
Gaussian processes modifier adaptation
with uncertain inputs for distributed

learning and optimization of wind farms 1

Leif Erik Andersson ∗, Eric Christopher Bradford ∗,
Lars Imsland ∗,

∗Department of Engineering Cybernetics, Norwegian University of
Science and Technology, 7491 Trondheim, Norway. (e-mail:
{lars.imsland, eric.bradford, leif.e.andersson}@ntnu.no)

Abstract: A modifier adaptation scheme based on Gaussian processes is presented to optimize
the control inputs of a wind farm. Often an approximate model of the wind farm is available,
however due to the high complexity of the process plant-model mismatch is prevalent. For
example the mechanics of wakes is not well-understood, which may have a profound impact on
the power production of wind farms. Therefore, Gaussian process (GP) regression is exploited
to account for this deviation. A distributed learning approach is used to learn the plant-model
mismatch of each individual turbine considering explicitly the uncertainty of the uncontrolled
inputs, like the wind direction. Afterwards, a distributed optimization scheme using alternating
direction method of multipliers is applied to iteratively attain the wind farm optimum despite
the presence of plant-model mismatch.

1. INTRODUCTION

In the last few decades wind energy production has grown
rapidly. Nowadays about 5% of the global energy pro-
duction is supplied by wind (Veers et al., 2019). The
development is driven by high renewable energy targets in,
e.g. the US, Europe, and China, but also by competitive
costs of wind energy compared to conventional fossil-fueled
power plants. Most wind turbines are deployed in wind
farms, since it reduces deployment costs and maintenance
costs (Fleming et al., 2016). On the other hand, wakes
may develop behind turbines, which reduce flow velocity
and increase turbulence intensity (Barthelmie et al., 2009).
The overall energy production of turbines grouped in a
wind farm, therefore, decreases due to the reduced flow
velocity in comparison to the same number of individual
turbines Steinbuch et al. (1988), and load variations of
turbine parts increase due to the heightened turbulence
intensity.
Several studies on wind farms show that operating the
turbines at their individual optimal operating points leads
to suboptimal performance (Steinbuch et al., 1988; Knud-
sen et al., 2015). Therefore, it is generally accepted that
coordinated control of the turbines in a wind farm has
the potential to reduce the levelized cost of wind energy
(Boersma et al., 2019).
The two most common approaches for wind farm con-
trol are power de-rating control, e.g. Corten and Schaak
(2003); Rotea (2014); Munters and Meyers (2016); Duc
et al. (2019) and wake steering control, e.g. Medici (2005);
Wagenaar et al. (2012); Park et al. (2013); Gebraad et al.
(2016). The idea behind power de-rating is to operate the
upwind turbine sub-optimally by changing the blade pitch
and generator torque. Consequently, the upwind turbine

1 This work was supported by OPWIND, RCN project no. 268044.

causes a smaller velocity reduction of the wake. This can be
exploited by the downwind turbine to increase its energy
production. The target net effect is an increase in the
overall energy product and a decrease in possible loads.
For wake steering a yaw offset is applied to the upstream
turbine to deflect the wake away from the downwind tur-
bine.
The impact of wakes on the turbines in the plant and its
interactions with the surrounding atmospheric boundary
layer is still not well understood, which is a major challenge
in the design of wind farm controllers. In model-based
wind farm control usually simple engineering models are
used to estimate the velocity deficit in the wake (Jensen,
1983; Bastankhah and Porté-Agel, 2016). The models of-
ten calculate the steady-state situation and can represent
the general behavior of wakes (Barthelmie et al., 2013;
Annoni et al., 2014). Nonetheless, the complex dynamics of
wakes are just approximated by these models and a plant-
model mismatch exists. Several model-free optimization
methods were investigated to drive the plant iteratively
to the plant optimum (Marden et al., 2013; Gebraad and
Van Wingerden, 2014; Johnson and Fritsch, 2012; Ciri
et al., 2017). These model-free optimization methods have
however slow rates of convergence.
Another approach to improve the model is the two-step
approach, which consists of repeated parameter estimation
and optimization (Chen and Joseph, 1987; Darby et al.,
2011). For wind farm control such an approach is, for
example, proposed in Doekemeijer et al. (2019). However,
the approach cannot guarantee plant optimality upon con-
vergence if the model is structurally wrong (Marchetti
et al., 2016). On the other hand, modifier adaptation
(MA) is a real-time optimization (RTO) method that cor-
rects the cost and constraint functions of the optimization
problem directly, and reaches, under suitable assumptions,
true plant optimality upon convergence (Marchetti et al.,
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2009).
In this article we extend the previously proposed combi-
nation of MA and Gaussian processes (GP) regression for
wind farm optimization (Andersson and Imsland, 2020;
Andersson et al., 2020). Firstly, to identify the plant-
model mismatch we not only consider wind turbine control
inputs, but in addition consider uncontrolled inputs to the
plant, such as wind direction or wind velocity. Secondly,
GP regression is extended to account for uncertainties in
the inputs explicitly. Lastly, each wind turbine is optimized
individually and coordinated using a distributed optimiza-
tion algorithm to determine the plant optimum.
The article is organized as follows. In section 2 a brief
introduction of the optimization problem, the MA ap-
proach, the GP regression and its extension to consider
uncertain inputs is given. In section 3 the distributed learn-
ing and optimization of the modifier-adaptation approach
with Gaussian processes (MA-GP) is presented. The per-
formance of the approach is illustrated on a numerical
example in section 4. The article ends with a conclusion.

2. PROBLEM FORMULATION AND
PRELIMINARIES

A steady-state plant performance subject to constraints
is usually optimized using an approximate model. Con-
sequently, plant-model mismatch exists, which can lead
to sub-optimal performance. The standard MA approach
takes advantage of available measurements to compensate
for plant-model mismatch and adapts the model-based
optimization problem to reach plan optimality. It applies
zeroth- and first-order correction terms to the cost and
constraint functions to match the necessary condition of
optimality upon convergence (Marchetti et al., 2009). The
first-order correction terms require the estimation of plant
gradients at each RTO iteration, which is experimentally
expensive and the main bottleneck of the MA implemen-
tation in practice (Marchetti et al., 2016).

2.1 Gaussian processes

In this section we give a brief outline of GP regression
for our purposes, for more information refer to Rasmussen
and Williams (2006). GP regression aims to identify an
unknown function 5 : R=D → R from data. Let the noisy
observation of 5 (·) be given by:

H = 5 (u) + a (1)

where the input u is assumed to follow a multivariate
Gaussian distribution with mean ū and covariance �u,
u ∼ N(ū,�u), and the value 5 (·) is perturbed by Gaussian
noise a with zero mean and variance f2

a , a ∼ N(0, f2
a ).

We assume 5 (·) to follow a GP with a zero mean function
and the squared-exponential (SE) covariance function. The
choice of the mean and covariance functions assume certain
smoothness and continuity properties of the underlying
function (Snelson and Ghahramani, 2006). The SE covari-
ance function can be expressed as follows:

: (u8 , u 9 ) = f2
5 exp

(
−1

2
(u8 − u 9 ))�−1 (u8 − u 9 )

)
(2)

where f2
5

is the covariance magnitude and

� = diag(_2
1, . . . , _

2
=D
) is a scaling matrix.

While output noise a is easily accounted for in the GP

formulation, the input noise on u is much more difficult
to deal with. Nonetheless, if ignored it can lead to signif-
icantly worse GP predictions. The proper way to handle
input noise is to integrate it out, which is however compu-
tationally expensive (Goldberg et al., 1998). Instead, we
apply an approach first proposed in Dallaire et al. (2009),
which suggests applying the expected SE. This covariance
function can be stated as:

:̂=
(
(u8 ,�u), (u 9 ,�u)

)
=

∫ ∫
: (u8 , u 9 )?(u8)?(u 9 )3u83u 9

= f̂2
= 5

exp

(
−1

2
(u8 − u 9 )) �̂

−1
= (u8 − u 9 )

)
(3)

where f̂2
= 5
= f2

5
|I + 2�̂

−1
= �u |−

1
2 and �̂

−1
= = (� + 2�u)−1. In

this u8 and u 9 are the mean values of the inputs.
The main idea is then to use the covariance function in
(3) instead of the one stated in (2), which alleviates the
bias resulting from noisy inputs. Assume we are given
a training dataset D = {U,Y} of size " consisting of
" input vectors U = [u1, . . . , u" ]T and corresponding
observations y = [H1, . . . , H" ]T according to (1). From the
GP distribution the data then follows a joint multivariate
Gaussian distribution, which can be stated as:

?(y|U) = N(0,K+f2
a I),  8 9 = :̂=

(
(u8 ,�u), (u 9 ,�u)

)
(4)

Note that the actual mean values of the input data are
unknown, and instead we use the values in U as proposed
in McHutchon and Rasmussen (2011).
The hyperparameters 7 := [f 5 , fa , _1, . . . , _=u ]) are com-
monly unknown and hence need to be inferred from data.
Most papers maximize the marginal likelihood to obtain
these, the performance of which has however been shown
to be strongly dependent on the assumptions made. In
our case due to the input noise the GP assumptions do
not hold exactly and in this case, it is more reasonable to
use the less common leave-one-out (LOO) log-likelihood
instead (Sundararajan and Keerthi, 2000). Ignoring con-
stant terms and factors, this can be stated as:

LLOO (D,7) =
"∑
8=1

(
− logf2

8 −
(H8 − `8)2

f8

)
(5)

where `8 = H8 − [K
−1y]8
 −1
88

and f2
8
= 1
 −1
88

.

The required maximum likelihood estimate is then given
by 7̂ ∈ arg max

7
LLOO (D,7).

Next we require the predictive distribution of 5 (u) at an
arbitrary input u, which can be found by the conditional
distribution of 5 (u) on the data distribution ?(y|U). From
the GP assumption this has a closed-form solution and can
be stated as:

5 (u) |D, 7̂ ∼ N(`GP (u;D, 7̂), f2
GP (u;D, 7̂)) (6)

`GP (u;D, 7̂) = k) (u) (K + f2
a I)−1y (7)

f2
GP (u;D, 7̂)) = f2

5 − k
) (u) (K + f2

a I)−1k(u) (8)

where `GP (u;D, 7̂) can be seen as the GP prediction
at u and f2

GP (u;D, 7̂) as a corresponding measure of
uncertainty to this prediction.
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3. METHODOLOGY

3.1 Modifier Adaptation with Gaussian processes

The use of GPs in a MA approach to overcome the limi-
tation of estimating the plant gradients was first proposed
by de Avila Ferreira et al. (2018). The idea is to replace
the zeroth- and first-order modifiers of the cost and con-
straints in the traditional MA with GP regression terms.
Combining MA and GP for wind farm optimization was
introduced in Andersson and Imsland (2020).
In context of this article the power production of the
wind farm is maximized without constrained functions.
The optimization problem of the MA scheme with GP
modifiers becomes

û∗:+1 = arg max
u

#∑
8

q8 (u8) + `
q?−q
GP,:

(u;D, 7̂) (9a)

u ∈ U, (9b)

where u ∈ R=D denote the plant input variables; q8 and
u8 ∈ R=D,8 are the power production and the inputs to the
turbines of the plant; `GP is the plant-model mismatch of
the cost functions represented by a GP andU ⊆ R=D is the
control domain, e.g. box constraints on the control inputs.
The training set of the GP consist of the controlled and
uncontrolled inputs and the mismatch in power production
between plant and approximate model.
Like the original MA scheme, the optimal input of (9)
may be filtered to reduce the step-size and help stabilize
the MA-GP scheme (del Rio-Chanona et al., 2019). The
whole MA-GP scheme is presented in Algorithm 1.
In Algorithm 1 the hyperparameters are updated if Hy-
pOpt is true. HypOpt is a user-defined condition, which
allows to update the hyperparameter. The extrema are
to update the hyperparameters each iteration or never.
The hyperparameter update is usually the computational
bottleneck of the MA-GP algorithm. Since for large data
sets it can be expected that the hyperparameter do not
change much from one iteration to the next, it is reasonable
to update the hyperparameters less frequent.

Algorithm 1: Basic MA-GP scheme

Initialisation: GP regression model `
q?−q
GP

and
hyperparameter 7 optimization with data sets
D; MA-GP optimization at optimal operation
point of the approximate model u0.

for k = 0,1,. . . do
Solve modified optimization problem (9) ;
Filter new operating point u:+1 ;
Evaluate approximate model at new operating point u:+1;
Obtain measurements of cost function q (u:+1) ;

Update the data sets D:+1 using the measured controlled
and uncontrolled inputs as input and the difference of
cost function of approximate model and plant as output;

if HypOpt then

Update hyperparameters 7̂ with new data set D:+1;
end

Update GP regression terms `
q?−q
GP

with data set D:+1

and hyperparameters 7̂ ;

end

3.2 Distributed learning and optimization

The distributed learning approach was first proposed in
Andersson et al. (2020). Instead of learning the plant-
model mismatch of the entire plant the plant-model mis-
match of # agents, e.g. # wind turbines, is learned before
solving the RTO problem (Fig. 1). Consequently, # GPs
must be trained instead of one for the cost function. The
advantage of the distributed learning approach is a better
scaling for large wind farms and the need of a considerable
smaller training set. Moreover, a priori knowledge about
the interconnection between agents can be included, e.g.
exclude control inputs of downwind turbines in the GP
training of an upwind turbine. The additional computa-
tional work to train # GPs can be parallelized.

Instead of combining the # separate GP models in
the optimization as done in Andersson et al. (2020) it
is possible to use a distributed optimization approach to
obtain the required centralized solution. The advantage
of distributed optimization is that each agent can solve
its own optimization problem in less time than the it
takes the full optimization considering all wind turbines
simultaneously.
In this article the global consensus alternating direction
method of multipliers (ADMM) is used to solve iteratively
the distributed optimization problem, which was recently
applied to wind farm optimization by Annoni et al. (2018)
The ADMM algorithm was originally developed in the
1970s (Gabay and Mercier, 1976) and it was revitalized by
the review article by Boyd et al. (2011). The distributed
optimization solves the same problem as described pre-
viously in section 3.1. Consequently, Algorithm 1 still ap-
plies. However, the GP models of each of the wind turbines
must be updated individually.

4. CASE STUDY

4.1 Set-up

On a wind farm with three wind turbines in a row the
proposed real time optimization architecture is tested. A
detailed description of the models used can be found in
Andersson and Imsland (2020). The wind turbines are
modelled with the actuator disk theory (Burton et al.,
2011), which couples the power and thrust coefficients.
The wake, which causes the interaction between turbines,
is modelled with the Gaussian model proposed by Bas-
tankhah and Porté-Agel (2016). In this model the three-
dimensional steady-state far wake velocity is assumed to
be Gaussian distributed.
The control inputs of the wind farms are the yaw an-
gles W8 and thrust coefficients �) ,8 of the three turbines
and the objective is to maximize the power production
%C>C =

∑
8 %8. The control inputs are constrained by box

constraints with

0 ≤ �) ,8 ≤ 0.95, and 0◦ ≤ W8 ≤ 40◦. (10)

In addition, the wind direction is considered as an uncon-
trolled input to the wind farm, which is included as an
input in the GPs. The wind direction is sampled in the
2 The wind farm picture is by Erik Wilde from Berkeley, CA,
USA https://www.flickr.com/photos/dret/24110028330/, Wind
turbines in southern California 2016, https://creativecommons.

org/licenses/by-sa/2.0/legalcode

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12807



Fig. 1. The basic idea of the MA-GP scheme with distributed learning for a wind farm. The GP regression models create
an input-output map of the control and uncontrolled inputs to the plant-model mismatch of each turbine. In the
MA-GP model the GP regression models are used to correct the output of the approximate model. This MA-GP
model is used in the optimization to compute optimal control inputs for the wind farm. The difference between
the measured and estimated output of plant and model, respectively, are used to update the GP regression model.
The uncontrolled and controlled inputs as well as the measured output are corrupted by noise. 2

section ±20◦, where for 0◦ the turbine row is aligned with
the wind.
The plant is modelled with the same set-up, but several
parameters in the actuator disc and flow model were
changed (Andersson and Imsland, 2020). The relative error
Θ between plant and model is 6%, where Θ is defined as

Θ =
%∗? − %<
%∗?

, (11)

where %∗? and %< are the optimal power production of the
plant and approximate model, respectively. Consequently,
a plant-model mismatch exists, which should be corrected
by the MA-GP method.
A training set with 300 training points is created us-
ing Latin hypercube sampling. The controlled inputs are
perturbed with an insignificant amount of noise, while
the uncontrolled input (wind direction) is perturbed with
Gaussian noise with zero mean and standard deviation of
4◦. The noisy observations are the power production %8 at
each turbine, which are perturbed by Gaussian noise with
zero mean and a standard deviation of 5000 W. Hence,
the process has a relatively large input noise and a small
output noise. The LOO log-likelihood is optimized using a
multi-start optimization with 25 different initial values to
find the initial hyperparameters of the GPs for the training
set.
The root-mean square error of the difference between es-
timated power production by the model and actual power
production by the plant is used to evaluate the initial
model fit:

Γ =

√√√
1

"

"∑
8

(%< − %?), (12)

where " is the size of the test set. Hypercube sampling is
used to create a test set with 10 000 data points.
Four different approaches are compared:

• MA-GP with distributed optimization without ex-
plicit consideration of noise (D-W),
• MA-GP with distributed optimization with explicit

consideration of noise (D-N),
• MA-GP with centralized optimization without ex-

plicit consideration of noise (C-W),
• MA-GP with centralized optimization with explicit

consideration of noise (C-N).

The method is evaluated on 100 Monte Carlo simulations.
In each run the optimization is performed for 25 iterations.
In each of these iterations the data set is updated with a
new noisy data point and the hyperparameters of the GPs
are re-optimized using the LOO log-likelihood.

4.2 Results

The result of the four different approaches are compared
in Fig. 2. The root-mean-square error (RMSE) of the
model fit of the MA-GP approach after the initial training
(Fig. 2a) indicates an improvement in comparison to the
approximate model. The median RMSE of all four MA-
GP approaches is at about 70 % of the RMSE of the ap-
proximate model. The median and variance of the RMSE
decreases slightly if the noise is considered explicitly. A
slight improvement of the C-N and D-N approaches can
also be observed in the optimization (Fig. 2b). The median
error reduction compared to the approximate model of
the C-W approach is about 46 % while the C-N approach
achieves a reduction of about 49 %. The D-W and D-
N approaches achieve a median error reduction of about
51.9 % and 52.1 %, respectively.
The distributed approaches tend to have outliers (about
10 % with the current set-up). This is the main difference
between central and distributed approach. The tendency
to outliers of the distributed approaches may have several
causes:
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(a) Relative RMSE of model fit after the initial training.
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(b) Ratio of relative error after the optimization.

Fig. 2. The RMSE error of the model fit of the corrected model and the approximate model after the initial training
and the ratio of the relative error Θ between the MA-GP model and the approximate model. A number smaller
than one indicates superior performance of the MA-GP model.
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Fig. 3. The progression of the optimization error in the 25
iterations of the C-N approach. The red line gives the
median and the edges of the gray region indicate the
25th and 75th percentiles.

• The problem is not convex while the ADMM algo-
rithm is designed for convex problems.
• The ADMM algorithm was stopped after 100 itera-

tions, which is not always sufficient to converge to the
optimum.

The progression of the optimization error over the 25
iterations for the C-N approach is shown in Fig. 3. It can be
observed that the median error does not decrease over the
25 iterations. However, the 75th percentiles decrease over
the iterations. Filtering the results of the RTO iteration
causes the smaller 75th percentile error at the beginning
of the optimization. Similar observations can also be made
for the other MA-GP approaches. It is not surprising that
the improvement of the median error in the 25 iterations is
negligible. Every new data point only adds a small amount
of information to the initial data set of 300 points.
Robustness and a larger improvement can be achieved
by increasing the number of data points in the training
set. The C-W approach, for example, achieves a relative
RMSE and optimization error after 25 iterations of 77 %
and 64 %, respectively, using an initial training set of 150
data points. The same approach reaches a relative RMSE
and optimization error of 71 % and 54 % using 300 data
points. Moreover, the number of outliers is reduced with
the larger data set.
Theoretically, the GP regression model could identify

the power production of the individual wind turbines
directly (assuming no prior knowledge of the model).
Interestingly, including the approximate model in the
MA-GP approach improves the performance. The RMSE
of the identified model without using the approximate
model is only slightly larger than when including the
approximate model. In contrast, the optimization error
increases significantly. Most of the time the algorithm is
not able to converge to the actual plant optimum. It is an
indication for local optima. Their existence could perhaps
be reduced by constraints on the hyperparameter values.
Nonetheless, this observation indicates more robustness
in the optimization of the wind farm if the approximate
model is included in the MA-GP algorithm.

5. CONCLUSION AND FUTURE WORK

In this article a new MA-GP scheme is proposed with
uncertain inputs and outputs. This scheme considers noisy
inputs explicitly to alleviate bias in the GP regression
models. Moreover, the plant-model mismatch is distribu-
tively learnt and the wind farm distributively optimized.
In the numerical test case, it was shown that the method
to explicitly consider noisy inputs proposed in the article
does only slightly improve the performance of the MA-GP
approach in comparison to the ordinary MA-GP approach.
It shows that the ordinary MA-GP handles noisy inputs
relatively well and can be used for wind farm optimiza-
tion. Still the in the article proposed approach to handle
noisy inputs is simple to implement and comes without
additional costs in the optimization and should, therefore,
be considered as an attractive supplement.
The distributed learning improves the performance of the
MA-GP approach significantly (Andersson et al., 2020)
and enables the use of distributed optimization. In fact,
the wind farm investigated in the numerical example is
small, therefore distributed optimization is not required.
However, in a larger wind farm distributed optimization
may be simpler to use and may reduce computational
time. In addition, the distributed approach may be well
justified if a more physical approach to create the indi-
vidual turbine models is used. Currently, the control and
uncontrolled inputs of the wind farm are the inputs of
each turbine model. However, the wind flow represents the
actual physical connection between turbines, which should
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be considered in future work as inputs of the individual
turbine models in the MA-GP approach. This may reduce
the inputs of the GP model and possibly allow to reduce
the required training set to significantly reduce the com-
putational demand for larger wind farms.
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