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Abstract: Formal methods are becoming rather popular in the research community working on
hybrid systems because they provide a systematic approach to design complex and heterogeneous
systems of interest in e.g. industrial world. In this paper we consider a control problem where
the plant is a nonlinear system, the controller is a finite state machine, easily implementable in
digital devices, and the specification is a regular language and, it is dynamic. The motivation for
considering dynamic specifications comes from some relevant and concrete applications where
environment, external to the plant, may change in time and therefore designed controllers need to
timely reconfigure to properly deal with new scenario. We propose an approach to reduce online
computations for controller reconfiguration which exhibits gain in terms of time computational
complexity. The results we present are based on the use of symbolic models and on regular
language theory.
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1. INTRODUCTION

In the last twenty years, researchers working in the area of
hybrid systems have explored formal methods as a tool for
addressing control design of complex and heterogeneous
systems arising in many applications of interest. Main
advantage of this approach is twofold: (i) its capability
to handle logic specifications, relevant in many concrete
applications, which are difficult to enforce by using tradi-
tional control design techniques and, (ii) controllers de-
signed are provably–correct in the sense that they can
take into account non–idealities at the software and hard-
ware implementation level. Central to this approach is the
construction of symbolic models that approximate purely
continuous or hybrid plants. A symbolic model is an ab-
stract description of a purely continuous or hybrid system
where each state corresponds to an aggregate of continu-
ous/hybrid states and each label to an aggregate of con-
tinuous/hybrid inputs. The literature on symbolic models
is very rich, see e.g. (Tabuada (2009); Belta et al. (2017);
Pola and Di Benedetto (2019)) and the references therein.
The use of symbolic models for control design purposes has
been investigated, among many others, in the following
papers: (Tabuada and Pappas (2006); Gol et al. (2014))
consider discrete–time (d.t.) linear control systems and
linear temporal logic (LTL) specifications; (Reissig and
Rungger (2014)), continuous–time (c.t.) nonlinear systems
and general behavioral specifications; (Tabuada (2008)),
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c.t. nonlinear systems and regular language specifications;
(Pola et al. (2012)), c.t. nonlinear systems and transition
systems specifications, design of efficient on–the–fly in-
spired control algorithms is also explored; (Girard (2012,
2013)), c.t. nonlinear switched systems and safety and
reachability specifications; (Yordanov et al. (2012)), d.t.
piecewise affine systems and LTL specifications; (Pola and
Di Benedetto (2014)), d.t. piecewise affine systems and
transition systems specifications; (Borri et al. (2019)),
networked c.t. nonlinear systems and transition systems
specifications; (Pola et al. (2018); Dallal and Tabuada
(2015); Meyer et al. (2015); Kim et al. (2015)), decentral-
ized symbolic control of networks of nonlinear systems. To
the best of our knowledge, current results always consider
specifications that are not dynamic. However, there are
applications of interest as for example autonomous driv-
ing where external environment may change over time,
due e.g. to moving obstacle. This environment change
can be well modeled by dynamic specifications. In this
paper we consider a plant described by a continuous–time
nonlinear system and a controller described by a finite
state machine that then, is easily implementable in digital
devices. Specifications are expressed as regular languages
that, as also stressed in (Tabuada (2008)), are relevant
in the control design of many concrete applications. We
model dynamic specifications as follows. We consider a
nominal specification Lnom and the environment change
is captured by two specifications L− and L+ describing,
the behavior of Lnom that at some time t becomes illegal
and respectively, the behavior not included in Lnom that
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at time t becomes legal. Resulting specification at time t
is then given by Lnew = (Lnom r L−) ∪ L+. We suppose
that controller C(Lnom) enforcing Lnom is computed of-
fline before the controlled plant is initialized. The control
problem we consider is then to design a controller C(Lnew)
enforcing Lnew on the basis of information on controllers
C(Lnom), C(L−) and C(L+), where C(L−) and C(L+)
enforce L− and L+, respectively. From this problem set–
up, for computing C(Lnew) only computation of C(L−)
and C(L+) is needed at time t, which could be doable at
run–time, provided that sizes of L− and L+ are small, as
it may be the case in many realistic scenarios of interest.
This is important because, in this way, controller can re-
configure in response to external environment change that
is unpredictable and hence, cannot be modeled before it
happens. A computational complexity analysis is included
which shows the benefits of the approach taken. Results
proposed are based on the use of symbolic models and
regular language theory.
This paper is organized as follows. In Section 2 we in-
troduce notation and preliminary definitions. In Section 3
we introduce the control problem. Section 4 recalls pre-
liminary results that are instrumental to solve our control
problem in Section 5. Section 6 presents a computational
complexity analysis.

2. NOTATION AND PRELIMINARY DEFINITIONS

2.1 Notation

The symbol card(X) denotes the cardinality of a set
X. The symbols N0, Z, R, R+ and R+

0 denote the set
of nonnegative integer, integer, real, positive real, and
nonnegative real numbers, respectively. Given a, b ∈ Z,
we denote [a; b] = [a, b] ∩ Z. Given a set X, the symbol
2X denotes the power set of X. Given a pair of sets X
and Y , let X r Y = {x ∈ X|x /∈ Y }. Given a pair of sets
X and Y and a relation R ⊆ X × Y , the symbol R−1
denotes the inverse relation of R, i.e. R−1 = {(y, x) ∈ Y ×
X : (x, y) ∈ R}. Given X ′ ⊆ X and Y ′ ⊆ Y , we
denote R(X ′) = {y ∈ Y |∃x ∈ X ′ s.t. (x, y) ∈ R} and
R−1(Y ′) = {x ∈ X|∃y ∈ Y ′ s.t. (x, y) ∈ R}. Given a
function f : X → Y , the symbol f−1 : Y → 2X denotes
the inverse map of f , i.e., f−1(y) = {x ∈ X : y = f(x)}
for all y in the co-domain of f . Given f and X ′ ⊆ X
the symbol f(X ′) denotes the image of X ′ through f , i.e.
f(X ′) = {y ∈ Y |∃x ∈ X ′ s.t. y = f(x)}. A continuous
function γ : R+

0 → R+
0 is said to belong to class K if it

is strictly increasing and γ(0) = 0; function γ is said to
belong to class K∞ if γ ∈ K and γ(r) → ∞ as r → ∞.
Symbol |a| denotes absolute value of a ∈ R. Given a vector
x ∈ Rn we denote by x(i) the i–th element of x and by
‖x‖ the infinity norm of x. Given a ∈ R and X ⊆ Rn, the
symbol aX denotes the set {y ∈ Rn|∃x ∈ X s.t. y = ax}.
Given θ ∈ R+ and x ∈ Rn, we denote

Bn[−θ,θ[(x) = {y ∈ Rn|y(i) ∈ [−θ+x(i), θ+x(i)[, i ∈ [1;n]}.
Note that for any θ ∈ R+, the collection of Bn[−θ,θ[(x) with

x ranging in 2θZn is a partition of Rn. We now define
the quantization function. Given a positive n ∈ N0 and
quantization parameter θ ∈ R+, the quantizer in Rn with
accuracy θ is a function [ · ]nθ : Rn → 2θZn, associating
to any x ∈ Rn the unique vector [x]nθ ∈ 2θZn such that

x ∈ Bn[−θ,θ[([x]nθ ). Definition above naturally extends to

sets X ⊆ Rn when [X]nθ is interpreted as the image of X
through function [·]nθ .

2.2 Systems, approximate relations and regular languages

We start with the following

Definition 1. A system is a tuple

S = (X,X0, U, - , Xm, Y,H), (1)

consisting of a set of states X, a set of initial states X0 ⊆
X, a set of inputs U , a transition relation - ⊆ X ×
U ×X, a set of marked states Xm ⊆ X, a set of outputs
Y and an output function H : X → Y .

A transition (x, u, x′) ∈ - of S is denoted by

x
u- x′. Given S and x ∈ X define set PostS(x) as

the collection of states x′ ∈ X for which there exists a

transition x
u- x′. The evolution of systems is captured

by the notions of state, input and output runs. Given a
sequence of transitions of S

x0
u0- x1

u1- ...
ul−1- xl (2)

with x0 ∈ X0, the sequences

rX : x0 x1 ... xl,

rU : u0 u1 ... ul−1, (3)

rY : H(x0)H(x1) ... H(xl), (4)

are called a state run, an input run and an output run of
S, respectively. System S is said to be: empty, if X0 =
∅; symbolic, if X and U are finite sets; metric, if Y is
equipped with a metric d : Y × Y → R+

0 ; deterministic,
if for any x ∈ X and u ∈ U there exists at most one

transition x
u- x+ and nondeterministic, otherwise;

output deterministic, if for any pair of different transitions

x
u- x+ and x

u- z+ we have H(x+) 6= H(z+)
and output nondeterministic, otherwise; accessible, if for
any x ∈ X there exists a state run ending in x; co–
accessible, if for any x ∈ X there exists a sequence of
transitions starting from x and ending in a marked state;
nonblocking, if for any transitions sequence (2) of S with
x0 ∈ X0 either xl ∈ Xm or there exists a continuation

x0
u0- x1

u1- ...
ul−1- xl

ul- ...
ul′−1- xl′ of (2) such

that xl′ ∈ Xm, and blocking, otherwise. Note that if S is
co–accessible, it is nonblocking while the converse is not
true, in general. Given two systems

Si = (Xi, X0,i, Ui,
i
- , Xm,i, Yi, Hi), i = 1, 2, (5)

system S1 is a sub-system of S2, denoted S1 v S2,
if all entities defining S1 except for H1 are subsets of
corresponding entities defining S2 except for H2 and
H1(x) = H2(x) for any x ∈ X1. The accessible part
of a system S, denoted Ac(S), is the unique maximal 1

subsystem S′ of S such that for any state x′ of S′ there
exists a state run of S′ ending in x′. By definition, if S
is nonempty, Ac(S) is accessible. The co–accessible part
of a system S, denoted Coac(S), is the unique maximal1

subsystem S′ of S such that for any state x′ ∈ X ′ there

1 Here, maximality is given with respect to the pre–order naturally
induced by the binary operator v.
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exists a transition sequence of S′ starting from x′ and
ending in a marked state of S′. By definition, Coac(S),
if not empty, is co–accessible. The trim of a system S,
denoted Trim(S), is defined as Trim(S) = Coac(Ac(S)) =
Ac(Coac(S)). By definition, Trim(S), if not empty, is
accessible and co–accessible, and hence, also nonblocking.
In order to provide approximations of a continuous system
describing a plant, we need to recall the following notion.

Definition 2. (Borri et al. (2019)) Let Si = (Xi, X0,i, Ui,

i
- , Xm,i, Yi, Hi) (i = 1, 2) be metric systems with

the same input set U1 = U2, output set Y1 = Y2 and
metric d, and let θ ∈ R+

0 be a given accuracy. A relation
R ⊆ X1 × X2 is said a strong θ-approximate simulation
relation from S1 to S2 if it enjoys the following conditions:

(i) for every x1 ∈ X0,1 and x2 ∈ X2 s.t. (x1, x2) ∈ R, it
holds that x2 ∈ X0,2;

(ii) for every x1 ∈ Xm,1 and x2 ∈ X2 s.t. (x1, x2) ∈ R, it
holds that x2 ∈ Xm,2;

(iii) ∀(x1, x2) ∈ R, d(H1(x1), H2(x2)) ≤ θ;
(iv) ∀(x1, x2) ∈ R, if x1

u

1
- x′1 then there exists

x2
u

2
- x′2 such that (x′1, x

′
2) ∈ R.

Relation R is a strong θ-approximate bisimulation rela-
tion between S1 and S2 if R is a strong θ-approximate
simulation relation from S1 to S2 and R−1 is a strong θ-
approximate simulation relation from S2 to S1. Systems
S1 and S2 are strongly θ-bisimilar, denoted S1

∼=θ S2, if
there exists a strong θ-approximate bisimulation relation
R between S1 and S2.

We conclude this section by recalling from e.g. (Cassandras
and Lafortune (1999)) some notions on formal language
theory. Let Y be a finite set representing the alphabet. A
word over Y is a finite sequence y : y1 y2 ... yl of symbols
in Y . The empty word is denoted by ε. The symbol Y ∗

denotes the Kleene closure of Y , that is the collection of all
words over Y including ε. A language L over Y is a subset
of Y ∗. The concatenation of two words y1 y2 ... yl and
yl+1 yl+2 ... yl′ is the word y1 y2 ... yl yl+1 yl+2 ... yl′ . The
empty word is the identity element of concatenation, i.e.
εy = yε = y. Similarly one can define the concatenation
yL of a word y with a language L, or the concatenation
L1L2 of two languages L1 and L2. Given three words p,
t and s and their concatenation pts, p is said a prefix of
pts, t a substring of pts, and s a suffix of pts. We will use
the notation s/t (read “s after t”) to denote the suffix of
s after its prefix t; If t is not a prefix of s, then s/t is not
defined. Similarly, L/t denotes the language obtained as
the collection of suffixes s of words in L after their prefix
t. The prefix closure of a language L, denoted L, is the
collection of all prefixes of words of L. Given a system S,
the input language (resp. output language) generated by
S is the collection of all its input runs (resp. output runs)
and is denoted as Lu(S) (resp. Ly(S)). The marked input
language (resp. marked output language) of S, denoted as
Lum(S) (resp. Lym(S)), is the collection of all input runs
rU in (3) (resp. output runs rY in (4)) such that the
corresponding transitions sequence in (2) is with ending
state xl ∈ Xm. Following e.g. (Cassandras and Lafortune
(1999)), a language L over a finite set U is regular if there

exists a symbolic system S with input set U such that
L = Lum(S).

3. CONTROL PROBLEM FORMULATION

The control scheme we consider in this paper consists of
a plant P , a controller C, and a Zero order Holder (ZoH).
The plant P is described by a nonlinear control system:

P :


ẋ(t) = f(x(t), u(t)),
x(t) ∈ X ⊆ Rn,
x(0) ∈ X0 ⊆ X,
u(t) ∈ U ⊆ Rm, t ∈ R+

0 ,

(6)

where x(t) and u(t) denote, respectively, the state and the
control input at time t ∈ R+

0 ; X is the state space; X0 is the
set of initial states; U is the input set; f : X×U→ Rn is a
continuous map satisfying the following Lipschitz assump-
tion: for every compact set K ⊆ X, there exists a constant
κ ∈ R+ such that ‖f(x, u)− f(x′, u)‖ ≤ κ‖x− x′‖ for all
x, x′ ∈ K and all u ∈ U. Since we are interested in
controlling the plant P through a digital and quantized
controller, we assume that the set U is finite and denote by
U the set of piecewise constant functions u from R+

0 to U
such that u(t) = u(kτ) for all t ∈ [kτ, (k+1)τ [ and k ∈ N0,
where τ ∈ R+ is the clock period of the microprocessor
implementing the controller. Given tf ∈ R+, a function
x : [0, tf ]→ Rn is said to be a state trajectory of P if there
exists u ∈ U satisfying ẋ(t) = f (x(t), u(t)), for almost all
t ∈ [0, tf ]. We also denote by x(t, x0, u) the state reached
at time t under the input u from initial condition x0; this
state is uniquely determined, since the assumptions on f
ensure existence and uniqueness of trajectories. Control
system P is said to be forward complete if a trajectory
exists for any initial state x(0) and any time horizon
tf ∈ R+. Controller C is given in the form of a symbolic
system in the sense of Definition 1, as follows:

C = (Xc, Xc,0,U,
c
- , Xc,m, Yc, Hc). (7)

From the definition above, controller C is nondeterminis-
tic, in general. A Zero order Holder (ZoH) block is placed
in between P and C and is described by:

u(t) = uk, t ∈ [kτ, (k + 1)τ [, k ∈ N0, (8)

where

Transc : xc,0
u0

c
- xc,1

u1

c
- ... (9)

is a (not unique) sequence of transitions of the controller
C with xc,0 ∈ Xc,0. We denote by PC the controlled
system obtained by coupling the Eqns. (6), (7) and (8).
A trajectory of PC is then given by a pair (x(·),Transc)
satisfying (6), (8) and (9). If controller C is nondetermin-
istic, controlled system PC is nondeterministic, as well.
A typical symbolic control problem with regular language
specifications is recalled hereafter. Consider a finite subset
Y of the state space X of P and a specification expressed
as a regular language L ⊆ Y∗, where we recall Y∗ is the
Kleene closure of Y.

Problem 3. Given the plant P in (6), τ ∈ R+, the spec-
ification L and a desired accuracy θ ∈ R+, find a quan-
tization parameter η ∈ R+, a controller C as in (7) and
a relation R0 ⊆ X0 × Xc,0 such that for any trajectory
(x(·),Transc) of PC with pair of initial states (x(0), xc,0) ∈
R0, there exist kf ∈ N0 and a word q0q1...qkf ∈ L such
that ‖x(kτ)− qk‖ ≤ θ, for all k ∈ [0; kf ].
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Problem above has been solved in (Pola et al. (2018))
for incrementally stable discrete–time nonlinear control
systems. The solution to the control problem above is
specified in the sequel by a triplet (η(L), C(L),R0(L))
where we emphasize its dependence on the specification
L. For later purposes we also set:

C(L) = (Xc(L), Xc,0(L),U,
c(L)
- , Xc,m(L), Yc(L), Hc(L)).

We can now introduce the control problem we consider
in this paper. Consider a regular language specification
Lnom ⊆ Y∗, representing the nominal specification that
we want to enforce on the plant P . Let C(Lnom) be
the controller that solves Problem 3 with L = Lnom
and suppose that it has been computed offline before the
controlled system PC(Lnom) is initialized. Suppose at some
time t = kτ , k ∈ N0, word w : w0w1...wk ∈ Lnom (where
we recall Lnom is the prefix closure of regular language
Lnom) has been enforced by the controller C(Lnom) on
the plant P , meaning that ‖x(kτ) − wk‖ ≤ θ,∀k ∈ [0;k],
where x(.) is the state trajectory of the plant in PC(Lnom).
Suppose that at time t external environment changes and:
some words wq− of Lnom, obtained by the concatenation
of w and q− ∈ Y∗, become illegal; some words wq+ ∈
Y∗ that were illegal, i.e. wq+ /∈ Lnom, become legal.
The resulting new specification Lnew at time t can be
formalized by Lnew = ((Lnom/w) r L−) ∪ L+, where (we
recall that Lnom/w is the language collecting suffixes of
words in Lnom after their prefix w, and):

• L− ⊆ Y∗ is such that regular language wL− collects
all words of Lnom that are illegal at time t;

• L+ ⊆ Y∗ is such that regular language wL+ collects
all words of Y∗ r Lnom that are legal at time t.

One could then find in principle the controller C(Lnew) to
solve Problem 3 with L = Lnew. However, this approach is
not efficient from the computational complexity point of
view because in many practical applications, the change
of environment causes small modifications to the nominal
specification Lnom for which the controller C(Lnom) is
supposed to be already available. For this reason in this
paper we consider the following control problem:

Problem 4. Find C(Lnew) on the (only) basis of knowledge
of C(Lnom), C(L−), C(L+) and the state xc,k reached by

the controller C(Lnom) in PC(Lnom) at step k.

We point out that in the problem above, only controllers
C(L−) and C(L+) need to be computed at time t = kτ .
Provided that sizes of L− and L+ are small enough,
such a computations could be performed at run–time.
This is important because, in this way, controller can
reconfigure in response to external environment change
that is unpredictable and hence, cannot be modeled before
it happens. Solution to Problem 4 requires solution to
Problem 3 that is addressed in the next section.

4. SOLUTION TO PROBLEM 3

Results reported in this section are adapted from (Pola
et al. (2018)). We start by providing a symbolic system
approximating the plant P . To this purpose we first pro-
ceed with a time discretization and then with a state space
quantization of P . Given the clock period τ ∈ R+, define
Sτ (P ) = (Xτ , X0,τ , Uτ ,

τ
- , Xm,τ , Yτ , Hτ ), where Xτ =

X0,τ = Xm,τ = X, Uτ = U , transition x
u

τ
- x′ if x′ =

x(τ, x, u), Yτ = X and Hτ (x) = x for all x ∈ Xτ . We now
proceed with the state space quantization of Sτ (P ). Given
P , τ ∈ R+ and a state space quantization η ∈ R+, define
Sτ,η(P ) = (Xτ,η, X0,τ,η, Uτ,η,

τ,η
- , Xm,τ,η, Yτ,η, Hτ,η),

where Xτ,η = X0,τ,η = Xm,τ,η = [X]nη , Uτ,η = U , ξ
u

τ,η
- ξ′

if ξ′ = [x(τ, ξ, u)]nη , Yτ,η = X and Hτ,η(x) = x for
all x ∈ Xτ,η. Intuitively, this definition corresponds to
replacing any state of Sτ (P ) by its quantization. System
Sτ,η(P ) is countable and becomes symbolic when the set
X is bounded. We now recall the following notion.

Definition 5. A smooth function V : Rn × Rn → R+
0 is

an incrementally globally asymptotically stable (δ–GAS)
Lyapunov function for plant P , if there exist κ ∈ R+ and
K∞ functions α1 and α2 such that for any x, x′ ∈ Rn and
any u ∈ U :
(i) α2(‖x− x′‖) ≤ V (x, x′) ≤ α1(‖x− x′‖);
(ii) ∂V

∂x f(x, u) + ∂V
∂x′ f(x′, u) < −κV (x, x′).

We also assume the existence of a K∞ function γ such that

∀x, y, z ∈ Rn, |V (x, y)− V (x, z)| ≤ γ(‖y − z‖). (10)

Note that γ is not a function of the variable x. This
assumption is not restrictive provided that state space X
of P is bounded, as it is the case in concrete applications.
We can now recall the following result.

Theorem 6. Consider the control system P and suppose
it admits a δ–GAS Lyapunov function V and, as such,
satisfying conditions of Definition 5, for some κ ∈ R+ and
K∞ functions α1 and α2 and (10) for some K∞ function γ.
Then, for any desired accuracy θ ∈ R+ and any τ ∈ R+,
select quantization parameter η ∈ R+ satisfying:

η ≤ min
{
γ−1((1− e−κτ )α1(θ)), (α−12 ◦ α1)(θ)

}
. (11)

Then, relation Rθ ⊆ Xτ × Xτ,η specified by (x, ξ) ∈ Rθ
iff V (x, ξ) ≤ α1(θ) is a strong θ–approximate bisimulation
relation between Sτ (P ) and Sτ,η(P ). Consequently, Sτ (P )
and Sτ,η(P ) are strongly θ–bisimilar.

We now use system Sτ,η(P ) to derive a solution to Problem
3. To this purpose, we first need to reformulate the
specification L. Since language L is regular there exists a
symbolic system S′L = (X ′L, X

′
0,, YL, ′,L

- , X ′L,m, Y
′
L, H

′
L)

such that its marked input language coincides with L,
i.e., Lum(S′L) = L. Without loss of generality, S′L is
chosen as deterministic, accessible and nonblocking, see
e.g. (Cassandras and Lafortune (1999)). It is useful to
define the dual symbolic system SL of system S′L, where
states of SL are transitions of S′L and vice versa, as follows:

Definition 7. Given system S′L, define the dual system

SL = (XL, XL,0, UL,
L
- , XL,m,X, HL), (12)

where: XL coincides with the set
′,L
- of transitions of

S′L; XL,0 is the collection of states x′L
u′L

′,L
- x′,+L in XL

with x′L ∈ X ′L,0; UL = {uD}, where uD is a dummy input;

L
- is the collection of transitions(

x1L
u12
L

′,L
- x2L

)
uL

L
-
(
x3L

u34
L

′,L
- x4L

)
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with x2L = x3L; XL,m is the collection of states x′L
u′L

′,L
- x′,+L

in XL with x′,+L ∈ X ′L,m; HL(x′L
u′L

′,L
- x′,+L ) = u′L for any

state x′L
u′L

′,L
- x′,+L in XL.

For ease of notation, we denote a state of SL by xL and a

transition of SL as xL
uD

L
- x+L . Since S′L is accessible and

nonblocking, it is easy to see that also SL is accessible and
nonblocking. Moreover, since S′L is deterministic then SL is
output deterministic. From the definitions above, it is easy
to see that Lym(SL) = Lum(S′L)r{ε}; when XL,0∩XL,m =
∅, which occurs in many realistic situations, we have
Lym(SL) = Lum(S′L). We now select transitions from SL
which can be followed by system Sτ,η(P ), up to accuracy
η. Given the dual system SL in (12) define symbolic
system S′′L = (XL, X0,L,U, ′′,L

- , XL,m,X, HL), where

xL
u

′′,L
- x+L if [HL(xL)]nη

u

τ,η
- [HL(x+L)]nη . We now have

all the ingredients to give the solution to Problem 3. Given
S′′L define:

C(L) = Trim(S′′L), (13)

R0(L) =

{
(x0, xc,0) ∈ X0 ×Xc,0(L)|
(x0, [HT(xc,0)]nη ) ∈ Rθ

}
, (14)

and suppose that the following holds

Assumption 8. C(L) and R0(L) are not empty.

The following result shows formal correctness of the pro-
cedure above to solve Problem 3.

Theorem 9. Suppose that plant P admits a δ–GAS Lya-
punov function V and as such, satisfies conditions of Defi-
nition 5, for some κ ∈ R+ and K∞ functions α1 and α2 and
(10) for some K∞ function γ. For any desired accuracy θ ∈
R+ and clock period τ ∈ R+ select µ ∈ R+ and η(L) ∈ R+

satisfying (11) with η = η(L) and µ+η(L)/2 ≤ θ. Suppose
that Assumption 8 holds. Then, parameter η(L), controller
C(L) in (13) and relation R0(L) in (14) solve Problem 3.

For later purposes we now give the following:

Definition 10. Language L(PC(L)) is the collection of all
words q0q1...qtf ∈ L for which there exists a trajectory

(x(·),Transc) of PC(L) with (x(0), xc,0) ∈ R0(L) and
satisfying ‖x(kτ)− qk‖ ≤ θ for all times t ∈ [0; tf ].

By the definition above, L(PC(L)) represents the part of L
that can be enforced by C(L) on P . The following result
holds as a direct consequence of Theorem 9.

Corollary 11. Suppose that assumptions of Theorem 9
hold and select η as required in Theorem 9. Suppose that
Assumption 8 holds. Then, L(PC(L)) = Lym(C(L)).

It is easy to see that there can be the case that
L(PC1(L)) = L(PC2(L)) for controllers C1(L) and C2(L)
with C1(L) 6= C2(L), meaning that while controllers are
different, they implement the same part of the specification
L. When L(PC1(L)) = L(PC2(L)) we write C1(L) ∼L
C2(L).

5. MAIN RESULT

In this section we provide the solution to Problem 4.

5.1 Preliminary results

In this section we introduce two results concerning sys-
tems marking the union of regular languages and sys-
tems marking the set difference of regular languages.
Consider a pair of output deterministic systems Si =
(Xi, X0,i, Ui,

i
- , Xm,i, Yi, Hi), i = 1, 2, with X1 ∩

X2 = ∅ and let Lym(Si) = Li, i = 1, 2. We start with
the following definition of union of systems:

Definition 12. The union of S1 and S2, denoted S1 t S2,
is specified by system S as in (1), where: X = X1 ∪
X2; X0 = X0,1 ∪ X0,2; - =

1
- ∪

2
- ;

Xm = Xm,1 ∪ Xm,2; Y = Y1 ∪ Y2; H(x) = H1(x) if
x ∈ X1 ∧H(x) = H2(x) if x ∈ X2.

The following result holds:

Proposition 13. Lym(S1 t S2) = Lym(S1) ∪ Lym(S2).

We now address system difference. We start with the
following:

Definition 14. The system difference of S1 by S2, denoted

S1 rs S2,

is Trim(S), where S is system as in (1), with:

• X = (X1×{xD})∪X ′, where X ′ = {(x1, x2) ∈ X1×
X2 | H1(x1) = H2(x2)} and xD is a dummy state;
• X0 ⊆ X0,1 × (X0,2 ∪ {xD}) defined as follows:

· ∀x1 ∈ X0,1, x2 ∈ X0,2, if H1(x1) = H2(x2) then
(x1, x2) ∈ X0;
· ∀x1 ∈ X0,1, if @x2 ∈ X0,2 such that H1(x1) =
H2(x2) then (x1, xD) ∈ X0;

• - ⊆ X × U1 × X defined as follows: for any

x1
u1

1
- x+1

· (x1, x2)
u1- (x+1 , x

+
2 ), if x2

u2

2
- x+2 ,

· (x1, xD)
u1- (x+1 , xD),

· (x1, x2)
u1- (x+1 , xD), if there does not exist

x2
u2

2
- x+2 with (x+1 , x

+
2 ) ∈ X ′;

• Xm = (Xm,1 × {xD}) ∪ X ′m where X ′m = (Xm,1 ×
(X2 r Xm,2)) ∩ X ′, in other words (x1, x2) ∈ Xm if
(x1, x2) ∈ X ′ and x1 ∈ Xm,1 ∧ x2 /∈ Xm,2;

• Y = Y1;
• H(x1, x2) = H1(x1).

The following result holds:

Proposition 15. Lym(S1 rs S2) = Lym(S1) r Lym(S2).

5.2 Solution to Problem 4

In this section we provide the solution to Problem 4.
Without loss of generality we make the following:

Assumption 16. The sets of states X(Lnom), X(L+),
X(L−), respectively of controllers C(Lnom), C(L+) and
C(L−), have empty intersection.

Let Cnext be a controller coinciding with C(Lnom) ex-
cept for the set of initial states, that is X0,next =
PostC(Lnom)(xc,k). Define regular language Lnext = {l =

l0 l1 ..., lJ ∈ YY∗ | wl ∈ Lnom ∧ [wk]nη
u

τ,η
- [l0]nη}, where

we recall that w = w0 w1 ... wk.
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Proposition 17. Cnext ∼Lnext
C(Lnext)

Without loss of generality we make the following:

Assumption 18. Set L̃ = Lnext ∪ L+. The sets of states

X(L̃ r L−), X(L− r L̃) and X(L̃ ∩ L−) respectively of

controllers C(L̃ r L−), C(L− r L̃) and C(L̃ ∩ L−), have
empty intersection.

We can now give the main result of this paper.

Theorem 19. Controller (Cnext tC(L+))rs C(L−) solves
Problem 4.

6. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section we provide an analysis of space computa-
tional complexity (S.c.c.) and time computational com-
plexity (T.c.c.) associated with Problem 4. In the sequel,
S.c.c. of a symbolic system S as in (1), is evaluated as
card( - ). When S.c.c. does not depend on the size of
the entities involved we say that it is constant. We start
with the following:

Proposition 20. S.c.c. and T.c.c. for finding C(L) of
Problem 3 are card( ′,L

- ) + card(
τ,η

- ) and

card( ′,L
- ) card(

τ,η
- ), respectively.

We can now give the main result of this section.

Theorem 21. S.c.c. for solving Problem 4 is:

2 card(
cnext

- ) + card(
L−
- )+

card(
L+

- ) + card(
τ,η
- ).

(15)

T.c.c. for solving Problem 4 is:

(card(
L−
- ) + card(

L+

- )) card(
τ,η
- )+

card(
cnext

- ) card(
c(L−)

- ).
(16)

A traditional approach to solve Problem 4 consists in
solving Problem 3 with L = Lnew whose S.c.c. and T.c.c.,
by Proposition 20, are, respectively

card(
Lnew

- ) + card(
τ,η
- ), (17)

card(
Lnew

- ) card(
τ,η
- ). (18)

A comparison between the two approaches follows. First
note that:

card(
Lnew

- ) ≤ card(
τ,η
- ). (19)

Suppose:

card(
L−
- ), card(

L+

- ) << card(
Lnew

- ). (20)

Condition above corresponds to the case where environ-
ment change is very small with respect to the nominal sit-
uation, which is the case in many realistic scenarios. Since
(20) implies card(

L−
- ), card(

L+

- ) << card(
Lnom

- )

and card(
Lnom

- ) ∼ card(
Lnew

- ) ∼ card(
c(Lnew)

- ) ∼
card(

cnext

- ), by comparing (15) and (17), we obtain

that S.c.c. in the two approaches is of the same order of
computational complexity. By comparing (16) and (18),
under (19) and (20), we obtain that T.c.c. of Problem 4
is smaller than the one obtained by using a traditional
approach.
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