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Abstract: Soft robots differ fundamentally from traditional robotics. Due to their composition
of soft materials, soft robots are inherently compliant and allow for large continuum-bodied
motion. Although some frameworks exist for describing the kinematics, the development of
dynamic models intended for control-oriented applications is relatively scarce and, to some
extent, underdeveloped. This paper provides a modeling framework to describe the nonlinear
dynamics of a soft robot using differential geometry of spatial curves. Furthermore, we include
the geometrically nonlinear and time-variant mechanical nature imposed by these soft materials
into our modeling framework. Numerical simulations of the dynamic model are presented, as well
as experimental validations of a study case soft robot to illustrate the accuracy. The proposed
modeling framework can be used to simulate the nonlinear dynamics of soft robots but also to
calculate the inverse dynamics required for model-based control.
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1. INTRODUCTION

In recent years, the area of soft robotics is gaining at-
tention amongst the scientific community, focusing on
developing compliant and lightweight robots composed of
’softer’ materials like silicone rubbers. Unlike traditional
robots, whose rigidity strives for precision and repeata-
bility, the morphology of soft robots arises from their
flexible mechanical structure that, to some degree, re-
semblances the mobility and robustness found in nature.
Consequently, researchers often attempt to fabricate soft
robots by mimicking the compliance and morphology of
living creatures, resulting in a diverse class of bio-inspired
robots, e.g., Marchese et al. (2014); Falkenhahn et al.
(2015). The use of hyper-elastic materials enables soft
robots to accomplish incredible features with relative ease,
e.g., adaptive grasping as shown in Galloway et al. (2016);
Kim et al. (2013), and terrestrial and aquatic locomotion
in Drotman et al. (2017); Choi et al. (2011). Soft robotics
posses several advantages over their rigid counterparts,
including weight, affordability, and safety in human-robot
interaction. Despite recent advancements, however, soft
robots are often controlled in open-loop or through teleop-
erations; and unlike rigid robotics, systematic frameworks
for deriving accurate dynamic models intended for model-
based control strategies are still lacking.
With the introduction of soft robotics, conventional ap-
proaches used to model the dynamics become less conve-
nient. In contrast to its rigid counterpart, soft robots the-
oretically have an infinite number of degrees-of-freedom;
consequently, describing the kinematics while moderating

Fig. 1. Soft robot manipulator module entirely 3D-printed
from a soft and flexible polyamide material.

complexity becomes increasingly more challenging. Soft
robotics differ from hyper-redundant robotics as their con-
tinuously deformable-body lacks joints and links. Hence,
they constitute a class of continuum robots. Some kine-
matic frameworks include the work of Jones (2006) that
describes spatially-constant curved continuum; the frame-
work of Chirikjian and Burdick (1994) describing con-
tinuum structures using modal shape functions, and the
work of Mochiyama and Suzuki (2002) providing a general
framework for a class of (inextensible) hyper-flexible robot
manipulators.
Although their kinematics is relatively well-understood,
little research is focused on modeling both the hyper-
flexibility and the nonlinear (time-varying) dynamics re-
garding the deformation of soft materials, which might
stem from a perceived multidisciplinary gap between the
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fields of control and continuum mechanics. Soft mechanical
structures require accurate models to both describe the
static and dynamic nature under large deformations, and
the hyper-elastic and visco-elastic material behavior in
control-oriented research is often neglected. As of this
day, model-based control strategies in soft robotics are
still scarce, and many researchers employ linear control
methodologies (e.g., PD or PID). Ultimately, the strong
nonlinearities in soft robotics encourage the use of model-
based strategies, like computed-torque controllers. Unfor-
tunately, model-based approaches issue the trade-off be-
tween accuracy and complexity. To reduce model com-
plexity in these highly-nonlinear systems, some researchers
exploit machine learning techniques, including Thuruthel
et al. (2017); Runge et al. (2017); Nakajima et al. (2018).
Others use snapshot methods of finite element simulations,
Coevoet et al. (2017); Thieffry et al. (2017), or mass-
lumped models, Falkenhahn et al. (2015). Yet, ultimately,
systematic and general modeling approaches applicable to
a wide range of soft robots and soft materials are still
lacking, whereas a large number of models are likely not
suited for model-based control.
In this work, we provide a systematic framework to model
the dynamics of a class of soft robotics, namely soft robot
manipulators. To describe their continuum-bodied motion,
we exploit the differential geometric properties of spatial
curves. In addition, the hyper- and visco-elastic nature of
the soft robot is described in terms of the curve kinematics
whose stiffness identification is obtained through finite ele-
ment methods. As a study case, we fabricated a soft robot
manipulator that is fully 3D-printed, as shown in Fig. 1.
The soft robot and its dynamic model is made publicly
available (see Caasenbrood (2019)). The soft robot is com-
posed of printable polyamide material with a relatively low
Young’s modulus (≤ 80 MPa). The soft robot is printed
through a printing process called Selective Laser Sintering,
which ensures high detail for complex geometries. The soft
robot has three (independent) pneumatic bellows, and by
inflation or deflation of these embedded bellows, the elastic
body is capable of elongation and omnidirectional bending.
The organization of this work is as follows. In section 2,
we describe a framework for modeling the dynamics of a
hyper-flexible soft robot, followed by a material analysis
in section 3. Then, the simulation results of the proposed
model and the experimental validation will be discussed in
section 4, followed by a brief conclusion in section 5.

2. DYNAMIC MODEL OF SOFT ROBOT

2.1 Kinematic representation

Let the deformation of the hyper-elastic body be rep-
resented by a generalized coordinate vector q(t) ∈ Rn

with n the number of degrees-of-freedom. To represent
the posture of the soft robot, we introduce a smooth one-
dimensional curve passing through the geometric center of
soft robot (see Fig. 2). This spatial curve maps a spatial
parameter σ ∈ R and a generalized coordinate vector q(t)
to a position vector in R3, that is,

p : Rn × R 7→ R3. (1)
We refer to this spatial curve as the backbone of the
soft robot, since it depicts the geometric deformation of

Fig. 2. Curve geometry for the soft robot expressed in the
state vector q(t) and its geometrical mapping p

the elastic body. Next, suppose that the parameter σ can
evolve on a bounded domain σ ∈ [0, l] with l(t) ∈ R>0

the extensible arc-length of the soft robot. Then, given
any instance t ∈ R≥0, the set P =

{
p ∈ R3 | σ ∈ [0, l]

}
describes the full configuration of the soft robot. In this
work, we model the spatial configurations of the soft
robot according to the Piece-wise Constant Curvature
condition (PCC). The PCC condition implies that the
curvature is spatially independent, and thus the curvature
depends exclusively on time, i.e., κ(σ, t) = κ(t). The PCC
condition has been proven to be remarkably consistent
while avoiding kinematic complexity (e.g., Marchese and
Rus (2016); Falkenhahn et al. (2015)). From the PCC
condition, we can express the generalized coordinates for
the soft robot

q(t) = ( l κx κy )
>
, (2)

where l(t) is the arc-length, and κx(t), κy(t) ∈ R the
curvatures in the x-z and y-z plane, respectively. Although
the choice of generalized coordinates is not unique since
the soft body has no well-defined joints, we detail the
importance on this particular choice of q(t) later in this
section.
For each particular point σ on the backbone curve, we
introduce an extended Frenet frame described by the
orientation matrix Φ(q, σ) ∈ SO(3), belonging to the
group of special orthogonal matrices. The expression for
the orientation matrix of the Frenet frame 0Φ(q, σ) viewed
from the base frame is given by

0Φ(q, σ) =

 sφ
2va + ca −sφcφva cφsa

−cφsφva cφ
2va + ca sφsa

−cφsa −sφsa ca

 , (3)

with abbreviated notations ca = cos(σκ), sa = sin(σκ),
va = 1 − ca, cφ = cos(φ) and sφ = sin(φ) with φ =

atan2(κy, κx) the orientation angle, κ = (κx
2 + κy

2)1/2

the net curvature. The position vector for any point σ on
the backbone curve can be obtained by spatial integrations
of the tangent vector along the backbone, that is,

0p(q, σ) =

∫ σ

0

0Φ(q, η) ez dη, (4)
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where ez = (0 0 1)
>. Before deriving the kinematics, let

us first introduce some coordinate transformations
ξΦ(q, σ) := 0Φ(q, ξ)>0Φ(q, σ), (5)
ξp(q, σ) := 0Φ(q, ξ)>0p(q, σ), (6)

for any ξ, σ ∈ R. The expressions (4) and (5) allow
us to transition between different coordinate frames on
the smooth backbone curve. Second, we introduce the
mapping [ · ]× as the isomorphism between R3 and so(3),
i.e. the Lie algebra of the group SO(3). Specifically, given
a vector v ∈ R3, [v]× denotes the skew-symmetric matrix
that satisfies [v]×w = v × w for all w ∈ R3. According
to Mochiyama and Suzuki (2002), the spatial derivative of
the orientation matrix 0Φ(q, σ) ∈ SO(3) can be written as

∂

∂σ

(
0Φ(q, σ)

)
= 0Φ(q, σ) [θ(q, σ)]× , (7)

where [θ(q, σ)]× ∈ R3×3 is a skew-symmetric matrix with
θ(q, σ) ∈ R3 a unique vector satisfying (7). The vector θ is
referred to as the frame-rate vector as its entries represent
the angular change between frames regarding a change in
σ. Given this geometric notion of the angular change, the
Jacobian of the frame-rate vector is defined by

Jω :=
∂θ

∂q
=

(
0 0 −1
0 1 0
0 0 0

)
. (8)

In literature, the Jacobian Jω is also called the rotational
axis matrix as its columns correspond to the joint axis
of rotation. Here, we stress the importance of the choice
of generalized coordinates as in (2) since Jacobian matrix
Jω naturally arises as a constant matrix iff the joint axes
coincide with the axes of the Frenet frames. Regarding
translation kinematics, we introduce a body-rate vector
h = (0 0 ε)

> with ε(q) := l − l0, which represents the
local translational change due to extensibility of the soft
robot. The Jacobian of the body-rate vector is referred to
as the translational axis matrix whose columns represent
the joint axis of translation. Its Jacobian is defined by

Jv :=
∂h

∂q
=

(
0 0 0
0 0 0
1 0 0

)
. (9)

Let V (q, σ) ∈ R6 be a concatenated vector of the linear
velocities and angular velocities for a particular point σ.
Then, we can express the twist for any point σ on the
backbone curve as follows

V (q, q̇, σ) =

∫ σ

0

Adr(q, σ, η) J
∗ q̇ dη, (10)

where Adr(q, σ, η) ∈ R6×6 is the adjoint transformation
matrix, and J∗ =

(
J>
v , J

>
ω

)> the concatenation of the
time-invariant Jacobians in (8) and (9). More specifically,
the adjoint transformation in (10) maps the twist velocity
vector from the coordinate frame corresponding to η onto
the coordinate frame corresponding to σ. The adjoint
transformation matrix in terms of a rigid body transfor-
mation between η and σ is described by

Adr(q, σ, η) :=

(
σΦ(q, η) [r(q, σ, η)]×

σΦ(q, η)

03
σΦ(q, η)

)
, (11)

where r(q, σ, η) = σp(q, η) − σp(q, σ) is the relative posi-
tion vector of frame η viewed from the frame at σ.

2.2 Dynamic model

From the kinematic relation in (10), we can further assess
the dynamics of the soft robot using the Euler-Lagrange
equation of motion, that is,

∂

∂t

∂L
∂q̇

− ∂L
∂q

= Qnc, (12)

where the Lagrangian is defined by L(q, q̇) := T (q, q̇) −
V(q), respectively the difference between kinetic and po-
tential energy, and Qnc the generalized non-conservative
forces. To obtain the dynamics for a hyper-flexible
continuum-bodied solid, suppose each point σ on the curve
p(q, σ) corresponds to an infinitesimal slice of the contin-
uum body. Given this notion, the inertia tensor for such
an infinitesimal body at point σ can be written as

M(q) = diag (mσ, mσ, mσ, Iσ) , (13)
where mσ(q) = m0/l(q) is the mass line density, Iσ(q) ∈
R3×3 the area moment of inertia tensor, and the operator
diag(·) forms a block diagonal matrix. In this work, the
inertial properties of the infinitesimal slices can be ap-
proximated by a flat disk of radius r with mass mσ(q).
Now, the total kinetic energy function of the soft robot
manipulator can be written as

T (q, q̇) =
1

2

∫ l

0

V (q, q̇, σ)>M(q)V (q, q̇, σ) dσ. (14)

Similarly, for the potential energy function describing the
elastic and gravitational potential forces, we can write

V(q) =
∫ l

0

m(q) 0g>0p(q, σ) dσ +

∫ ε

0

ke(η)η dη

+

∫ β

0

kb(η)η dη, (15)

where 0g ∈ R3 the gravitational acceleration vector,
β(q) := κl the bending angle of the end-effector, and
kb : R 7→ R>0 and ke : R 7→ R>0 respectively describe
the nonlinear elongation and bending stiffness imposed
by the hyper-elastic material and nonlinear geometrical
deformations of the elastic body. It shall be clear that these
stiffness functions are nonlinear, possibly time-variant, and
they are unique for each soft robotic system due to its
dependency on in geometry and material composition. In
section 3, we will further detail the hyper-elasticity and
visco-elasticity of elastomer materials.
By substitution of the Lagrangian into (12) the Euler-
Lagrange equations of motion can be written in the form

D(q)q̈ + C(q, q̇)q̇ +N(q) + F (q̇) = τ(t) + τext(t) (16)
where D(q) ∈ R3×3 is the inertia matrix, C(q, q̇) ∈ R3×3

the centripetal-Coriolis matrix, N(q) ∈ R3 the vector
related to the gravitational and elastic potential forces,
F (q̇) = Rq̇ the vector related to the dissipative forces with
positive definite matrix R ∈ R3×3, and τ and τext are the
input forces and external disturbance forces, respectively.
In conventional soft robotics, the external forces τ(t) are
realized through pneumatic or hydraulic actuation. The
dynamic model of the soft robot is assembled using the
MATLAB/Symbolic Toolbox, and the source code is made
publicly available at Caasenbrood (2019).
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3. MATERIAL MODEL FOR ELASTOMERS

3.1 Hyper-elastic stiffness

As mentioned previously, the key difference between tra-
ditional robotics and soft robotics is that soft robotics
exploit their flexible morphology to accomplish mobility.
Consequently, soft structures undergo large (reversible)
deformation by virtue of their low elasticity. The presence
of large deformations and rubber-like materials inherently
leads to state-dependency in the mechanical compliance
of the solid, and thus Hooke’s law for linear elasticity no
longer holds. As previously discussed, the hyper-elasticity
and the nonlinear geometrical deformations of the soft
robot can be characterized by a nonlinear stiffness func-
tion. To ensure that these nonlinear stiffness functions
are well-posed, we impose the following conditions for the
elongation and bending stiffness:
(1) ∃k, k̄ k ≤ ki(x) ≤ k̄ ∀x ∈ R,
(2) ki(x) is strictly convex with argmin ki(x) = 0,

with subscript i ∈ {e, b} denoting the bending and elon-
gation elasticity, respectively. Condition 2) is a necessary
condition as it inhibits any elasto-plastic behavior, i.e.,
elastic bodies undergoing non-reversible deformation due
to applied forces. Hence, we propose the following ansatz
for the hyper-elastic stiffness model:

ke(ε, α) = α1 + α2

[
tanh(α3ε)

2 − 1
]
, (17)

kb(β, α) = α1 + α2

[
tanh(α3β)

2 − 1
]
, (18)

where αi ∈ R for i ∈ {1, 2, ..., 6} are stiffness parameters.
The nonlinear contributions in (17) and (18) represent
strain-hardening of the elastomer material. To satisfy the
stiffness conditions mentioned above, it should hold that
α1 > α2, α4 > α5, and α3,6 > 0.
From static input-output behavior, i.e., the relationship
between applied pressure and generalized deformation, we
can identify the hyperelasticity material parameters α. It
shall be clear that this quasi-static relation can be obtained
experimentally, however, due to complexity under large
deformation, finite element analysis was preferred. The fi-
nite element simulations are performed using Abaqus/CAE,
a finite element solver. Here, we used an incompressible
neo-Hookean material model. To our knowledge, the 3D-
printed polyamide material is linear isotropic with Young’s
modulus E = 80 MPa and a Poisson ration ν = 0.49. In
accordance to linear elasticity, the neo-Hookean material
constant is C1 = E/4(1 + ν). The numerical simulations
also include (tangent) self-contact to better reflect the
actuation limits. The mapping from differential pressure
to actuation force/torque can be obtained via geometric
analysis. The least-squares nonlinear regression results for
both the elongation stiffness ke(ε, α) and bending stiffness
kb(β, α) are shown in Fig. 3. Note that the regression is
slightly biased towards the positive strain regime, to better
represent the stiffness under positive differential pressure.
The material parameters are given in Table 1.

Table 1. Estimated material parameters.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

αi 2.23e+3 1.74e+3 -4.55e+2 4.23e-1 3.99e-1 -2.29e-1
γi 3.21e+2 5.22e-1 2.84e+2 1.82e-3 2.84e+2 1.82e-3

Fig. 3. Regression results of the elongation stiffness and
bending stiffness driven by finite element analysis.

3.2 Visco-elasticity

Unlike ideal elastic materials, polymer materials (typi-
cally) inhibit abrupt change in stress, since the material
evenly disperses the stress concentration within the poly-
mer chain network at a slower rate relative to the applied
strain rate. This phenomenon of the stress dispersion is
called creep, and we characterize this viscous behavior by
introducing a new state vector λ(t) ∈ R3, the creeping
strains. From Meyers and Chawla (2008), the Kelvin-Voigt
model for creep can be described by a first-order ordinary
differential equation of the form:

λ̇i(t) = −γ(2i−1)λi − γ(2i)q̇i, (19)
where the vector γ = (γ1, γ2, ..., γ6)

> represents a vector
of visco-elastic material parameters, and the state vari-
ables λi(t) with i ∈ {1, 2, 3}, i.e., the creep strains. Here,
the visco-elasticity can be intuitively included into (16)
as an external disturbance force τext, that is, τext = K>λ
with K a compliance matrix, which maps the creep strains
to forces. Since creeping strains are difficult, if not impos-
sible, to distinguish from the true strain in experimental
data, their corresponding material parameters γ and the
compliance K are determined empirically (e.g., unforced
oscillations). The estimated material parameters for the
visco-elastic dynamics are given in Table 1. It is worth
mentioning that the initial conditions for the creeping
strains λ(t0) are also determined a priori.

4. NUMERICAL ANALYSIS

4.1 Simulation Model

In this section, we perform numerical simulations of the
dynamical model detailed in (16). The purpose of the sim-
ulations is twofold, namely, to investigate the dynamic be-
havior of the model and to verify the model experimentally.
The solutions of the ordinary differential equation in (16)
are obtained through an explicit time-integration scheme
(ode45.m), in which the timesteps are set at ∆t = 1 ms.
For the remainder of this section, we denote the initializa-
tion of the states variables as q(t0) = q0 and q̇(t0) = q̇0. We
choose the following physical properties for the soft robot
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study case: the mass m = 49.4 g, the undeformed arc-
length l0 = 64.4 mm, and the radius of the cross-sections
r = 23.5 mm. The material parameters for hyper-elasticity
and visco-elasticity model are chosen according to Table
1, and the creep compliance is K = diag{k1, k2, k3} with
k1 = 502.3 N/m and k2 = k3 = 1.53 · 10−2 Nm. Fur-
thermore, we choose R = diag(c1, c2, c3) with coefficients
c1 = 0.12 Ns/m and c2 = c3 = 5.93 · 10−7 Nms. The
simulation code is made available at Caasenbrood (2019).

4.2 Simulations and model validation

We first investigate the dynamics of the unforced system.
By examining the gradient of the potential energy function
V(q), we conclude the existence of one stable set of
equilibria and one unstable equilibrium. The potential
energy has a local maximum for the solution (l, κx, κy) =
(l0−mg/α3, 0, 0), which is the upright position of the soft
manipulator. Furthermore, by using the bisection method
to find the zero-crossing of the gradient of the potential
function, we find that all stable solutions tend to the set
Ω =

{
q ∈ R3 : l = 0.0635,

√
κ2
x + κ2

y) = 0.1737
}

, which
corresponds to the hanging position of the soft robot. This
stable set of equilibria arises from the balance between the
gravitational and elastic potential force.
To show the existence of stable solutions, we simulated
the dynamic model with non-zero initial conditions. The
following non-zero initial conditions are chosen q0 =
[0.064, 25, 0]> and q̇0 = [0, 0, 1500]>. The simulation re-
sults are shown in Fig. 4 and Fig. 5, where we show
respectively the state trajectories and the trajectories of
the end-effector (i.e., σ = l(t)). As can be seen, the state
solutions will orbit around the stable equilibrium, and,
due to dissipation, they eventually converge to the set
Ω. Besides the existence of stable solutions, the numerical
results illustrate the coupled dynamics between the elon-
gation and bending of the soft robot. Due to the difference
in mechanical stiffness for elongation and bending, we
observe high-frequency and low-frequency oscillation for
the length l(t), whereas we solely observe low-frequency
oscillations for the curvatures κx(t) and κy(t). Regarding
the elongation dynamics, the high-frequency oscillations in
l(t) are directly coupled to the large elongation stiffness. In
contrast, the low-frequency oscillations are passed from the
curvature dynamics to length dynamics; conversely, the
dynamics of the elongation barely affect the curvatures.
To show the validity of the proposed dynamic model, we
compare the measured state trajectories of the physical
soft robot to simulated trajectories with similar initial
conditions. We like to stress that sensing for soft robotics
is rather challenging, due to their large deformations
and hyper-flexibility. Instead of measuring the full state
information q and q̇ directly, an inertial measurement unit
(BNO055) is used to measure the angular response of
the end-effector (i.e., corresponding to σ = l(t)). Using
a sensor-fusion approach, the bending angle of the soft
robot can be recovered, i.e., β = κl.
For the validation, two experimental trails are considered.
In the first experiment, the soft robot is deformed slightly
and then released from rest, which correspond to the initial
conditions q0 = [ 0.065, 4.75, 0 ]

> and q̇0 = 03. Since

Fig. 4. State trajectories of simulated dynamics of the
soft robot manipulator with initial conditions q0 =
[0.064, 25, 0]> and q̇0 = [0, 0, 1500]>.

Fig. 5. Three dimensional representation of end-effector
trajectories from the soft robot model.

the robot is deformed slightly, the hyper-elasticity and
visco-elasticity material behavior become less apparent.
In the second case, the soft robot is deformed within the
nonlinear visco-elastic regime and then released from rest,
which corresponded with the following initial conditions
q0 = [ 0.067, 11.25, 0 ]

> and q̇0 = 03. Here, the nonlinear
and time-dependent material effects cannot be neglected.
Since the creep strains λ are indistinguishable from the
true strain, optimal initial conditions for λ(t0) are deter-
mined empirically. The validation results are shown in Fig.
6.
From the validation results, we observe that the state
trajectories of the end effector closely match the true
trajectories, even for significant (nonlinear) deformations.
For the first case (inside linear elastic regime), the RMS
error and the maximum error is ±0.19 and ±0.50 deg,
respectively. For the second case (outside the linear elastic
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Fig. 6. Validation results for the dynamic model, where the
dashed lines represent the experimental data from the
IMU and the solid lines the simulated trajectories.

regime), the RMS error and the maximum error is ±0.55
and ±1.84 deg, respectively.

5. CONCLUSION

In this paper, we provided a theoretical framework to
model the kinematics and the dynamics of soft robot ma-
nipulators composed of elastomer material. By modeling
the soft robotic body as a constant-curvature spatial curve,
the nonlinear geometric deformation of the hyper-flexible
body can be represented, and the continuum-body kine-
matics can be derived analytically. Given the kinematic
model, a nonlinear dynamic model of a hyper-flexible
soft robot manipulator can be obtained using the Euler-
Lagrange equations. The validity of the proposed approach
is demonstrated by comparing the state trajectories of
the physical soft robot and its representative dynamic
model, showing a significantly small discrepancy between
the model and the physical system. The advantage of
the approach is its flexibility to suit various soft robotic
systems undergoing similar continuum-body deformations
(e.g., soft grippers, artificial muscles, fish-tails) and there-
fore eliminating the need for complex or computational
expensive changes to the dynamic model. In future work,
the proposed modeling approach could be used for other
soft robotic systems, and the model could be used for
the synthesis of model-based controllers, e.g., computed-
torque controllers.
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