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Abstract: The paper deals with the reconstruction of functions from sparse and noisy data
in suitable intersections of Hilbert spaces that account for orthogonality constraints. Such
problem is becoming more and more relevant in several areas like imaging, dictionary learning,
compressed sensing. We propose a new approach where it is interpreted as a particular kernel-
based multi-task learning problem, with regularization formulated in a reproducing kernel
Hilbert space. Special penalty terms are then designed to induce orthogonality. We show that
the problem can be given a Bayesian interpretation. This then permits to overcome nonconvexity
through a novel Markov chain Monte Carlo scheme able to recover the posterior of the unknown
functions and also to understand from data if the orthogonal constraints really hold.
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1. INTRODUCTION

Many machine learning problems can be formulated as
estimation of an unknown function from sparse and noisy
data (Hastie et al., 2001). The problem can be solved using
regularization theory, e.g. by adopting kernel-based meth-
ods (Schölkopf and Smola, 2001) that link Tikhonov regu-
larization with reproducing kernel Hilbert spaces (RKHSs)
(Aronszajn, 1950; Cucker and Smale, 2001). A more com-
plex situation emerges when a collection of maps, known
to share some common features, has to be reconstructed.
In such scenario, data from a function can be useful also
to reconstruct the other ones and the so-called multitask
learning problem arises (Caruana, 1997; Thrun and Pratt,
1997; Bakker and Heskes, 2003). One can e.g. exploit
vector-valued RKHSs that were developed in (Micchelli
and Pontil, 2005) and lead to multitask regularized kernel
methods (Evgeniou et al., 2005). Advantages of these ap-
proaches are described e.g. in (Pillonetto et al., 2010; Zhou
and Zhao, 2016; Maurer et al., 2016; Liu et al., 2019; Zhang
et al., 2019) in different scientific fields like biomedicine
and imaging. Learning rates for some multitask algorithms
have been also recently derived in (Xu et al., 2018).

A particular joint estimation problem involves functions
known to be mutually orthogonal. It is becoming more
and more relevant in many contexts including imaging,
compressed sensing, dictionary learning and conformal
mapping (Aharon et al., 2006; Tang et al., 2001; Ozolins
et al., 2013; Lai and Osher, 2014; Dong et al., 2016).
Non-convexity is the big issue and to overcome it many
optimization algorithms have bene proposed in the litera-
ture (Edelman et al., 1998; Absil et al., 2007, 2008; Wen
and Yin, 2013; Lai and Osher, 2014). However, a common
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limitation of all these approaches is that they are only
guaranteeing to find a local minimum. Some interesting
advances can be found in (Yuan et al., 2019) but only
when one or two constraints are active.

The main novelty in this work is that we interpret estima-
tion under orthogonality constraints as a particular kernel-
based multitask learning problem. Beyond orthogonality,
the unknown functions are assumed just to be smooth. To
simplify the exposition, we also assume that direct and
noisy samples of the maps are available but our approach
can be also easily extended to the case where only linear
transformations can be observed. Our novel algorithm
allows also to assess if orthogonality assumptions really
hold. This means that it can detect from data whether
some of the constraints are not active and remove them
from the estimation process.

Our new technique overcomes non-convexity adopting
stochastic simulation in place of deterministic optimiza-
tion. First, the problem is formulated by introducing
RKHS norms and other special regularizers that induce
orthogonality constraints. Then, we prove that such for-
mulation admits a stochastic interpretation where the
constraints are interpreted as particular Bayesian priors
containing also hyperparameters that regulate both func-
tion smoothness and the interaction among the tasks (pos-
sibly also establishing whether orthogonality constraints
are really present). This permits to use Markov chain
Monte Carlo approaches (Raftery and Lewis, 1996) and,
in particular, we define a Gibbs sampling scheme able
to reconstruct in sampled form the posterior of all the
functions. Numerical results involving simulated data are
then used to illustrate the potential of our new modeling
and computational framework.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 2339



The paper is organized as follows. Section 2 states the
orthogonal functions learning problem, whose solution
is reported in Section 3. In particular, after a review
of function estimation in the RKHS framework with its
Bayesian interpretation, we state the problem both in the
deterministic and in the probabilistic setup. The latter
will be crucial to build a suitable Markov Chain Monte
Carlo scheme that solves the problem by overcoming its
nonconvexity. Section 4 collects the numerical experiments
that show the effectiveness of the proposed approach.
Conclusions are drawn in Section 5.

2. PROBLEM STATEMENT

We consider unknown tasks (functions) denoted by fi :
X → R for i = 1, . . . , r. Each fi is assumed to belong
to a Hilbert space H with inner-product 〈·, ·〉H. Also, the
{fi}ri=1 are known to form an orthonormal set. One can
also think of a single unknown multi-task function that
embeds all the fi. It is denoted by f : X × {1, 2, . . . , r}
and belongs to the Hilbert space S. If f, g ∈ S, then the
inner-product is given by

〈f, g〉S =
r∑
i=1

〈fi, gi〉H.

Each f ∈ S is associated with an r × r Gram matrix Kf
whose (i, j)-entry is

[Kf ]ij = 〈fi, fj〉H.
In view of the stated assumptions, it holds that

Kf = Ir

where Ir is the r × r identity matrix. We assume that
direct and noisy samples of any fi are available. Suppose
to collect ni input/output pairs {xki, yki}ni

k=1 for each
i = 1, ..., r. Denote with Xi and Yi the sets of inputs and
outputs for the i−th task. For each fi, the measurements
model is

yki = fi(xki) + eki, k = 1, ..., ni, (1)

where eki is modeled as Gaussian white noise of variance
σ2
ki. From this, the aim is to estimate f from data.

3. KERNEL-BASED ORTHOGONAL FUNCTION
ESTIMATION

3.1 Single-task case: review of RKHSs

Before studying the multi-task case, we focus on esti-
mating a single fi(·) from Xi and Yi. To overcome ill-
posedness, we resort to the classic nonparametric regular-
ized approach and state the problem as

f̂i = arg min
fi∈H

ni∑
k=1

(yki − fi(xki))2

σ2
ki

+ γi‖fi‖2H . (2)

Uniqueness of the solution and small sensitivity with re-
spect to data perturbation is provided by choosing a Re-
producing Kernel Hilbert Space (RKHS) H as hypothesis
space. This particular structure tightens up completeness
with respect to the norm induced by the inner prod-
uct 〈·, ·〉H and well-defined function pointwise evaluation.
Moreover, from Moore-Aronszajn Theorem we know that
each RKHS is in one-to-one correspondence with a positive
semi-definite kernel operator K (·, ·) such that

• K (x, ·) ∈ H for all x in the domain, i.e. all kernel
sections belong to the space;

• 〈K (x, ·), f〉H = f(x), which is the so-called repro-
ducing property.

From this it results that each function in H inherits
the properties encoded by the kernel, e.g. regularity and
smoothness.
At this point, the real power of RKHS framework emerges:
indeed this result, together with the Representer Theo-
rem, yields that the solution of (2) is a linear combina-
tion of kernel sections {K (xki, ·)}ni

k=1. This means that
the starting infinite-dimensional problem admits a finite-
dimensional representation. Thanks to this strong result,
problem (2) can be reformulated in this way: introducing
Σi = diag(σ2

1i · · ·σ2
nii

), kernel matrix KH ∈ Rni×ni such
that [KH ]a,b = K (xa, xb) for a, b = 1, ..., ni and collecting
all outputs in vector Yi, we get

ĉi = arg min
ci

(Yi −KH ci)
>Σ−1

i (Yi −KH ci) + γic
>
i KH ci

= (KH Σ−1
i KH + γiKH )−1KH Σ−1

i Yi

= (KH + γiΣi)
−1Yi. (3)

Interestingly, this result admits a Bayesian interpretation.
In fact, giving ci a prior distribution ci ∼ N (0, (γiKH )−1)
and considering the measurements model Yi = KH ci +
ei with ei ∼ N (0,Σi) and known Σi, the posterior
distribution ci|Yi is Gaussian as well, and its mean is
indeed the solution (3). Moreover, we can notice that
the objective in (3) is the negative logarithm of the
joint distribution p(Yi, ci) = p(Yi|ci)p(ci). Exploring such
distribution is equivalent to exploring the posterior of ci,
since p(ci|Yi) ∝ p(Yi, ci).

3.2 Multi-task case: deterministic viewpoint

The general problem of multi-task orthogonal function
estimation is stated as follows.

f̂ = arg min
f

r∑
i=1

[
ni∑
k=1

(yki − fi(xki))2

σ2
ki

+ γi‖fi‖2H

]
+

+

r∑
i=1

∑
j>i

γij |〈fi, fj〉H|2. (4)

Adherence to observed data is balanced by two regular-
ization terms ruled by H and H respectively. The first
one is tuned by γi and ensures well-posedness of the
function estimation problem; in addition, it sets the degree
of smoothness for each fi(·). The other term encodes the
orthogonality constraint, and the inter-task interactions
are ruled by γij for i = 1, ..., r and j > i: in particular,
high values for γij aim at setting |〈fi, fj〉H| as close to
zero as possible. For problem (4) to be well-defined, we
assume that H and H have non-empty intersection.

To simplify notation, we consider the same set X of
input locations for each function fi, with X = ∪ri=1Xi of
cardinality n. This can be done without loss of generality:
for example, if for some i and input location xki the
measurement yki is not available, then it suffices to set
the corresponding weight σ2

ki to infinity.
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At this point, we take a finite-dimensional approximation
of (4) drawing inspiration from the Representer Theorem:

arg min
ci,

i=1...r

r∑
i=1

(Yi −KH ci)
>Σ−1

i (Yi −KH ci)+

+γic
>
i KH ci +

∑
i, j>i

γijc
>
i KHcjc

>
j KHci. (5)

Regularizing each fi over both H and H is now encoded
by the corresponding kernel matrices KH and KH . As-
suming that the input locations set X is unique for all fi
implies that kernel matrices are the same for each task.

Remark 1. If H is a RKHS, then KH is the associated
kernel matrix. Conversely, if H is just a Hilbert space as
e.g. L2, matrix KH has to be computed offline according
to the kernel sections {KH (xk, ·)}nk=1, which are known
to be dense in the intersection of H and H .

3.3 Multi-task case: Bayesian interpretation

To solve the nonconvex optimization problem stated in (5),
we leverage on its Bayesian interpretation along the lines
of Section 3.1. To this aim, we have to build a suitable
Bayesian model such that, taking the negative logarithm
of the joint density of all variables, we obtain the objective
described by (5).
Together with (1), we assume to have the following ficti-
tious measurements model

zij =
√
c>i KHcjc

>
j KHci + εij (6)

for each i = 1, ..., r and j > i. We model εij as Gaussian

white noise of variance γ−1
ij . Moreover, we assume that all

hyperparameters γi, γij and σ2
ki for i = 1, ..., r, j > i, k =

1, ..., n are mutually independent. The resulting Bayesian
network is presented in Figure 1.

γ1 · · · γi · · · γj · · · γr

c1 · · · ci · · · cj · · · cr

Σ1 Σi Σj Σr

Y1 Yi Yj Yr

√
c>i KHcjc

>
j KHci

· · · · · ·

zij

γij

Fig. 1. Bayesian network associated to problem (5)

The joint density associated with such model is the fol-
lowing. For ease of notation, let Y = {Yi}ri=1, Z =
{zij}ri=1,j>i, c = {ci}ri=1, Σ = {Σi}ri=1, γ = {γi}ri=1 and
Γ = {γij}ri=1,j>i: then, the network architecture yields

p(Y,Z, c,Σ, γ,Γ)

=p(Y,Z|c,Σ, γ,Γ)p(c|Σ, γ,Γ)p(Σ)p(γ)p(Γ)

=p(Y |c,Σ)p(Z|c,Γ)p(c|γ)p(Σ)p(γ)p(Γ)

=

(
r∏
i=1

p(Yi|ci,Σi)p(ci|γi)p(Σi)p(γi)

)
×

×

(
r∏

i=1
j>i

p(zij |ci, cj , γij)p(γij)

)
.

In particular, focusing on the factors p(Y |c,Σ), p(Z|c,Γ)
and p(c|γ), we have that

p(Yi|ci,Σi) ∝ e−(Yi−KHci)>Σ−1
i

(Yi−KHci)

p(ci|γi) ∝ e−γic
>
i KH ci

p(zij |ci, cj , γij) ∝ e
−γij(zij−

√
c>
i
KHcjc>j KHci)

2

.

Now, the key assumption consists in having all observa-
tions zij = 0 for each i = 1, ..., r and j > i. Therefore,
by inspection, we get that each ci has the following prior
distribution

ci|γi, cj>i, {γij}j>i ∼ N
(

0, P−1
i

)
, with

Pi =

(
µiKH +

∑
j>i

γijc
>
i KHcjc

>
j KHci

)
.

This, together with the measurements model (1), implies
that the posterior for each ci is Gaussian as well. However,
the direct computation of the posterior mean ĉi is not
feasible, due to the dependence from the hyperparameters
that have to be estimated from data as well. To overcome
this problem, we resort to the Markov Chain Monte
Carlo paradigm. The rationale is the following: first we
simulate the posterior p(c, γ,Γ,Σ|Y,Z = 0) = π(c, γ,Γ,Σ),
building a Markov chain whose invariant distribution is
π(c, γ,Γ,Σ); then we use N values of ci sampled from
such chain to approximate the posterior mean according to
the Monte Carlo paradigm. The first step is conveniently
implemented via Gibbs sampling. The strategy consists in
sequentially updating the full conditionals, which in our
case are

• π(ci|cj>i, γi, {γij}j>i,Σi) for each i = 1, ..., r;
• π(γi|ci) for i = 1, ..., r;
• π(σ2

ki|ci) for i = 1, ..., r and k = 1, ..., n;
• π(γij |ci, cj) for i = 1, ..., r and j > i.

We retrieve the closed form expression for each of the full
conditionals resorting to the properties of conjugate distri-
butions. In particular, since Gaussian prior and likelihood
yield a Gaussian posterior, we have

ci|Yi, zi,j = 0, cj>i, γi, γij ,Σi ∼ N (ĉi, P̂i) (7){
ĉi = PiKH (KH PiKH + Σ−1

i )−1Yi
P̂i = (KH Σ−1

i KH + P−1
i )−1.

We assume that all γi, γij and σ2
ki for i = 1, ..., r, j > i,

and k = 1, ..., n are endowed with an uninformative prior
distribution over the positive real axis. Hence, denoting
with Gamma(a, b) a Gamma random variable with mean
a/b, we get

γi|ci ∼ Gamma

(
n

2
,
c>i KH ci

2

)
, (8)
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σ−2
ki |ci ∼ Gamma

(
1

2
,

(yki − [KH ci]k)2

2

)
, (9)

γij |ci, cj ∼ Gamma

(
1

2
,
c>i KHcjc

>
j KHci

2

)
. (10)

In this Section we focus on the most general scenario in
which all r(r−1)/2 values of γij are assumed distinct. One
could instead want to consider a single value λ = γij for
all i = 1, ..., r and j > i. In this situation, (10) becomes

λ|c ∼ Gamma

(
r(r − 1)

4
,

∑
i=1,j>i c

>
i KHcjc

>
j KHci

2

)
.

The overall Gibbs sampling scheme for the general scenario
is summarized in Algorithm 1.

Algorithm 1 The input is the number r, data sets X and
Y (also expressed in vectors {Yi}ri=1) and the number M
of MCMC iterations. The output is a stochastic simulator
of the posterior π(c,Σ, γ,Γ).

for m = 1...M do
for i = 1...r do

if m=1 then
set ci(1) = (KH + γiΣi)

−1Yi;
else

sample ci(m) from (7);
end if
sample γi(m) from (8);
sample σ−2

ki (m) from (9), k = 1, ..., n;
build Σi(m);

end for
for i = 1...r and j > i do

sample γij(m) as (10)
end for

end for

Standard Gibbs sampling theory ensures that the sequen-
tial updating procedure of Algorithm 1 yields a Markov
chain whose invariant distribution is the posterior of inter-
est π(c, γ,Σ,Γ). Moreover, since the full conditionals are
well defined, it results that the chain is irreducible: this
is a sufficient condition for the Law of Large Numbers to
hold, thus legitimating the use of Monte Carlo integration.
Indeed, at the end of Algorithm 1, we are ready to estimate
the posterior mean ĉi for each i by selecting the last
N < M samples of the Markov chain and compute

c?i =
1

N

M∑
m=M−N

ĉi(m) for each i = 1, ..., r (11)

according to the Monte Carlo procedure. Notice that M
and N have to be chosen large enough for the Law of Large
Numbers to give sensible results and to discard the first
“burn-in” M −N samples of the Markov Chain.

The stochastic simulation scheme above presented pro-
vides also another important information: since hyperpa-
rameters γij are estimated from data as well, their values
indicate whether the orthogonality constraints really hold.
This allows us to eventually discard the ones that are not
active, e.g. whose γij takes a value that is lower than a
certain threshold.

4. NUMERICAL EXPERIMENTS

The functions of interest in our tests are

fi(x) = sin(2πxi), i = 1, 2, 3. (12)

Each fi is defined over X = [0, 1] and assumed to belong
to the Hilbert space H = L2. The RKHS H enforcing
smoothness is the Sobolev space induced by the spline
kernel

K (xa, xb) = min(xa, xb) with xa, xb ∈ [0, 1]. (13)

Such space is known to be contained in L2, so the problem
is well posed. In this scenario, regularizer KH entering
(5) is the kernel matrix associated to (13); on the other
hand, KH is defined by the L2-inner product of kernel
sections in H , which are known to be ramp and constant
functions. In particular, the (a, b) element of matrix KH
is, for a, b = 1, ..., n,

[KH]a,b =

∫ 1

0

K (xa, x)K (xb, x)dx

=
x3
a

3
+x2

a(xb − xa) +
xa
2

(xb − xa)2 + xaxb(1− xb).

Inputs are uniformly sampled from X and are collected in
X = {x1, x2, ..., x100}; assume without loss of generality
that xk1 < xk2 if k1 < k2.
We consider two scenarios in which a triple g = (g1, g2, g3)
defined by means of (12) has to be estimated. In particular,
we will perform our tests on

E1) g = (g1, g2, g3), with g1 = f1, g2 = f2 and g3 = f3;
E2) g = (g1, g2, g3), with gi = f1 for all i = 1, 2, 3.

These two scenarios describe two opposite situations: the
first involves a triple of orthogonal functions over L2,
while the latter is a degenerate case aimed at testing the
flexibility of our approach.
We assume that all output measures are available. Mea-
surements noise is defined in terms of components gj ,
j = 1, 2, 3: in particular, we have that the nominal noise
variance is σ2

nom = 0.22 and that the measurements of g1

and g2 corresponding to 30 adjacent samples in X can
be corrupted by very high noise. Defining σ2

kj the noise
variance affecting the measure of gj at the input location
xk, the situation is modeled in this way:

σ2
kj =

{
∼ U(0, 100) if i = 1, 2 and k ∈ [k̄, k̄ + 30]

0.22 = σ2
nom otherwise,

where k̄ ∈ {1, ..., 80} is randomly chosen at each experi-
ment and sets the outliers location in X . In all tests we
run our MCMC Algorithm 1 setting the noise variance
constant and equal to σ2

nom. Moreover, we aggregate all
hyperparameters γij in a single parameter λ.

For each experiment Ei we perform a Monte Carlo study of
100 runs. The performance will be studied from two points
of view. The first one will show whether the orthogonality
constraint improves the estimation in terms of fit, while
the latter will assess whether the estimate of λ is coherent
with the true orthogonality level of the components of
g. As regards the fit measure, we will consider for each
component gj

Fit = 100%

(
1− ‖gj − ĝj‖2

‖gj‖2

)
.
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Fig. 2. Single-run of E1. LEGEND: Solid Red=true function; Dashed Black=single task estimate without orthogonality
constraint; Dotted Blue = multi-task estimate with orthogonality constraint. In this run, the estimated value of λ
is 1.9× 104 and the outliers window involves the interval x8, ...x38.
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Fig. 3. Single-run of E2. LEGEND: see Figure 2. The estimated value of λ is 2.4 and the outliers are located in the
interval x17, ...x47.

Ei gi Single Task Orthogonal Multitask

g1 = f1 74.7 76.8
E1 g2 = f2 49.6 73.6

g3 = f3 84.0 84.1

g1 = f1 74.9 73.8
E2 g2 = f1 75.1 73.9

g3 = f1 89.1 88.9

Table 1. Mean fits for each experiment Ei in the 100-runs Monte Carlo experiment. Notice that
at each run a different set of outliers is drawn.

In practice, the L2 norm will be numerically computed
by taking the Euclidean norm on the vectors containing
the pointwise function evaluations over a grid of 1000
equispaced samples of X .

Figures 2 and 3 plot the performance for a single run for
E1 and E2 respectively, and Table 1 gathers the mean
fits in the overall Monte Carlo study. The solution of
the orthogonal multitask estimation is compared with the
decoupled single-task solution obtained by setting λ = 0.

Let us discuss the two approaches in terms of fit. As
regards experiment E1, which involves the estimation of
three orthogonal functions, a general improvement given
by the orthogonality constraint can be noted. The most
significative one concerns component g2 = f2: there, the
outliers strongly affect the goodness of the function esti-
mate and the additional information about orthogonality
significantly improves the performance. On the other hand,
function f1 = g1 is sufficiently slow to be less encumbered

by data unreliability.
In experiment E2 we test the flexibility of our approach
when the true functions are not orthogonal (in particular,
they are exactly the same). We can see that the fits do
not change significatively w.r.t. the unconstrained case:
this means that the estimated λ has a low value, thus
practically disactivating the orthogonality constraint. In
fact, the estimated λ in the experiment of Figure 3 is equal
to 2.4, while the one of Figure 2 is 1.9× 104.
Hence, our approach is able to effectively estimate hyper-
parameter λ that tunes the strength of the orthogonality
constraint. In particular, it allows us to detect the true
orthogonality level of the functions to be estimated.

5. CONCLUSIONS

This paper deals with multitask learning of functions
whose joint information is described by their orthogonality
relation. Such property enters as a suitable regularization
term in the classic nonparametric function estimation
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problem over Reproducing Kernel Hilbert Spaces. Then,
the probabilistic interpretation of such problem has been
exploited to set up a suitable Markov Chain Monte Carlo
scheme that overcomes the nonconvexity of the original
formulation and provides an estimate of all the involved
parameters. The proposed approach yields very promising
results that will be further investigated in future works.
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