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Abstract: Nowadays, advanced industrial robots are increasingly used and gradually replacing
human activities in smart manufacturing that requires high precision and high performance.
During this process, a small deviation of a robot axis can lead to other axes drifts, and then
significantly affects the product quality. Hence, this paper aims to present an effective approach
to monitor and diagnose the origin position deviations of multi-axis robots. The proposed
method uses the encoder measurements of each axis to extract features and build appropriate
health indicators. These obtained health indicators are then injected into a Machine Learning
classifier to localize the origin of the deviation, i.e which axis causes these drifts. Furthermore, the
performance of this method is verified through a real industrial test bench, used for machining,
that investigates various deviation severities in different axes of the robot.
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1. INTRODUCTION

Due to the higher precision and greater robustness than
the human workforce, machining robots become an essen-
tial enabler in smart manufacturing (??). However, this
robotization process makes the manufacturing systems
more complex and therefore more challenging for tracking
their conditions and reducing their operation maintenance
costs. To cope with this situation, it is necessary to deploy
an advanced Prognostic and Health Management (PHM)
technique, based on system-level monitoring, to increase
the reliability, availability and safety of industrial robot
systems (??). This technique must allow effective mon-
itoring system states to ensure product quality, which is
one of the most important issues in manufacturing process
(?).
Regarding the machining process, the product quality is
generally affected by tool-wear degradation and the robot-
axes deviations (?). Hence, the first issue, i.e. tool con-
dition monitoring, is well addressed in numerous stud-
ies (???????). These papers propose to use sensor mea-
surements, such as vibration, force, torque signals, etc,
to detect the tool anomalies (????) as well as diagnose
its different fault types (???). However, all these studies
are developed for computer numerical controlled machines
(CNC) and can not be directly applied for multi-axis
robots due to the stochastic dynamic behavior of robotic
systems. Our previous research (?) addressed this chal-

lenge for diagnostics of multi-stage tool wear states in the
machining robot. However, the second issue, concerning
condition monitoring of robot axes deviations, is still an
underexploited area. There exists one study developed
by the National Institute of Standards and Technology
(NIST) for monitoring robot-axes behavior (??). The pub-
lished works propose to use a multi-dimensional laser-
tracker sensor to monitor the robot-axes drifts. However,
this latter monitoring device is very expensive and cannot
be widespread used in practice. Hence, the development
of non-invasive techniques, that do not require high tech-
nology to monitor the robot behavior is still an important
research challenge in literature and for industrials.
Considering the synthesis above, one can see that the
condition monitoring of machining robots is less addressed
in the literature. Among different anomalies of the robot
behaviors, the axis deviation from the reference position-
ing is one of the crucial issues that must be cautiously
tracked. Because of numerous stochastic factors that are
present in the operation processes, axis deviation usually
occurs and deviates the robot’s joints from their nominal
positions. In addition, only one small deviation in an axis
can lead to different drifts in other axes and might cause
serious drifts of the product quality. Therefore, it is neces-
sary to monitor and diagnose the principal origin of these
deviations. Moreover, to our humble knowledge, there are
no existing works that investigate non-invasive techniques
to diagnose axis-drifts of a robot. This paper aims to fill
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this literature gap. It proposes a methodology that uses
the already measurements provided by the robot control
system to localize the origin of the robot-axes deviations.
The robustness and the performance of the methodology
are verified on a real industrial test bench, i.e a machining
six-axis robot.
The remainder of this paper is structured as follows. Sec-
tion 2 presents the global methodology for diagnostics of
the robot-axes deviations. In section 3, the performance of
the proposed method is highlighted through experimental
tests carried out on a machining six-axis robot. Finally, the
conclusion and perspectives of this work will be presented
in section 4.

2. PROPOSED METHODOLOGY FOR
DIAGNOSTICS OF MACHINING ROBOT’S AXIS

DEVIATIONS

This section aims to present the proposed methodology
to monitor the multi-axis robot trajectory and to localize
its deviation origin. The methodology goes from system
identification to fault detection and diagnostics as shown
in Fig. 1.

(1) Study of the critical issue: As mentioned in the
introduction, the deviation of a robot-axis can signif-
icantly affect product quality. This deviation can be
generally caused by some programming errors in man-
ufacturing process, wear of tool parts, components
replacement, minor assembly system errors (?), etc.
Therefore, it is essential to monitor the global robot-
axes motions. For this purpose, there exists two dif-
ferent condition monitoring strategies that are respec-
tively based on invasive and non-invasive techniques.
The first technique relies on the use of high-level
technologies for monitoring the robot behavior as well
as the laser-tracker sensor, which is very expensive for
industrial implementation. This work focuses on the
second technique, called the Non-destructive Evalua-
tion (NDE) technique, that uses the already installed
encoder sensors in each servo-motor of the robot and
the data provided by the control system. In fact, the
robot control system allows access to the setpoints of
each axis positioning values recognized by the robot’s
internal sensors.

(2) Construction of health indicators: Among the
signal processing techniques in literature, this paper
focuses on time-domain analysis that can be generally
applied for various systems thanks to their simplicity
and also their fast computation time (???). This
analysis is used to extract features, such as root mean
square (RMS), standard deviation (StD) and kurtosis
(KUR), to construct health indicators (??). In this
study, the constructed health indicator is a combina-
tion of two effective features. They are extracted from
calculated errors expressed by equation (1).

errorij = measureij − t arg etij (1)
where i represents the axis ID while j characterizes
the observation number; measureij and targetij are
the measured and nominal points of axis positioning,

respectively.

These errors represent the difference between the
nominal values, targetij , that are the reference po-
sitioning points of each axis, and the real measured
positioning, measureij . For an illustration, Fig. 2
shows the trajectory errors presented in all six-axis
of the robot caused by the drifts of the axis one.

Once the errors are calculated, two temporal features
(RMS) and StD), given by equation (3 and 4), are
extracted to build the health indicators. These health
indicators allow detecting the deviation origin in
robot axes.

HIi = (RMS(errori)/StD(errori))2 (2)
In detail, the RMS and StD are respectively the root
mean square and the standard deviation values. The
RMS value allows evaluating the energy of a signal.
The increase or a decrease in the RMS value indicates
the appearance of a disturbance in the signal (?). The
StD informs on the dispersion of a signal to its MEAN
value.

RMS =

√√√√ 1

n

n∑
j=1

error2ij (3)

StD =

√√√√ 1

n

n∑
j=1

(errorij − errori)
2 (4)

where i, j represent the axis and observation number,
n is the total number of the observations and errori
is the mean values of the deviation in the i-th axis.
From equations (3) and (4), one can see that the StD
value is equal to RMS when the MEAN value is 0. In
this case, the ratio, expressed by equation (2), will
be equal to 1. Hence, one can conclude that in the
nominal cases where there do not exist deviations,
the proposed health indicator is close to 1 because the
error and MEAN values in these cases tend to zero.
Otherwise, the health indicator will be significantly
different from 1 in presence of deviations.

(3) Faults diagnostics: Equation (2) is applied to eval-
uate the health indicator values. These observations
are used to detect the trajectory’s deviations of the
robot-axes and also to diagnose the deviation origins.
For the latter purpose, the obtained health indicators
are fed into classifier models. The structure of these
vectors is shown hereafter.

n HI1 HI2 ... HI6 Ωp

1 6.5 0.7 ... 0.6 1
2 5.3 1.3 ... 1.2 1
3 4.3 1.4 ... 0.3 1
. . . ... . .
. . . ... . .
. . . ... . .
n 0.05 . ... 23 7


where n is the number of observations and Ω is the
number of health state classes. Note that Ω = 1 when
there is no axis deviation while Ω = i+ 1, 1 ≤ i ≤ 6,
shows that the multi-axis drifts are caused by the
deviation of the axis i.
In order to investigate the efficiency of the proposed
HI, numerous machine learning techniques are used
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Fig. 1. Global overview of the proposed methodology.

Fig. 2. Trajectory errors of all 6 axes due to the random
deviation in the first axis.
to diagnose the robot’s axes deviation (?). Among
these techniques, one can cite the most common and
effective methods such as K-Nearest Neighbors (K-
NN), Support vector machines (SVM), Fault Tree
(FT) and Logistic Discriminant Analysis (LDA).

3. REAL INDUSTRIAL CASE STUDY

This section describes the case study used to verify the
performance of the proposed methodology to diagnose the
origin deviation of the robot-axes drifts. For this purpose,
an ABB robot of six-degree freedom is used for machining
an aluminum workpiece following a defined structure, as
shown in Fig. 3. The milled part produced in this case
study has labyrinth form, for which the robot performs a
complex combination of arm motions. These trajectories
are controlled by six servo-motors on each axis of the
robot. In addition, on the sixth axis, a tool is placed
for machining the workpiece. To assess the accuracy of
the Tool Center Positioning (TCP), which also reflects
the robot-axes drifts, the encoder sensor measurements,
recorded from the control system called IRC5, are the most
suitable parameters to monitor. Firstly, the experimental
process is described in subsection (3.1). Then, subsection
(3.2) is dedicated to verify the performance of the proposed
methodology on different axes deviations with different
levels of severities. Finally, the robot-arm deviation diag-
nostics is presented in subsection (3.3).

3.1 Description of the experimental process

The experimental setup is performed at METALLI-
CADOUR, a technology transfer center in the south-west

of France. The overall scheme of the test bench is shown
in Fig. 3.
This test bench consists of an ABB 6660 six-axis robot
controlled by the IRC5 control system that drives the
servo-motors and the machining tool cited above. The
machining parameters of the milling process are summa-
rized in Table 1. In detail, a tool of four edges (flat-end
mill) is used for milling the workpiece with a cutting
depth corresponding to 5 mm while the feed-rate and the
rotating speed of the tool are 640 mm/min and 6400 rpm
respectively. Regarding the data acquisition part, encoders
are already placed on each engine of the robot. Positioning
measurements are recorded by the IRC5 control system
with a sampling frequency equal to 41.6 Hz. The data are
stored in (.csv) files of a duration of 1 minute for each
experiment.

Table 1. Parameter settings for machining pro-
cess

METALLICADOUR test bench: ABB six-axis robot

Speed (rpm) Feed rate (mm/min) Cutting depth (mm) Health state Acquisition parameters

6400 640 5 

E0: Healthy state

Hardware: IRC5

Sampling rate: 14 Hz

File extension: .csv

Time: 60 s/file

E1: Faulty 1 - axis one drift -

E2: Faulty 2 - axis two drifts -

E3: Faulty 3 - axis three drifts -

E4: Faulty 4 - axis four drifts -

E5: Faulty 5 - axis four drift s-

E6: Faulty 6 - axis six drifts -

In this case study, seven experiments representing one
healthy state and six faulty states, corresponding to the
critical deviations in the six-axis of the robot, are carried
out to verify the efficiency of the proposed methodology.
First of all, a threshold for robot axes drifts is defined. All
deviation impacts exceeding this threshold are considered
as critical deviations that cause the faulty state. Note that
this threshold can be determined according to standards
used in the domain or given by experts. In this case study,
the development engineers at METALLICADOUR center
recommend a drift equal to ±(1, 2) mm of the nominal
milled part, which corresponds to 10% of the referent
values. Note that this threshold depends on the distance
between the center of the workpiece and the center of the
axis. Then, each experiment on the robot is programmed
to inject an error in the axis positioning. These errors
correspond to different level of severities, from high lo low
level of the tolerance drifts.
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Fig. 3. Overall scheme of METALLICADOUR test bench.

3.2 Investigation of the proposed methodology performance

In this subsection, first, the limitation of the traditional
analyses are presented. Then, the investigation of the pro-
posed methodology is applied to highlight its efficiency.
Fig. 4 shows a representation of the robot’s tool center
positioning in two and three dimensional space, respec-
tively. One can see the positioning of the machining tool
is modified in x, y, or z axis when a deviation occurs.
In addition, some drifts cannot be clearly identified, for
example the drift of the first, second and sixth axis.
Furthermore, Fig. 6 presents errors caused by the drift
of the axis one. From this figure, one can see that the
difference between the target and referent values of the
first and the second axis are over the threshold. This
phenomenon can lead to confusion when interpreting the
results. Indeed, the ability of the fault diagnostics when
using these measurements is presented in Table 2.

Table 2. Accuracy score (%) of diagnostics of
the origin deviation axis

Case Training acc % Testing acc %
K-NN 100 64.72
SVM 81.5 81.79
LDA 81.8 82.52
FT 73.4 84.83

Table 2 shows that the implemented classifiers (KNN,
SVM, LDA, FT) do not allow to localize the deviation
origin when using traditional analyses. To cope with this
limitation, the proposed methodology is then applied to
extract effective health indicators from the obtained errors
of robot’s arm trajectories. Table 3 presents the three first
values of the constructed health indicator.
From Table 3, one can see that the constructed health
indicators allow clearly identifying which axis is the origin
of the robot arm deviations. In fact, the health indicator
values of the axis, in which the error is injected, is
significantly greater than 1. In addition, the observations
also allow evaluating the severity of the axis deviation’s
impact on the workpiece quality, as shown in Fig. 5.

Table 3. Extracted health indicators of the six-
axes errors

Deviation origin in the first axis
Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6

6.5 0.7 0.7 0.9 0.8 0.6
5.3 1.3 1.4 1.2 0.5 1.2
4.3 1.4 1.3 0.1 0.8 0.3

Deviation origin in the second axis
Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6

0.6 2.5 0.7 0.3 0.6 0.09
0.6 3.2 1.4 1.5 0.7 0.02
0.4 3.2 1.3 0.5 0.4 0.04

Deviation origin in the third axis
Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6
0.07 0.7 2.5 0.08 0.13 1
0.07 0.3 2.7 0.05 0.13 1
0.03 0.6 2.7 0.04 0.09 1.5

Deviation origin in the fourth axis
Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6

1.3 0.3 0.3 13.5 1.4 0.25
0.7 0.4 0.35 15.4 0.8 0.23
0.9 0.7 0.07 15.4 1 0.4

Deviation origin in the fifth axis
Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6

0.1 0.2 0.3 0.25 4 0.5
0.2 0.2 0.25 0.33 4.38 0.45
0.2 0.1 0.3 0.4 4.7 0.4

Deviation origin in the sixth axis
Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6

0.1 0.07 0.04 0.09 0.08 22.5
0.06 0.03 0.04 0.02 0.05 23
0.05 0.04 0.06 0.7 0.08 23.5

3.3 Fault diagnostics

The health indicators extracted previously are used in
this subsection to localize the drift origin. In detail, the
health indicators observations are randomly divided into
a training set and a test set, composed of 50% of each
database for every set. The training set has in total seven
columns. For the experiments, as the robot arms deviation
is artificially injected into robot motions by the controller,
the origin of robot axis drifts is known in advance. In
other words, the observation data are properly labeled
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Fig. 4. Tool position analysis in x, y and z axis.

Quality product without axis drifts Quality product with axis two drifts Quality product with axis six drifts

Fig. 5. Severity of the sixth axis deviation on product
quality.

Fig. 6. Axes deviations due to the drifts in the first axis.

according to the robot heath states. Hence, in the training
set, the first six columns represent to the health indicators
observations of each axis (six servomotors) of the robot
while the last column represents the data labels, i.e.
membership pattern that indicates the health state of the
robot (0 for healthy state, 1 for the first axis drift, 2 for the
second axis drift, etc.). Besides, to verify the performance
of the proposed methodology, the test set contains only six
columns representing the health indicators observations.
Next, the training set is used to learn the classifier models.
These classifiers aim to map each observation of the
constructed health indicators to the corresponding class
for the diagnostic of the robot axis drifts. Then, the test
set is dedicated to verify the performance of the trained

models using patter recognition of its observations. The
obtained results are summarized in Table 4.

Table 4. Accuracy score (%) of diagnostics of
the origin deviation axis

Case Training acc % Test acc %
K-NN 100 100
SVM 100 100
LDA 100 100
FT 100 100

Thanks to the performance of the constructed health
indicators, the accuracy scores are equal to 100% for all
classifier models (Table 4). In other words, the proposed
methodology allows diagnosing exactly the origin of the
robot arm deviation.

4. CONCLUSION

In this paper, a non-invasive methodology for monitor-
ing the robot-axes deviations has been presented. This
methodology uses directly the already existing sensor mea-
surements, recorded from the control system of the robot,
to diagnose the deviation origin. In detail, a combination
of statistical features extracted from the time domain are
used to build effective health indicators. These health
indicators allow separating the healthy state from the
faulty states. Moreover, the diagnostics of robotic axes
deviations is autonomously performed by classifier models.
The obtained results allow well localizing the deviation
origin.
One of the limitation of the proposed methodology is that
its performance strictly depends on the trajectory mea-
surements recorded by the control system. Therefore, for
further research, an indirect monitoring technique based
on multi-sensor information should be developed and in-
vestigated to ensure the accuracy and the robustness of
the fault diagnostics of robot behaviors.
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