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Abstract: Adaptivity of buildings introduces new challenges and opportunities for both
architects and engineers. With the possibility of active load compensation, new types of
lightweight structures can be realized. However, those demand suitable control engineering
methods to ensure safe and robust control. In this contribution, we introduce an approach
for decentralized linear quadratic Gaussian (LQG) control of adaptive structures. Many state
of the art methods in decentralized structural control focus on damping the response of
substructures that are either derived by decomposition of a global finite element (FE) model
or later assembled to form a complete structure. In contrast, we derive local models by means
of model order reduction techniques which allows for fully decentralized control without the
need to communicate states or estimate interaction forces. We demonstrate the decentralized
control of local subsystems for an adaptive structures demonstrator building in simulations.
Performance and energy demand are found to be comparable to a centralized controller which
makes the presented approach well suitable for application. Monte Carlo simulations with both
varying model parameters and system eigenvalues were conducted to analyze the robustness of
the decentralized LQG controllers.

Keywords: Adaptive structures; structural dynamics; state estimation; decentralized control;
model order reduction

1. INTRODUCTION

Introducing active load-bearing elements and sensor tech-
nology into truss structures leads to adaptive structures
opening up new possibilities for ultra-lightweight construc-
tion. The use of supplemental passive, semi-active or ac-
tive devices to reduce structural vibrations is not a novel
concept as pointed out by e. g. Spencer and Nagarajaiah
(2003). A proven, though rarely realized, example of an
active device that allows for building relatively lightweight
high-rise structures is the active tuned mass damper
(ATMD). In the concept of adaptive structures, the ac-
tuator is considered an integral part of the truss structure
instead of an additional mechanism. This more radical
view comes with a higher potential for the reduction of
embodied energy associated with the construction of build-
ings as discussed by Sobek and Teuffel (2001). However,
the complexity rises in every phase of the construction
process and suitable solutions for both monitoring and
control of such structures need to be developed.

Especially tall buildings or structures with a wide span -
when equipped with a multitude of sensors and actuators -
require the communication of a large amount of data over
long distances. Central acquisition and processing of sensor
data for real-time control can be both challenging and cost-
intensive in such cases. At the same time, failure of the
central control unit cannot be tolerated. In view of those
issues, decentralized estimation and control approaches are
the logical consequence. An early survey on decentralized
control approaches for large-scale structures is given in

Sandell et al. (1978) and a more recent one with a more
general focus on complex systems in Siljak (2011).

Most available work on decentralized structural control
focuses on the application of linear quadratic Gaussian
(LQG) control to individual substructures. In the sub-
structural controller synthesis method introduced by Su
et al. (1995), individual controllers are first designed for
each substructure which are later combined via coupling
matrices to form a global controller. It is often the case
that the dynamics of the assembled system differ signifi-
cantly from those of the substructures it is composed of
which renders this approach suboptimal. Lynch and Law
(2002) achieve decentralized control with linear quadratic
regulators (LQR) that operate on substructures derived
from a decomposition of the dynamic equations in matrix
second-order form. This requires that the interactions be-
tween subsystems are either small or known to achieve
performance comparable to a centralized controller. A
similar approach is presented by Lei et al. (2012), where
the state estimation problem is also taken into account.
The resulting controllers need to communicate their states
and observers are charged with the recursive estimation
of interaction forces between subsystems. With respect
to unknown disturbances, robustness of the latter cannot
be easily guaranteed. Bakule et al. (2016) extend the
same kind of decentralized LQG approach to account for
networked coordination of the subsystem controllers on
a higher level. Velocity and displacement feedback for
substructural control is shown in Rofooei and Monajemi-
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Nezhad (2006) where it is assumed that the dynamic
equations can be decoupled by means of a transformation.

In contrast to the aforementioned approaches to decen-
tralized structural control, we propose to use model order
reduction techniques to derive local models from a global
finite element (FE) representation. This way, fully decen-
tralized LQG control of the resulting subsystems is possi-
ble without the need to communicate states or explicitly
account for interaction forces between substructures. In
Warsewa et al. (2019), we introduced a decentralized and
distributed estimation approach for large-scale structures.
The models for local observers are obtained by applying
a combination of static and dynamic condensation tech-
niques and modal analysis to the global model. Each local
observer is able to give an estimate of the global state by
inverse transformation. This is potentially advantageous
for a coordination of modules in a hierarchical fashion and
also for inter-module communication both of which is not
within the scope of this publication.

Here, we show the applicability of this approach to the
decentralized control problem. For illustration purposes,
we use the simulation model of an adaptive structures
demonstrator building that is to be built on campus of the
University of Stuttgart to present this emerging technology
to a broader audience.

The remainder of this contribution begins by introducing
the dynamic model of the demonstrator. Modal analysis
is employed to obtain a lower order system in modal
coordinates for simulation purposes and the derivation of
local subsystems from the global model for decentralized
control is presented in Sec. 2.4. This is followed in Secs. 3
and 4 by a brief introduction of the filtering and con-
trol algorithms employed for both decentralized control
and the centralized approaches used for comparison. The
performance of the presented decentralized LQG control
method is investigated in simulations in Sec. 5 and ro-
bustness analysis is conducted by means of Monte Carlo
experiments. Concluding remarks are given in Sec. 6.

2. MODELING

To illustrate the application of the methods presented
in this contribution to adaptive structures, we consider
decentralized control of the aforementioned demonstrator
building. In the following section, a dynamic model of
the structure is introduced. Modal analysis is employed to
obtain a simulation model of lower order. Distribution of
a limited number of actuators and sensors on the demon-
strator is based on previous work and briefly outlined in
Sec. 2.2. In Sec. 2.4, we show the application of the method
presented in Warsewa et al. (2019) to obtain local models
for individual modules of the demonstrator.

2.1 Adaptive Structure Model

On the left hand side in Fig. 1, a schematic representation
of the demonstrator is visible. When considering only
the passive structure, the building is composed of four
identical modules. For decentralized control, each of the
four modules shown on the right hand side of Fig. 1
is controlled independently. Each substructure has three
stories, four vertical columns, eight diagonal bracings and

...
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Fig. 1. Schematic drawing of an adaptive high-rise building
and its decomposition into four modules with actu-
ators (yellow), elements equipped with strain gauges
(blue), camera-tracked nodes (green), boundary nodes
(red) and the node for which the x-displacement is
plotted in the results section (pink).

twelve horizontal bars. Floor plates are represented by two
diagonal links. Geometry and material parameters can be
found in Tab. 1. All truss elements are made of structural
steel. Vertical columns are modeled as beams whereas all
other elements are modeled as links taking only loads in
the axial direction. Except for the rotations about the x-
and y-axis, the DOFs of the ground nodes are fixed.

Adaptivity is introduced by means of hydraulic actuators
connected in parallel to selected vertical columns and
diagonals, as described in Wagner et al. (2018). The
actuator dynamics are assumed negligible here such that
the actuator contribution can be modeled as a force acting
on the boundary nodes of an active element.

We obtain the structural dynamics from a finite element
model as

M q̈(t) +Dq̇(t) +Kq(t) = Fuu(t), t > 0, (1)

q(t = 0) = q0, q̇(t = 0) = q1. (2)

Here, q(t) ∈ Rn are the structure’s DOFs, M and K
are the symmetric, positive definite mass and stiffness
matrices and Fu is the input matrix that maps the actuator
forces u(t) to the DOFs. Rayleigh damping is assumed
such that the damping matrix is obtained as a linear
combination of M and K

D = α1M + α2K (3)

with the damping coefficients α1 and α2.

Information on the structural deformation of the demon-
strator can be obtained via strain gauge sensors and a
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camera system. The latter uses two cameras to track the
displacements of a number of emitters mounted to the
facade at structural nodes. For details on the measurement
principle, refer to Guerra et al. (2019). One camera can
measure xz-displacements and the other yz-displacements.
In this contribution, we assume that the displacements of
nine emitters placed on the upper section of the building
can be tracked. The selected nodes are highlighted in green
in Fig. 1. This amounts to a total of mc = 24 displacement
signals from the cameras where the z-displacement is mea-
sured twice for the emitters captured by both cameras. The
length of diagonal bracings is measured by ml = 32 strain
gauges highlighted in blue in Fig. 1.

2.2 Sensor and Actuator Placement

The selection of diagonal bracings for sensor placement is a
result of an optimization algorithm developed in previous
work. The same method was used to determine the optimal
location of the nu = 24 actuators highlighted in yellow in
the substructures shown in Fig. 1. In Heidingsfeld et al.
(2017), a greedy algorithm is presented that sequentially
selects the best position of each actuator using measures
derived from the controllability Gramian as an optimality
criterion. This method was further extended to optimal ac-
tuator placement for compensating static disturbances in
Wagner et al. (2018) and adapted to the sensor placement
problem using the observability Gramian in Rapp et al.
(2017).

2.3 Modal Analysis

We employ modal analysis to reduce the system order
by truncation of high-frequency eigenmodes. This reduces
numerical problems caused by the stiff nature of the
dynamics (1) and increases simulation speed. A detailed
treatise of this widely-used technique can be found in e. g.
Gawronski (2004).

The solution of (1) without damping and input terms
amounts to

q(t) = ϕie
jωit (4)

with eigenvalues ωi and the corresponding eigenvectors ϕi.
Taking the second derivative of the above, the dynamic
equation without damping and external excitation can be
reformulated as

(K − ω2
iM)ϕi = 0, i = 1, 2, . . . n. (5)

This equation can be solved for ωi and the eigenvectors ϕi.
Since the latter are not uniquely determined, they are nor-

malized such that ΦTMΦ = I with Φ = [ϕ1 ϕ2 . . . ϕn]
T

.

A reduced order model in modal coordinates is then
obtained by approximating the vector of DOFs q(t) by
a small number of primary eigenmodes

q(t) ≈ Φpηp(t). (6)

Here, the primary eigenmodes ηp(t) ∈ Rnp with the low-
est magnitude eigenvalue and therefore lowest frequency
are chosen. With the transformation (6) and by left-
multiplying (1) with ΦT

p , we obtain the structural dynam-
ics in modal coordinates

η̈p(t) +D∗η̇p(t) +K∗ηp(t) = F ∗uu(t), t < 0. (7)

Table 1. Geometry and Material Parameters.

Description Formula sign Value Unit

Density ρ 7850 kg/m3

Young’s modulus E 210 × 109 N/m2

Poisson’s ratio ν 0.3

Vertical columns, quadratic hollow profiles
Length Lv 3 m

Width wv 0.3 m

Wall thickness tv 0.01 m

Horizontal links, rectangular hollow profiles
Length Lh 4.75 m

Width wh 0.504 m

Height hh 0.12 m

Wall thickness th 0.008 m

Horizontal diagonal links
Length Lhd 6.72 m

Width whd 0.01 m

Height hhd 0.06 m

Diagonal links
Length Lvd 10.18 m

Width wvd 0.15 m

Height hvd 0.012 m

Here, D∗ = ΦT
pDΦp is the modal damping matrix, K∗

is the diagonal matrix of squared eigenvalues and F ∗u =
ΦT

pF u the transformed input matrix.

For simulation purposes and the application of control
engineering methods, (7) is converted to a state space
representation. By choosing the state vector as x(t) =[
ηp(t) η̇p

]T
, we can reformulate the dynamics as

ẋ(t) =

[
0 I
−K∗ −D∗

]
x(t) +

[
0
F ∗u

]
u(t), t > 0

y(t) = Cx(t), x(t = 0) = x0,

(8)

where the output matrix C ∈ R(ml+mc)×2np maps the state
to the quantities measured by strain gauges and cameras.

2.4 Reduced-Order Local Models

As in Warsewa et al. (2019), local models for the structure
in Fig. 1 are derived using a combination of two different
model order reduction techniques - the system equivalent
expansion reduction process (SEREP) and Guyan conden-
sation. The latter is an established static condensation
method. For its application, the model’s DOFs are divided
into a set of active coordinates qa(t) and a set of dependent

ones qd(t) with qf(t) = [qa(t) qd(t)]
T

. Mass and stiffness
matrix are rearranged accordingly

Mf =

[
Maa Mad

Mda Mdd

]
, Kf =

[
Kaa Kad

Kda Kdd

]
. (9)

For each of the four subsystems shown in Fig.1, its re-
spective DOFs are retained in qa(t) while all other DOFs
become dependent. The full global state vector qf(t) of the
whole structure can then be calculated using the Guyan
transformation as stated in Guyan (1965)

qf(t) =

[
I

−K−1
dd Kda

]
qa(t) = TGqa(t). (10)

As a static technique, Guyan condensation on its own does
not allow accurate reproduction of the structural dynamics
because inertia terms are neglected in the transformation
(10). In the application of the SEREP method, the dynam-
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ics are expressed by a reduced set of system eigenmodes
ηr ∈ Rnr as obtained from modal analysis in Sec. 2.3 with

qf(t) =

[
qa(t)
qd(t)

]
≈
[
Φa

Φd

]
︸ ︷︷ ︸

Φr

ηr(t). (11)

A reduced order model in active DOFs qa(t) is then
obtained using a generalized inverse of Φa

qf(t) ≈ Φr

[
ΦT

a Φa

]−1
ΦT

a qa(t) = TUqa(t) (12)

according to O’Callahan and Li (1996), where Φa ∈ Rna×nr

is the matrix of active eigenvectors with na the number
of active DOFs. The transformations TG and TU can be
combined to a single one as proposed by Avitabile (2005)

TH = TG + (TG − TU)
[
ΦaΦT

a T
T
UMfTU

]
(13)

which is known as the SEREP-Guyan transformation. For
each subsystem s, with s ∈ {1, 2, 3, 4}, a transformation
THs is obtained that projects from the local coordinates
qs(t) to the global state. The local dynamics for each
subsystem s are obtained by left-multiplying (1) with the
transpose of THs

Msq̈s(t) +Dsq̇s(t) +Ksqs(t) = Fusus(t), t > 0. (14)

Here, us(t) are the inputs corresponding to the actuators
present in subsystems s. The fourth module does not
have any input. For the following application of control
engineering methods, further model order reduction by
means of modal analysis is performed on the local systems.
This allows e. g. the execution of observers and controllers
in real-time on low-cost hardware which is desirable for
decentralized systems. We apply the method described in
Sec. 2.3 to the local dynamics (14) to approximate qs(t)
by a small number of eigenmodes ηs(t) ∈ Rns

qs(t) ≈ Φsηs(t). (15)

The reduced order local dynamics are then given as

η̈s(t) +D∗s η̇s(t) +K∗sηs(t) = F ∗usus(t), t > 0. (16)

By choosing the local state vector as xs = [ηs η̇s]
T

, the
subsystem dynamics can be formulated in state space

ẋs(t) =

[
0 I
−K∗s −D∗s

]
︸ ︷︷ ︸

As

xs(t) +

[
0
F ∗us

]
︸ ︷︷ ︸

Bs

u∗s(t)

ys(t) = Csxs(t), xs(t = 0) = xs0.

(17)

The local output mapping Cs yields the full camera output
but only the length measurements from strain gauges on
elements contained in subsystem s. It is given by

Cs =

[
Clen,s 0
Ccam,f 0

] [
THsΦs 0

0 THsΦs

]
︸ ︷︷ ︸

LT
s

, (18)

with the local element length mapping Clen,s ∈ Rms×ns ,
where ms is the number of strain gauge sensors available in
the module. The tranformation Ls relates xs to the global

state vector xf = [qf q̇f]
T

.

3. STATE ESTIMATION

In the following, decentralized and distributed state es-
timation with discrete time Kalman filters is conducted
for the local subsystem dynamics presented in Sec. 2.4. To
compare the performance of the distributed observers to

a centralized approach, a centralized observer is briefly
introduced in the subsequent section.

3.1 Distributed Observers

Given the discrete time equivalents Fs and Gs of the sys-
tem matrix As and input mapping Bs from (17) according
to Simon (2006), the prediction step of a local Kalman
filter can be formulated as

x̂−s [k] = Fsx̂
+
s [k − 1] +Gsus[k − 1]

P−s [k] = FsP
+
s [k − 1]FT

s +Qs,
(19)

where x̂−s [k] is the a priori state estimate at step k
before the processing of measurements, x̂+

s [k − 1] the a
posteriori estimate after measurement incorporation from
the previous filter iteration and P−s [k] and P+

s [k−1] are the
corresponding estimation error covariances. The system
noise covariance for each substructure is obtained from the
global system noise covariance Qo = In×n ·qo according to

Qs = LsQoL
T
s , (20)

with Ls from Eq. (18). Given a vector of measurement
signals ys[k] for the current time step, the a priori esti-
mate and error covariance are updated in a correction step
according to

x̂+
s [k] = x̂−s [k] +Ks[k]

(
ys[k]− Csx̂

−
s [k]

)
P+
s [k] = (I −Ks[k]Cs)P

−
s [k],

(21)

where the Kalman gain Ks[k] is given as

Ks[k] = P−s [k]CT
s

[
CsP

−
s [k]CT

s +Rs

]−1
. (22)

Here, Rs is the measurement noise covariance. The noise
on individual signals is assumed uncorrelated such that Rs

can be expressed as

Rs =

[
Ims×ms · rl 0

0 Imc×mc · rc

]
(23)

with the strain gauge noise variance rl and the camera
signal noise variance rc.

3.2 Centralized Estimation

For centralized state observation a reduced order model
(8) obtained by modal analysis with np = 10 smallest
magnitude primary eigenmodes is used. The discrete time
Kalman filter equations are the same as above except that
the centralized observer uses all available measurements in
the correction step and a global system model.

4. CONTROL DESIGN

In this section, a decentralized control algorithm is in-
troduced such that each module is controlled separately,
based on the models in Sec. 2.4 and using the actuators
installed in the respective subsystem.

4.1 Decentralized Control

An optimal state feedback controller is designed by means
of the LQR algorithm. The states for feedback are obtained
from the distributed Kalman filters introduced in Sec.3.1.
The control law yields

us[k] = Klqr,s(x̂
+
s [k]− xd,s), (24)
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Table 2. Simulation Parameters.

Symbol Value Unit Description

Ts 0.001 s system sample time
Td 0.01 s filter/controller sample time
np 186 # modes system
nr 10 # modes SEREP
ns 10 # modes local models
α1 0.05 damping coefficients
α2 0.001
σc 4 × 10−6 m2 camera noise variance
σl 1 × 10−8 m2 strain gauge noise variance

qo, qs 1 system noise covariance
rc 1 × 10−6 m2 camera noise covariance
rl 1 × 10−9 m2 strain gauge noise covariance
qc 2 × 106 state cost weight LQR

where Klqr,s ∈ Rnu,s×ns is the state feedback matrix for
subsystem s and xd,s is the desired state, i. e. zero displace-
ment and velocity. The feedback matrix is determined such
that the cost function

J =

∞∑
k=0

(x̂+
s [k])TQcx̂

+
s [k] + (us[k])TRcus[k] (25)

is minimal for given weighting matrices Qc = Ins×ns · qc
and Rc = Inu,s×nu,s .

4.2 Centralized Control

To evaluate the performance of the decentralized con-
troller, a centralized LQG is designed for comparison. This
controller follows the same equations as the decentralized
one in Sec. 4.1 while using the global model of the central-
ized Kalman filter in Sec. 3.2 and accessing all actuators.

5. RESULTS

To assess the performance of the decentralized control
method presented in this contribution, we investigate the
dynamic response of the structure in Fig. 1 for an initial
displacement in x-direction in the controlled and uncon-
trolled case. Performance of the decentralized observers
and controllers is compared to the centralized approaches
by depicting the x-displacement of node 47, the node
highlighted in pink in Fig. 1. This node is chosen because
no camera measurements are available on this floor and the
displacements are higher in upper stories. In the simula-
tions, the structural dynamics are represented by (8) with
the first np = 186 eigenmodes for which the eigenfrequen-
cies are below the Nyquist frequency for a sample time
of Ts = 0.001 s. These and other simulation parameters,
including controller/observer settings and noise variance
values are summarized in Tab. 2.

5.1 Performance of Decentralized vs. Centralized Approach

In Fig. 2, the x-displacement of node 47 is plotted together
with the estimated values. While the central observer
accurately tracks the actual displacement value almost
immediately, the decentralized observer in the fourth mod-
ule takes about 0.25 s to converge. Afterward, the local
estimate is hardly distinguishable from the global one. The
slightly lower performance of the decentralized filters is
not surprising and an acceptable tradeoff since they are
not using the sensor data from the other modules.
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Fig. 2. Centralized and decentralized estimation of the x-
displacement of node 47 for an initial displacement of
the structure.
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Fig. 3. Centralized and decentralized control for an initial
displacement of the structure. The x-displacement of
node 47 is shown.

Using the state estimates of the decentralized observers
in the lower three modules, the corresponding decentral-
ized controllers damp structural oscillations. Again, the
decentralized approach is compared to the centralized one
and the respective performance is shown in Fig. 3. In the
uncontrolled case, oscillations up to an amplitude of about
60 mm are still visible after 4 s. Both control approaches
manage to damp the structural vibration significantly in
the considered time interval with almost zero residual
oscillation. However, the local controllers (blue) achieve
quicker damping of the oscillations caused by the ini-
tial displacement of the structure. At first, the state-cost
weights qc for the controllers in each actuated module
were set to the same value as for the centralized LQR
(see Tab. 2). When each local LQR is assigned a state-
cost weight of qc = 1 × 106 (dash-dotted dark line),
almost identical damping performance results. This can
be attributed to the different accuracy of local dynamic
models when compared to a global reduced order model.

5.2 Energy Demand

To further explore the differences between decentralized
and centralized control, we examine the energy consump-
tion of both approaches. Here, the expended power is
calculated by multiplying the actuator forces with the ele-
ment length change velocities of the corresponding trusses
and taking the resulting product’s absolute value. Sum-
ming up the individual power terms and integrating over
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Fig. 4. Energy consumption of centralized and decentral-
ized control.

time yields the results depicted in Fig. 4. We observe, that
the decentralized controllers consume about 10 % more
energy than the centralized LQG with the initial value
of qc. When the state-cost weight of the local controllers
is adjusted, almost identical controller performance is ob-
served in Fig. 3. In Fig. 4 we see, that the same applies to
the energy demand. Minor differences are visible, but they
are not significant. With the local LQRs it is also possible
to choose different controller parameters in each module or
to adapt them over time. For a more in-depth assessment
of both control performance and energy demand, various
load scenarios as well as different parameters for Kalman
filters and LQR controllers need to be considered.

5.3 Robustness Analysis

As stated e. g. by Doyle (1978), stability with respect to
model parameter uncertainties cannot be guaranteed for
LQG control approaches. In order to analyze the robust-
ness of the presented decentralized control approach on
that account, Monte Carlo simulations were conducted
with varying model parameters. In a first simulation ex-
periment, the structure’s parameters in Tab. 1 (except
for element lengths) and the damping coefficients were
assumed to follow a normal distribution. A standard de-
viation of σ = 5 % of the nominal value was assumed for
each parameter. A second simulation study was conducted,
where the eigenvalues ωi of the simulation model (8) were
assumed normally distributed instead. In this experiment,
a higher standard deviation of σ = 10 % of the nominal
value was chosen. The number of simulation runs in each
experiment was N = 10000.

Results for the first experiment are depicted in Fig. 5 a)
with the worst and best result highlighted respectively. For
ease of comparison, the damping behavior is illustrated for
node 47 – as previously done in Figs. 2 and 3. We observe
a stable response of the decentralized controllers for all
tested parameter sets. The centralized LQG control was
also tested for the same parameter sets and proved stable
in all but two simulation runs (not shown).

When the structure’s eigenvalues are varied instead (as-
suming no changes in mode shapes), a different outcome
is observed in Fig. 5 b). Stability of the decentralized LQG
controllers cannot be guaranteed as unstable behavior is
observed for many samples. Here, the centralized LQG is,
however, stable in all cases (also not shown). A standard
deviation of σ = 10 % leads to quite high uncertainty
which might not be realistic in practice. It still shows the
limits of the proposed control scheme and the importance

of good agreement between the modeled and the actual
eigenvalues of the structure.

Given deviation from the nominal parameters of the struc-
ture is in the range of ±5 %, the decentralized control ap-
proach is assumed to be stable. This needs to be confirmed
in practical application or with more involved simulation
studies.

6. CONCLUSION

In this contribution, we introduced a method for decen-
tralized state estimation and control design for adaptive
structures. Based on previous work, models for local sub-
systems were derived from a finite element model by means
of SEREP-Guyan reduction followed by subsequent modal
analysis. Here, we have shown the applicability of this
method to perform decentralized control of a sample adap-
tive structure. Information on the structural deformation
is obtained from a limited number of strain gauges and
a camera system. LQG control was employed for each
subsystem independently. As opposed to existing work, our
approach neither requires the communication of states nor
the introduction of coupling forces and their estimation
because the approximated global dynamics are preserved
in the local models.

Both the performance and the energy demand of the
decentralized controllers were found to be comparable
to a centralized reference. In a practical application, the
benefits of decentralization – higher redundancy and cost-
effective realization – can thus be achieved without sac-
rificing performance. In simulation studies, the stability
of the decentralized LQG controllers was confirmed if the
model parameters do not deviate more than ±5 % from the
nominal values used to construct the dynamical simulation
model. Care must be taken to guarantee good matching
between modeled and actual eigenvalues when using a
reduced number of eigenmodes to reproduce structural
dynamics.

In further work, we wish to transfer this methodology to
different structures (taller building in particular) where we
also want to take communication between local modules
into account.
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Fig. 5. Monte Carlo simulations of the decentralized control approach with N = 10000 samples shown for node 47.
a) Normally distributed model parameters (σ = 5 %); b) Normally distributed eigenvalues (σ = 10 %).
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