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Abstract: This paper discusses the use of model predictive control (MPC) for industrial
robot applications with physical robot-environmental interaction. A model predictive interaction
control (MPIC) scheme is introduced that deals both with the prediction of the robot motion
and the forces between robot and environment. With regard to the robot motion, either the
rigid body dynamics, a simplified model, or a cascaded control structure can be employed. The
external forces or torques are treated as additional state variables whose dynamics are based on
the elastic behavior of the contact surface. Since the force prediction depends on the knowledge
of the environmental stiffness, a method for online estimation is discussed. The approach allows
to realize different tasks as motion control, compliance control, direct force control as well
as hybrid force/motion control by adjusting the weighting factors in the cost function. The
implementation is based on the nonlinear MPC software Grampc and the library Pinocchio
for computation of rigid body dynamics. Besides comparing the different robot dynamics models,
the approach is demonstrated for a hand-guiding and a table wiping task.

Keywords: Nonlinear model predictive control, physical robot-environment interaction, force
control, motion control, hybrid force/motion control, compliance control, stiffness estimation

1. INTRODUCTION

Model predictive control (MPC) is widely used in the
robotics community. This is, on the one hand, due to
its ability to handle linear or nonlinear multiple-input
multiple-output systems with state and input constraints.
On the other hand, the formulation of the control task as
optimization problem offers a high degree of flexibility. The
drawback is the high computational demand for the online
solution of the optimization problem. Some examples for
the application of MPC in robotics are the stabilization of
the trunk of a humanoid robot in Koenemann et al. (2015)
or the imitation of the human gait in Schultz and Mombaur
(2010). Especially the consideration of contact restrictions
in MPC can lead to advantages over alternative methods
as shown in Mordatch et al. (2012).

In the case of industrial robots, the use of classical control
methods prevails. However, the system is per se con-
strained by mechanical limits, such as maximum joint
positions and velocities. Furthermore, there are often task-
specific limitations e.g. workspace bounds or the maximum
payload at the tip of robot. In motion planning, these
constraints as well as the rigid body dynamics are already
taken into account. For example, Verschueren et al. (2016)
show the time-optimal motion planning for a six degree of
freedom robot under consideration of task-specific bound-
aries. An application of MPC for the time-optimal tran-
sition between operating points and their stabilization is
discussed in Zhao et al. (2004), at least for simple robot ex-
amples. Lee et al. (2005), by contrast, present an approach

using recursive algorithms for the dynamic calculation of
arbitrarily complex robot structures for optimization.

For tasks that require physical interaction between the
robot and the environment, e.g. grinding or welding, the
application of model predictive control is more difficult,
since the robot has to predict the resulting forces and
torques. In Wahrburg and Listmann (2016) a model pre-
dictive admittance controller is proposed that constrains
the occurring force magnitudes and allows to handle en-
vironments with different stiffness. The work of Matschke
et al. (2017) combines predictive path-following with force
control, whereby a linear spring model is used to predict
the forces. Similarly, in Kazim et al. (2018) predictive
path-following is combined with admittance control by
including the admittance dynamics in the optimal control
problem. However, due to the high effort for the optimiza-
tion, the application of such approaches is often restricted
to systems with few degrees of freedom.

This paper introduces a novel formulation for model pre-
dictive interaction control (MPIC) that includes the dy-
namics of the robot and an additional model for the
prediction of external forces and torques. Hereby, a spring
model that describes the elastic behavior of the interaction
object is used to derive the force dynamics. Similar as in
Jung et al. (2001), the required object stiffness may be
estimated from position and force measurements. Different
control tasks such as motion control, compliance control,
force control or hybrid force/motion control can be realized
with the same MPIC approach by appropriately designing
the cost function. To tackle the computational demand for
typical industrial robots, the implementation is based on
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Fig. 1. MPC of robots in interaction with an environment.

state-of-the-art software packages. The optimization prob-
lem is solved using the nonlinear model predictive control
software Grampc (Englert et al., 2019) that implements
an augmented Lagrangian algorithm with an inner gradi-
ent method. The computation of the rigid body dynamics
as well as their analytic derivatives is performed using the
toolbox Pinocchio (Carpentier et al., 2019) which applies
the computationally efficient articulated body algorithm
and the recursive Newton-Euler algorithm. The proposed
MPIC approach is demonstrated for a hand-guiding and a
table wiping task. Furthermore, the real-time feasibility is
investigated using different models for the robot dynamics.

2. INTERACTION MODELING

This section discusses the model of the interaction between
a robot and an environment. The considered system is
composed of the robot system and the environmental
system as pictured in Figure 1. The robot subsystem de-
scribes the motion of the robot, whereas the environmental
subsystem describes the behavior of the forces.

2.1 Modeling of soft contact interaction

Many materials provide a elastic behavior which is de-
scribed by the stress and strain under an acting force.
In the further course, the focus is solely orientated on
the linear-elastic material behavior, which is described by
Hooks’ law

σ = Eε (1)

with the internal stress σ = Fext

A [N/mm
2
], the propor-

tional factor E [N/mm2] and the strain ε = ∆l
l0

under
the assumption of a homogeneous and isotropic material.
The law may be reformulated into the force-deformation
relation

Fext =
EA

l0
∆l = Ke∆l , (2)

with the spring stiffness Ke and a deformation ∆l. The
relationship shows that the linear-elastic material behavior
is described by a spring equation with the stiffness Ke

according to the material properties.

The single degree of freedom force model will be now
extended to the general six degree of freedom form for
the robotic interaction case. For reasons of clarity, further
interactions are considered between the robot tip and an
environmental object. Nevertheless, the methodology also
includes other forces and moments at the robot structure.
The wrench

Fext = [FT
ext,m

T
ext]

T (3)

is the 6× 1 vector of the contact forces F ext and moments
mext acting between the robot end-effector and the envi-
ronment. The pose vector

p(q) = [t(q)T,φ(q)T]T = T b
e(q) (4)

F ext

t
t⊥

∆t ∆φz

mz

Fig. 2. Schematic model of a compliant environment with
translational and rotational deformation.

composes the end-effector position t and the orientation,
denoted by the Euler angles φ, which is calculated by
the coordinate transformation of the joint position to the
Cartesian world frame. The Cartesian motion of the pose

ṗ(q, q̇) = [v(q, q̇)T,ω(q, q̇)T]T = J(q)q̇ , (5)

described by the translational and the angular velocities
of the end-effector v(q, q̇) and ω(q, q̇), is determined by
the product of the Jacobian J(q) and the joint velocity q̇.

The spring model (2) can be used in the operational space
by calculating the distance between surface pose and end-
effector pose as pictured in Figure 2. The following topic
will be first introduced in the translational case and be
extended later to the rotational case. The model (2) is
used to calculate the force

F ext = Ktrans(t− t⊥) = Ktrans∆t (6)

from the penetration of the end-effector into an elastic
environment ∆t with the positive semi-definite transla-
tional environmental stiffness matrixKtrans. The reference
position t⊥ of the undeformed object is formed at the
origin of the normal of the undeformed object surface
N ∈ R3 through the end-effector position t.

The aim of the approach is to handle the force as a state
variable in the MPIC. To this end, the dynamic behavior
of the force has to be considered. Under the assumption of
an end-effector motion in normal direction, the reference
position will be constant, i.e. t⊥ = const. Thus, the time
derivative of the force is determined according to

Ḟ ext = Ktransṫ = Ktransv . (7)

This means that the change of the force is proportional to
the Cartesian end-effector velocities.

For the rotational case, a torque along a single axis i ∈
(x, y, z) is considered. The torsional torque

mext,i = Ktors,i∆φi (8)

is calculated due to rotational deformation ∆φi and a
torsional stiffness Ktors,i of the environment along a single
axis. The extension to the rate of change of the torques

ṁext,i = Ktors,i ωi (9)

is similar to the procedure in the translational case
using the angular velocity ωi. The vector mext =
[mext,x,mext,y,mext,z]T consists of the torques along the
three Cartesian axes. Hence, the full wrench dynamics
Ḟext is build by

Ḟext =

[
Ḟ ext

ṁext

]
=

[
Ktransv
Krot ω

]
= Keṗ . (10)

The stiffness of the compliant object and the environmen-
tal surface play an important role for determining the
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spring model. The next section will discuss the online
estimation of the stiffness during an interaction with an
object.

2.2 Stiffness estimation

The accuracy of the force prediction highly depends on
the knowledge of the environmental stiffness, which is often
not a-priori available. To this end, an approach for stiffness
estimation is presented, where the actual interaction with
its resulting force and deformation is evaluated in the
manner of Jung et al. (2001).

The resistance against elastic deformation of an environ-
ment due to an applied force is described by the stiffness.
The value can therefore be calculated in the scalar case
by the relation of the force and the resulting deformation
according to

K =
Fext

t− t⊥
=
Fext

∆t
, (11)

see e.g. (Spong et al., 2005). Principally, the actual stiffness
is determined with every new force and position measure-
ment. However, especially the force measurement is noisy,
which requires a filtering of the estimation.

To this end, a Kalman filter is used to filter the noisy
stiffness calculation of (11) with a constant autonomous
parameter model. The initialization of the stiffness estima-
tion K0 may be done with an approximated stiffness values
of the expected interactions. The standard time-discrete
Kalman filter algorithm is updated in every sample step
if a force respectively torque threshold Fext,i > Fmin or
mext,i > mmin,∀i ∈ [x, y, z] is exceeded. The initial value
of Ke should be chosen to a high value to overestimate the
force in the initial phase. Thus, the robot will stop faster
in case of a contact.

Besides the force measurement, the penetration of the
end-effector in the environmental object is a necessary
value for stiffness estimation. To this end, the reference
position t⊥ of the undeformed environment is the base
for calculating the value. One way for finding this pose
is to supervise a threshold for detecting the first contact.
If the penetration motion is done solely in direction of
the acting force, the reference pose is constant over the
task. However, if a relative motion with respect to the
acting force complementary directions exist, the reference
position is changing and has to be estimated.

The surface of an environmental object can be modeled for
example as a plane E in the Cartesian space. To this end,
the reference position t⊥ defines the support vector of the
plane and the force vector at the point of contact detection
defines the corresponding normal vector N . With both
information, the plane of the environmental surface at the
contact point is defined.

In the next step, the distance of the end-effector position
to the plane is determined by the approach of the dropped
perpendicular foot. Thereto, a help line h = t + cN
standing vertically on the plane E is built up. Afterwards,
the intersection point of E and h has to be found and
the distance of this point to the end effector position t
determined. This distance is the penetration depth ∆t of
the end-effector in the environment.

3. MODEL PREDICTIVE INTERACTION CONTROL

The model predictive interaction control scheme deals
with the control of a coupled robot-environment system
during interaction tasks. As pictured in Figure 1, the
coupling between the robot subsystem and the passive
environmental subsystem is established by the force acting
on the robot structure. This section discusses the model
predictive control scheme for interaction tasks. In the first
step, the basic functionality of MPC is described with a
generic formulation of the optimization problem. This will
be concretized step by step for example by the system
dynamics, composed of the robot and the interaction dy-
namics. Further components of the optimization problem
such as constraints and the choice of the cost function will
be dealt with in the further course. Finally, the numer-
ical solution of the optimization problem and the robot
dynamics calculation is discussed.

3.1 Basic structure

Model predictive control is based on the iterative (subop-
timal) solution of a dynamic optimization problem

min
u

J(u;xk) = V (x(T )) +

∫ T

0

l(x(τ),u(τ)) dτ (12a)

s.t. ẋ(τ) = f(x(τ),u(τ)) , x(0) = xk (12b)

x(τ) ∈ X , u(τ) ∈ U (12c)

over a moving horizon τ ∈ [0, T ] with length T . For
this purpose, a control trajectory u is calculated which
minimizes the cost function (12a). The minimization is
constrained by the system dynamics (12b) and the ad-
missible set (12c) of the states x and control variables u.
The optimization in the MPC sense initializes the states
with the actual measured or estimated quantities xk. The
initial solution of the control variable is taken from the
optimization of the last time step. The first part of the
optimal solution is executed on the controlled system up
to the next time step. In the following, the individual parts
of the problem (12) are introduced in general and specified
in the Section 4 according to three applications.

3.2 Robot dynamics

The dynamic model

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ J + τ ext, (13)

of a robot arm with n joints describes the relationship
between the resulting motion due to the applied general-
ized forces. For this purpose, the generalized coordinates
q ∈ Rn and q̇ ∈ Rn, the states of the system, describe
the joint position and the velocity of the robot. The joint
torques τ J ∈ Rn are the input of the system and the
external torques τ ext ∈ Rn will be in the comment matter
of view a disturbance. This definition is revisited later
in the paper. The external torques are the result of an
external force on the robot structure. In the case of an
external force at the end-effector, the external torques
τ ext = J(q)TFext are obtained from the wrench Fext

using the transposed Jacobian.

3.3 Interaction Dynamics

In this section, the previous view of the external force
Fext as a disturbance is reinterpreted. In the case of an
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interaction task, the external force can be regarded as a
state, since it is used to describe the behavior of the overall
system. On the one hand, the interaction is considered
solely via the torques in the joint space. In Section 2.1,
the torsional spring model was introduced to calculate
the torques around a axis. According to (9), the dynamic
model of the external torques

τ̇ ext = KJq̇, , ∀KJ ≥ 0 (14)

describes the behavior of the interaction in joint space. The
virtual joint stiffness KJ = diag(kJ,1, . . . , kJ,n) ∈ Rn×n

is a degree of freedom of this formulation and has to be
chosen to a desired joint stiffness. However, the joint space
formulation leads to the fact that the information about
Cartesian forces and moments are not taken into account
and instead each individual joint is considered decoupled.

The virtual joint stiffness is considered as constant so
far. This assumption holds as long as the robot is in
interaction. In free motion, the virtual stiffness has to be
zero because a free motion does not cause any external
torques. To this end, a selection of the virtual stiffness

kJ,i(t)

{
= 0, if τext,i(t) = 0,

> 0, else,
(15)

with respect to the actual external torques is required.
This leads to a problem without torque prediction in (12b).

The definition of the interaction in Cartesian space results
in the modeling of the force dynamics

Ḟext = KeJ(q)q̇ . (16)

according to (10). The matrix Ke = diag(Ktrans,Ktors) ∈
R6×6 describes the stiffness of the interaction object.
Basically, the model shows how the forces increase or
decrease in the individual Cartesian directions during a
particular motion ṗ = J(q)q̇. Similar to the joint space
formulation, the virtual Cartesian stiffness Ke is either
constant for a pure interaction control or time variant with
a selection in the manner of (15) according to

Ke,i(t)

{
= 0, if Fext,i(t) = 0 or mext,i(t) = 0,

> 0, else .
(17)

Another possibility is to estimate the environmental stiff-
ness and adapt them online. This approach is introduced
in the Section 2.2. The stiffness will be updated in every
sampling step, but will be constant over the prediction
horizon.

3.4 Constraints

Restrictions play an important role in robotic applications,
since for example certain maximum values of quantities are
set in norms. On the one hand, state variables of the robot
system as well as the control variables are limited by upper
and lower bounds. These robot boundaries are formulated
as box constraints according to

q ∈ [q−, q+] , (18a)

q̇ ∈ [q̇−, q̇+] , (18b)

τ J ∈ [τ−J , τ
+
J ] . (18c)

In addition, certain restrictions have to be observed de-
pending on the specific task. An example for this is the
limitation of the Cartesian working space or the limitation

of a maximum Cartesian speed. These constraints are
summarized to

p(q) ∈ [p−,p+] , (19a)

ṗ(q, q̇) ∈ [ṗ−, ṗ+] . (19b)

Note that the constraints (19) are now nonlinear with
respect to the states due to the kinematic transformation.

3.5 Cost function design

The cost function of the optimization problem (12a) de-
pends on the actual control task. By penalizing the devi-
ation from a desired behavior, the optimization problem
tries to minimize these deviations. A common choice is to
penalize the weighted norm of a quantity x̃ = x − xdes

according to

‖x̃‖2A =
1

2
x̃TAx̃ (20)

with the positive (semi)-definite weighting matrix A. The
cost function now consists of the respective penalization
terms

l(x,u) = lpos(q) + lvel(q̇) + ltorque(τ ext)

+lforce(Fext) + lctr(u) . (21)

Note that the choice of the individual penalty terms will
depend on the respective application and can therefore be
set also to zero. Some example applications are presented
in Section 4.

3.6 Numerical solution

The optimization problem (12) is solved with the Grampc
toolbox (Englert et al., 2019). The toolbox is based on
an efficient implementation to enable embedded real-time
optimization problems with constraints using an aug-
mented Lagrangian formulation. The idea of the method
is to consider the dual system using the augmented La-
grangian function instead of the original problem (12). In
order to solve the problem, the augmented Lagrangian
function is sequentially maximized with respect to the
Lagrangian multipliers and minimized using a projected
gradient method with respect to the controls.

An important part of the optimization is the numerical
integration of the system dynamics (12b). The problem of
solving the resulting motion with respect to the applied
generalized forces is solved by the forward dynamics

q̈ = M(q)−1 (τ J + τ ext −C(q, q̇)q̇ − g(q)) , (22)

where the joint accelerations are determined with respect
to the joint torque input τ J and the external torque
τ ext. Due to the sparsity of M(q) and C(q, q̇) as well
as the inversion of the position dependent joint space
inertia matrix M(q), the closed form solution of the
forward dynamic of a six degree of freedom (DOF) robot is
computationally inefficient. Instead, this problem is solved
by computationally efficient recursive forward dynamic
algorithm

q̈ = FD(model, q, q̇, τ J,Fe) (23)

based on the Newton-Euler equations. A suitable algo-
rithm for this purpose is the computational efficient Artic-
ulated Body Algorithm (ABA) (Featherstone, 2008). The
algorithm carries out a three-pass recursion. In the first
forward pass, the kinematic quantities are determined for
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Fig. 3. Computation times for the MPC motion control
with different robot dynamic formulations (29).

the next recursions. The next backward pass calculates the
spatial forces acting on the N bodies. The last forward
recursion determines the spatial body accelerations, to
get the joint accelerations. The main advantage is that
the algorithm does not depend on the joint space inertia
matrix M(q). Instead, the constant (3 × 3) body inertia
matrices of the individual links will be used within the
algorithm. This will lead to an algorithmic complexity of
O(N) which is linear in the number of robot joints.

As discussed above, the optimization is based on a gradient
method which evaluates the first order optimality condi-
tions. The Jacobian of the system dynamic, the equality
and inequality conditions as well as the cost function with
respect to the states and controls are required for this pur-
pose. One possibility for computing the partial derivatives
of the forward dynamics is via finite differences or auto-
matic differentiation as used, for example, in Giftthaler
et al. (2017). The analytical calculation of derivatives of
the rigid body algorithms for inverse and forward dynam-
ics were introduced by Carpentier and Mansard (2018).
It is used that the partial derivatives of the calculated
quantities in the recursion steps can be calculated directly
from the partial derivatives of the kinematic quantities.
To this end, the approach relies on the partial derivatives
of the individual calculations within the recursions in the
forward and backward passes. Thus, the partial derivatives
of the dynamics can also be calculated using a recursive
algorithm, which is built up in forwards and backwards
passes over the kinematic tree. An implementation of the
analytical calculation of the derivatives is given by the
C++ framework Pinocchio (Carpentier et al., 2019).

4. APPLICATIONS

This section discusses the use of the MPIC for three
applications, a pure motion control, a hand-guiding of
the robot and a hybrid force motion scenario. In the first
scenario the algorithmic effort of an MPC using the full
rigid body dynamic (22) shall be discussed. Furthermore,
the use of the torque dynamic (14) as well as the force
dynamic (16) is dealt with by one application each.

The applications were implemented at a light weight
robot arm with 6 joints. A six degree of freedom (DOF)
force/torque sensor was mounted on the tip. However,
the approach is not limited to measured force/torques.
Estimated quantities can also be used, e.g. following the
approach of Gold et al. (2019). In all cases, the control was
running with a sampling time of 0.01 s.

4.1 Motion control

The first application deals with the computational effort
of the MPC for different levels of detail of the robot
dynamics. For the description of the robot system, the
state space

xmc =

[
q
q̇

]
(24)

is spanned by the joint position and velocity and the
input of the rigid body system will be the transmitted
joint torque τ J. Since in many systems the joint torque
cannot be specified directly and instead the motor torque
umc = τm serves as the input, the friction in the motor
and transmission must also be taken into account. This
leads to a joint torque approximation according to

τ J ≈ τm − τ f(q̇) , (25)

whereby the friction is dominated by Coulomb and viscous
friction. The Coulomb friction is thereby approximated
using a tanh function. This allows to define the dynamic
model of motion control as

ẋmc =

[
q̇
q̈

]
. (26)

The forward dynamics q̈ = FD(·) are calculated according
to Section 3.6 using the toolbox Pinocchio.

Due to the mechanical structure of the robot, the admis-
sible position space of each joint is constrained. Also for
mechanical reasons, the maximum velocity of the joint is
limited. These restrictions must be taken into account in
the optimization problem using the box constraint (18).
In addition, the absolute maximum motor torque is also
bounded, which is considered by the input constraint

τm ∈ [τ−m, τ
+
m] . (27)

The cost function for joint space motion control

lmc(x,u) = ‖q̃‖2Qq
+ ‖ ˜̇q‖2Qq̇

+ ‖ũmc‖2R (28)

contains parts for the states and the control. With a
penalization of a position or a velocity deviation q̃ =
q − qdes / ˜̇q = q̇ − q̇des, the optimization problem
aims to achieve a desired position respective velocity as
accurately as possible. The penalization of the control
variable influences the aggressiveness of the control. The
parameters used at the motion control application are
summarized in Table 1.

Table 1. Optimization parameters for
the motion control application.

prediction horizon T 0.5 s
sampling points Nhor 50
max. gradient iterations igrad 5
max. multiplier iterations imult 1
position weights Qq diag([0, . . . , 0])

velocity weights Qq̇ diag([105, . . . , 105])

motor torque weights R diag([10−2, . . . , 10−2])

Two levels of detail are considered for the robot dynamics

q̈full = M(q)−1 (τ J −C(q, q̇)q̇ − g(q)) , (29a)

q̈simpl = M−1
J (τJ − g(q)) , (29b)

for the further computation time comparison in Figure 3.
To this end, a scenario with a four times operating point
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Fig. 4. Velocity step responses at joint 2 of the cascaded
independent joint control and the MPC with robot
model (29a) and (29b).

change q̇des over 20 s without an interaction Fe = 0 was
executed at the robot. The controllers were computed on
a Ubuntu 18.04 OS with Intel(R) Core(TM) i5-8250U
CPU. First, the full rigid body dynamics (29a) with
its implementation by the ABA is used. The average
computing time is 8.1 ms which is within the sampling
time of 10 ms. However, it can be seen that a maximum
computing time of 11.7 ms was required, so that the
calculation was no longer within the required sampling
time. The second dynamics formulation (29b) achieves a
significant gain in computing time. The reason for this is
that instead of the configuration-dependent mass matrix
M(q) of the rigid body, only the constant joint inertia
MJ were used. The gravitational vector was calculated
using the recursive Newton-Euler algorithm (RNEA). The
calculation time is reduced to almost half of 4.6 s.

The computation time comparison shows that a model-
predictive control is possible under consideration of the
RBD. However, the maximum computing time of (29a)
shows that if the maximum available computing time is
violated, relapse strategies must prevail. For example, the
(sub)optimal solution from the last calculation step may
be used for sporadic violations. Instead of the first control
variable, the next one is given to the system.

The step response of the velocity of both dynamic ex-
pansion stages are compared to a cascaded independent
joint controller. The outer velocity control loop is sampled
with 10kHz. The step responses can be seen in Figure 4.
The rise time of the step responses is for all three curves
in the range of 140 ms. However, both trajectories of the
MPC show an overshoot which has stabilized after further
0.5 s. Furthermore, a high oscillation is recognizable in
all three signals. Ripples that originate from the Har-
monic Drive transmission are the reason for this. The
better quality of the independent joint control trajectory
is mainly attributable to the significantly higher sampling
rate. In addition, it is visible that the quality of the step
response for (29a) is worse than for (29b). This is due to
the fact that the optimization of (29a) with configuration-
dependent mass matrix M(q) converges more slowly than
for the constant inertia matrix MJ in (29b). Because of
the relatively large joint inertia, the mass matrix is quasi
linearized, whereby the rigid body inertia has only a small
influence.

It is obvious that the additional computing effort is only
worthwhile if the modeled effects are also excited in oper-
ation. Especially the inertia effects of the rigid body occur
mainly with a high dynamic impact. This means that the
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Fig. 5. Plots of the trajectories q1, q̇1 and τext1 of joint 1
in a hand-guiding scenario.

consideration of the complete model is only advantageous
for highly dynamic applications. In the following, proce-
dures for the physical robot environmental interaction are
presented. These methods are mainly operated in a slow
dynamic range, so that the independent joint control is a
good choice.

4.2 Hand-guiding

The application of hand-guiding is an important skill for
modern light weight robots. Teaching of the robots is more
and more done by guiding the robot to the desired pose.
To this end, the robot has to detect an external force and
to react to the force with an evasive motion. The control
should be able to minimize the external torques. This leads
to the extension of the state vector

xhg =

[
q
τ ext

]
, uhg = q̇ . (30)

by the external moments. The hand-guiding is operated in
a slow dynamic range with an underlying velocity control
as described above, whereby the robot is modeled by an
integrator with the velocity as input. Referred to (30), the
dynamic model

ẋhg =

[
uhg

KJuhg

]
(31)

consists of the robot and torque dynamics. The quantities
of joint position and velocity are also limited by the system
in the hand-guiding case according to (18a) and (18b).
These limits are considered in the optimization problem
using box constraints for (12c).

The control task can be understood as a minimization
of the unmodeled external torques. Modeled torques are
for example torques resulting from a desired payload at
the end-effector. This leads to the following cost function
design

lhg(x,u) = ‖τ̃ ext‖2Qτext
+ ‖uhg‖2R , (32)

where the desired external torques are calculated accord-
ing to
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Fig. 6. Path plot of the end-effector during the board
cleaning application.

τ ext des = J(q)TF payload (33)

with the modeled payload forces. In Table 2, the optimiza-
tion parameters are given for the hand-guiding case.

Figure 5 shows the trajectories of the joint position, veloc-
ity and the external moment for joint 1 in a hand-guiding
scenario. The proportional relationship (14) between the
external torque and the resulting velocity is clearly visible.
The position constraint is satisfied as shown in Figure 5.
The comparison of velocity and external torque shows the
influence of the constraint on the velocity response. In the
area of an active bound, e.g. at approx. 7 s or 36 s, the
external torques do not result in a velocity, which is visible
by the divergent qualitative trajectories in these areas.

Table 2. Optimization parameters for the
hand-guiding application.

prediction horizon T 0.5 s
sampling points Nhor 50
max. gradient iterations igrad 2
max. multiplier iterations imult 2
external torque weights Qτ diag([100, 100, 100, 10, 1, 1])
motor torque weights R diag([100, . . . , 100])

4.3 Hybrid motion/force control

The aim of a hybrid motion/force control is the use of
different control strategies for complementary directions.
On the one hand, desired Cartesian directions are motion
controlled for example with position or velocity control.
The complementary directions are force controlled.

This task leads to a state space which contains the robot
states as well as the Cartesian force/moment states for
describing the interaction. To this end, the following state
space

xhmf =

[
q

Fext

]
, uhmf = q̇ (34)

is defined. The joint velocity is still the control variable
for this task. Since the interaction takes place in Cartesian
space, the interaction is also modeled in the same space

ẋhmf =

[
uhmf

KeJ(q)uhmf

]
. (35)

As with the previous two tasks, the robot quantities are
limited as well. This means that (18a) and (18b) hold also
for this task. The task specific constraints (19) can be
defined for the hybrid motion/force control too, but are
not considered in this case.
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Fig. 7. Trajectories of the Cartesian end-effector positions
(tx, ty and tz) and force in z direction during the
board cleaning application.

In the cost function the actual task is defined, namely
the Cartesian position control or the force control of
respective directions. This can be achieved by choosing
complementary entries of the weighting matrices Qp and
QF in the cost function

lhmf(x,u) = ‖p̃‖2Qp
+ ‖F̃ext‖2QF

+ ‖uhmf‖2R . (36)

The motion/force control is used for a board cleaning
application. To this end, a sponge is mounted on the end-
effector. The aim is now to apply a force of 15N on the
sponge to guarantee sufficient contact with the surface.
The z direction is force controlled for this purpose and the
wiping movement is carried out with a position controlled
direction. In our case the y direction. A compliance control
is applied to the last direction, the x direction, to change
the linear wiping movement path by a physical human
input. The direction is therefore force controlled with
a desired force of zero and a constant virtual stiffness
value Ke,x which is a parametric degree of freedom. The
parameters for optimization are given in Table 3.

Table 3. Optimization parameters for the hy-
brid motion/force control application.

prediction horizon T 0.5 s
sampling points Nhor 50
max. gradient iterations igrad 3
max. multiplier iterations imult 2
position weights Qp diag([0, 103, 0, 103, 103, 103])

interaction force weights QF diag([0.01, 0, 0.03, 0, 0, 0])
motor torque weights R diag([10, . . . , 10])

In Figure 6 the path of the end-effector is pictured in 3D
space. The robot starts with a free motion in z direction
at the point (x, y, z) = (−0.43, 0.03, 0.16) with a velocity
of 40 mm/s. The corresponding trajectories of the position
and the z direction force are shown in Figure 7. The free
motion is visible by the zero force at the beginning. The
contact occurs after approx. 0.8 s with a rapid increase of
the interaction force. The desired target value is reached
after another approx. 0.3 s and is kept during the entire
interaction. The specified wiping movement in the y direc-
tion can be seen in the corresponding Cartesian position.
The compliance control in the x direction is visible at 15 s
and 33 s. In this case, a force was applied in the x direction,
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Fig. 8. Online estimation of the interaction stiffness.

which results in a corresponding motion in this direction.
Figure 6 shows this motion by shifting the wiping motion
in the x direction.

In order to predict the interaction force according to
(16), the environmental stiffness was estimated in the z
direction by the online method described in Section 2.2.
The trajectory of the estimation may be seen in Figure 8,
where the stiffness estimation was initialized with a start
estimate of 20000 N/m. It is advisable to initialize the
stiffness too high, which leads to a more sensitive behavior
at the beginning of the contact. This will cause the robot
to slow down faster. The trajectory in Figure 8 shows a
peak in the initial phase of the contact. In the transient
case of the interaction, inertia and dissipative effects occur
in addition to the modeled spring forces. This leads to an
increased force compared to the spring model, which over-
estimates the stiffness in this phase. However, this does not
represent a disadvantage for practical applications, since
the initial overestimation leads to a faster deceleration
of the motion. As a result, negative force peaks at the
beginning of the contact do not occur or only occur to
a reduced extent. Subsequently, the estimate is leveled
out at around 10000 N m. The human input for shifting
the wiping movement in x direction at 15 and 33 s leads
to interference forces in the z direction. These can also
be seen in the stiffness estimation due to the temporary
overestimation.

5. CONCLUSION

Model predictive control (MPC) is a powerful tool for the
control of bounded nonlinear systems. Industrial robot ap-
plications are an important field that falls into this system
class. The paper shows, that the usage of MPC provides
some improvements especially for robot-environment in-
teraction. To this end, a generic framework for interaction
control tasks was presented. The model predictive interac-
tion control (MPIC) scheme is for example applicable for
classical motion control, compliance control, direct force
control as well as hybrid forms. It has been shown that
the application of MPIC for force control on materials
with elastic behavior shows good control performance. The
paper also points out, that a MPC motion control using
the full rigid body dynamics is possible in case of a 6 DOF
robot but shows less advantages in the normal dynamic
range.

The next steps will be the application of model predictive
control for highly dynamic tasks. In addition, the method-
ology of MPIC will be extended to the case of interaction
with a rigid environment. A further area of research is the
environmental modeling from past contact cases.
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covery of complex behaviors through contact-invariant
optimization. Transactions on Graphics, 31(4), 43:1–
43:8.

Schultz, G. and Mombaur, K. (2010). Modeling and
optimal control of human-like running. Transactions on
Mechatronics, 15, 783–792.

Spong, M., Hutchinson, S., and Vidyasagar, M. (2005).
Robot Modeling and Control. Wiley, New York.

Verschueren, R., van Duijkeren, N., Swevers, J., and Diehl,
M. (2016). Time-optimal motion planning for n-DOF
robot manipulators using a path-parametric system
reformulation. In Proc. of ACC, 2092–2097.

Wahrburg, A. and Listmann, K. (2016). MPC-based
admittance control for robotic manipulators. In Proc.
of CDC, 7548–7554.

Zhao, J., Diel, M., and Longman, R. (2004). Nonlinear
model predictive control of robots using real-time opti-
mization. In Proc. of AIAA/AAS, 1–18.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10033


