the control law

ui(t) = Ki
lqr,l(x

i
l0 − xi

l(t)), (18)

where xi
l0 is the desired local state. The feedback ma-

trix Ki
lqr,l is determined such that the cost function

J =

∫ ∞
0

xiᵀ(t)Qxi(t) + uiᵀ(t)Rui(t)dt (19)

is minimal under given weighting matrices Q and R.

3.2 Decentralized Nonlinear Control

To damp oscillations in the system given by (17), a lin-
earizing input transformation is designed similar to the
procedure for global controller design in Wagner et al.
(2019). The behavior of an exemplary system with tension-
only elements is similar to that of a linear structure. In
general, for nonlinear system’s feedback, linearization is
a proper choice to transform a system to an integrator
chain (Fliess et al. (1995)), where control is fairly simple.
However, an integrator chain is a theoretic system behavior
and for systems as introduced here, it might be better to
choose a different target system. Therefore, the linearizing
input transformation is used, which forces the dynamics of
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Fig. 4. Decentralized nonlinear control (light blue) applied
to the full system, compared to the uncontrolled sys-
tem (gray) and decentralized linear control (yellow).

the nonlinear substructure onto desired (linear) target dy-
namics. The decentralized target dynamics can in general
be formulated as

ẋi(t) = f i
d(xi(t))+ gid(xi(t))wi(t), t > 0, xi(0) = xi

0 (20)

and more detailed given in (23). The virtual input wi(t) ∈
Rmi

is the control input of the target system. The system
is desired to be stable also for wi(t) = 0.

Linearizing Input Transformation The input signals of a
substructure are calculated by setting the nonlinear system
dynamics (17) equal to the target dynamics (20). Solving
for input ui(t) yields

ui(t) = gi
+

(xi(t))
(
f i
d(xi(t))− f i(xi(t))

)
+ gi

+
(xi(t)) gid(xi(t))wi(t),

(21)

where (·)+ denotes the Moore-Penrose pseudo-inverse (acc.
to Penrose (1955)). If the input function gi is quadratic
with full rank, in the case of an equal number of inputs
and states, gi+ is the inverse. The (pseudo)-inverse exists
due to all input directions being linearly independent for
a reasonable choice of actuated elements. Plugging (21)
into the original dynamics (17), the nonlinear structure is
forced to follow the target dynamics. The block diagram
in Fig. 3 visualizes the control scheme with the linearizing
part from (21) in light blue and the feedback control,
given in the next paragraph, in dark blue. The desired
state is xi

d(t), which should not be confused with the
desired dynamics. A feedback control can be designed
for the target system to compensate modeling errors and
inaccuracies using wi(t). Linear control strategies can be
applied. We design an LQR such that:

wi(t) = Ki
lqr,d(xi

d0 − xi
d(t)), (22)

with the desired state xi
d0. The feedback matrix is deter-

mined according to (19). The weighting matrices Q and R
are chosen as diagonal matrices of the form kiQ/RI, where

I is the identity matrix. For R, this is reasonable, since
each actuator input should be weighted the same. For Q,
each state is weighted the same, as damping is desired
to be high, which is related to the velocities q̇i1(t), while
displacements qi1(t) are required to be small such that
functionality and user comfort are not affected. Because
the final LQR design is invariant to a scaling of Q and
R, there remains only one parameter to choose for each
module – the quotient kilqr = kiQ/k

i
R. It has to be chosen

according to the desired compromise between aggressive-

0 1 2 3 4 5
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102

103

Time (s)

∅
-P

ow
er

(k
W

)

decentralized nonlin

decentralized linear

Fig. 5. Average power of the actuators on a logarithmic
scale for decentralized nonlinear control (light blue)
and of the decentralized linear control (yellow).

ness and robustness of the controller and can be different
for each module.

Linear Target System For proof of concept as aimed in
this contribution, we choose a target system by defining
the functions in (20):

f i
d(xi(t)) =

[
0 I
−Ki

d −Di
d

]
x(t), gid =

[
0
F i
d

]
. (23)

This presents a linear mechanical system with desired
linear stiffnessKi

d, dampingDi
d and input matrix F i

d. The
choice of the target system is a design parameter in the
control design, as are the parameters in the additional lin-
ear feedback control (22). By choosing the target system,
the oscillation frequency and damping of the controlled
system are implicitly influenced.

Application to Global System To apply the decentrally
designed control inputs to the global system, the decen-
tralized states qil (t) are related to the global state q(t) by
means of the transformations matrices introduced before

qil (t) = Φi
l
+T i+Ci

qq(t). (24)

The velocities are calculated the same and further com-
bined to the state xi(t). The decentralized inputs ui(t)
from nS subsystems are summarized to the global input

u(t) =

nS∑
i=1

Ci
uu

i(t). (25)

The need to evaluate the nonlinear functions Ki
l (q

i
l (t))

and Di
l (q

i
l (t)) during each time step of the control cycle

leads to increasing resource demand for input calculation.

4. NUMERICAL RESULTS

4.1 System Description

The effectiveness of the decentralized nonlinear input
transformation is shown by means of an exemplary adap-
tive high-rise structure, as depicted in Fig. 1. This adaptive
building will be constructed on the site of the University of
Stuttgart. The actuation is realized using hydraulic cylin-
ders. In Fig. 2, a sketch of this structure and its division
into four substructures is illustrated. Each substructure
comprises three stories and one control unit. All diagonal
bracings are tension-only elements and are depicted in
orange. Vertical elements are modeled as beam elements
and all remaining elements as common link elements. The
necessary material and geometry parameters are given in
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Tab. 1. The connection of the structure to the ground
are hinged supports. The boundary nodes, depicted in
red in Fig. 2 and defined in 2.4, cover all nodes, where
the subsystems are connected to each other and elements
with integrated actuators and tension-only elements are
attached to. Actuators, realized as hydraulic cylinders, are
placed in the columns of the first three substructures, for
which controllers are designed. More details about the in-
tergated actuator are given in Weider et al. (2019). States
are assumed to be known, however, a decentralized ob-
server could be used to estimate the states Warsewa et al.
(2020). To eliminate the static modes from the control
design model, the systems are linearized with qib(t) = 0.
The first system does not incorporate static modes because
supports are available. Substructure two and three are
statical indeterminate (n2c,rb = n3c,rb = 10). The desired
target system is chosen as a linear mechanical system with
Ki

d = Ki
l (0)/100 and the desired damping Di

d is selected
as in (2) with constants αd,1 = 0.05 and αd,2 = 0.01.
The mass matrices and the input matrices remain un-
changed w.r.t (17). Thus, (16) for i = {1, 2, 3} is evaluated
for qil (t) = 0. An LQR is designed for each substructure
with actuators and applied to the simulation model. Good
parameters can be identified in a closed loop simulation,
we chose k1lqr,d = 1013, k2lqr,d = 1016, k3lqr,d = 102. Other
choices might yield a similar performance. The feedback
matrices for the linear decentralized feedback controller
in (18) are determined via individual weighting in LQR
design, leading to k1lqr,l = 109, k2lqr,l = 1015k3lqr,l = 109.
Results are depicted for the node at the top marked
in blue in Fig. 2. For presentation of the decentralized
method and to better compare it to a linear approach,
disturbances are neglected and simulations are conducted
with an initial condition by bending the structure to one
side. For simulation, the reduced order model of the overall
structures with tension-only elements from (9) is used. The
simulation model’s order is nr = 18, which describes the
original model sufficiently (Wagner et al. (2019)).

4.2 Control Results

The uncontrolled nonlinear system almost exhibits a linear
oscillation behavior, which was discussed in Wagner et al.
(2019). The results of the decentralized nonlinear control
applied to the nonlinear simulation system are depicted
in Fig. 4 for the DOF in x-direction for the node at the
top in comparison to the uncontrolled system. Oscillations
are strongly damped within the controlled substructures
as well as for the locally uncontrolled forth substructure.
Through the physical coupling of the substructures, mo-
tions of uncontrolled parts directly affect other parts such
that oscillations are mitigated within the whole structure.
Due to the decentralized character of the control approach,
the oscillation frequency of the undamped structure is not
preserved in the decentralized nonlinear approach. This is
similar to Wagner et al. (2019). The cumulated average
actuator power totals 14.1 kW as can be seen in Fig. 5.
A decentralized linear approach is applied and results are
depicted in Fig. 4, which is outperformed by the decentral-
ized nonlinear control. Cumulated average control power
rises up to 19.1 kW despite less damping, which proofs the
nonlinear approach more efficient. On top, Fig. 5 highlights
for the decentralized nonlinear approach, that the peak of
the average power needed at the beginning of control, is

Table 1. Geometry and Material Parameters.

Description Formula sign Value Unit

Density ρ 7850 kg/m3

Young’s modulus E 210 × 109 N/m2

Damping Coefficient α1 0.05
Damping Coefficient α2 0.001

Vertical columns, quadratic hollow profile
Length Lv 3 m
Width wv 0.3 m

Wall thickness tv 0.01 m
Poisson’s ratio ν 0.3

Horizontal link elements, 2 rectangular hollow profiles
Length Lh 4.75 m
Width wh 0.2 m
Height hh 0.12 m

Wall thickness th 0.008 m

Horizontal diagonal link elements
Length Lhd 6.72 m
Width hhd 0.01 m
Height hhd 0.06 m

Diagonal link elements, tension-only
Length Lvd 10.18 m
Width wvd 0.15 m
Height hvd 0.012 m

decreased significantly. Therefore, the size of installed hy-
draulic accumulators can be reduced, saving in installation
cost and complexity. Moreover, higher weighting of the
states in LQR design in the linear decentralized control,
which usually increases damping, leads to instability of the
linearly controlled system with tension-only elements.

5. CONCLUSION

In this contribution, a method for decentralized control
of civil engineering structures with tension-only elements
was presented. A system was substructured while pre-
serving nonlinear properties of tension-only element. By
means of proper choice of the boundary nodes, a Craig-
Bampton MOR can be performed preserving nonlinear
system characteristics. For this, the concept of boundary
nodes is extended to include not only the coupling nodes of
substructures, but also nodes of actuated and of nonlinear,
e. g. tension-only elements. Through this method, con-
troller design models can be synthesized for decentralized
control of large scale structures. A linearizing input trans-
formation can be applied to each substructure, forcing its
dynamics onto a desired target dynamics. Afterward, lin-
ear control theory can be used to control the linear target
system, e. g. an LQR. This concept is exemplary applied
to the linearized substructure with tension-only elements.
It outperforms a decentralized approach using a linear
control design model. The global damping is increased
while energy consumption decreased. This highlights the
importance of modeling nonlinear effects properly, e. g.
tension-only elements.
In further research, a decentralized nonlinear observer
needs to be included and results should be validated on
the experimental setup. A more elaborate choice of the
target system could further increase the control perfor-
mance. Stability issues need to be investigated for the
decentralized control scheme.
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panović, D.M. (2014). Decentralised control of nonlinear
dynamical systems. International Journal of Control.

UN Environmental Program (2011). Towards a Green
Economy: Pathways to Sustainable Development and
Poverty Eradication.
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