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Abstract: This paper proposes a method to analyze, beyond stability, the performances of linear
time-delay systems. Using robust analysis techniques, a sufficient condition that analyzes the
location of eigenvalues in the complex plane is presented. More precisely, a set of quadratic
inequality constraints are designed to define an admissible region for the infinitely many
eigenvalues of a time-delay system and the quadratic separation theorem is applied to assess
that the eigenvalues are effectively belonging to that stability region. This method is then
used for the control of an active mass damper. A standard state feedback control is replaced
with a static output feedback plus a static delayed output feedback. This strategy avoids the full
measurement of the state and shows that delays in the dynamic may be helpful for stabilization.
The closed-loop system is then expressed as a time-delay system and the performance criterion
is exploited to analyze the stability and the damping properties. Simulations and experimental
tests support the approach.
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1. INTRODUCTION

Analyzing the stability of a linear time delay system is a
challenging task since this is an infinite dimensional system
and it admits an infinite number of eigenvalues. Assessing
the stability by inspecting the root locus is therefore
complicated even if some studies have been carried out in
this direction as Breda et al. (2015). In the literature many
works have been dedicated to find numerically tractable
conditions ensuring the stability of time-delay systems
by using either Lyapunov approach in Fridman (2010),
Fridman (2014) or Input-Output approach in Ariba et al.
(2012), Kao and Rantzer (2007).
Regarding the performance analysis, results on the topic
are scarce. In fact, only the exponential stability (also
called α-stability) have been studied in, for example,
Hien and Trinh (2016). Mainly two approaches can be
reported: one relying on the classical transformation z(t) =
eαtx(t) (see Mondie and Kharitonov (2005)) and others
on specific Lyapunov-Krasovskii functionals, incorporating
the α exponential information into their structure. To
the best of our knowledge, the input-output approach
have never been proposed to tackle this problem. In this
work, we aim at considering more general regions in
which eigenvalues should lie. We make use of an input-
output robust approach, namely, the quadratic separation
method that has already been used in the context of the
stability of delay systems in Ariba et al. (2018). Basically,
starting from an existing stability condition expressed in
the quadratic separation framework, we design a new set

of quadratic inequality constraints to redefine the domain
of definition of the Laplace variable. More specifically, this
new set of inequality constraints enforces the uncertain
transfer functions that models the dynamic system to be
well defined in the prescribed regions. It thus implies that
the eigenvalues do not belong to those regions. Therefore,
instead of defining a region where eigenvalues should be
located (which is impossible except for α-stability), we
define a region where they should not be.

The second objective of the paper is to use this methodol-
ogy to stabilize an active mass damper. In that case, fol-
lowing some recent papers Michiels and Niculescu (2007),
we consider that the classical state feedback controller
can be approximated by a delayed proportional feedback
controller. The closed-loop system becomes thus a time
delay system. The practical application 1 considered in
this work is a bench-scale building like tall structure as
depicted in Figure 1. The mechanical structure being
flexible, a highly oscillatory behavior is observed when
subjected to some disturbance forces. The principle of the
active mass damper is to move an actuated cart on the top
of the structure so as to counterbalance the oscillations.
Then, the control problem is not only to stabilize the
whole system (cart + structure), but also to dampen the
vibrations.

1 URL: https://www.quanser.com/products/active-mass-damper/
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Figure 1. Active mass damper experiment

2. PROBLEM STATEMENT

We consider in this study a standard linear time-delay
system of the form:

ẋ(t) = Ax(t) +Adx(t− h) (1)

where x ∈ Rn is the state vector, A and Ad ∈ Rn×n are
constant matrices, and h is a constant delay. The eigen-
values of the system (1) are solutions of the characteristic
equation:

det(s1n −A−Ade−sh) = 0.

It is well known (see for instance Fridman (2014)) that,
this system admits an infinite number of solutions called
characteristics roots or also eigenvalues, which satisfies the
following properties:

(1) There exists a finite number of eigenvalues in any set
of the form |s| ≤ α, α > 0.

(2) There exists a finite number of eigenvalues for which
the real part is greater than a prescribed β > 0.

(3) The solutions of the characteristic equation satisfy

lim
|s|→+∞

Re(s) = −∞.

It means also that the time-delay system is asymptotically
stable if all the eigenvalues have their real part strictly
negative. At this stage, analyzing the performances of
such a system is rather complicated as stated in Hien
and Trinh (2016). Indeed, for LTI systems, there is only
a finite number of poles and their placement in the
complex plane indicates the dynamic performances. Thus,
the concept of D-stability was developed (see Henrion
et al. (2001) and references therein) and allowed the
development of methods to ensure that the poles of a
finite dimensional linear systems belong to some given
regions. Convex regions of the complex plane can be easily
expressed as an inequality of the form:

d1ss
∗ + d2s

∗ + d∗2s+ d3 ≤ 0. (2)

Depending on the choice of parameters {d1, d2, d3}, various
regions D can be defined Henrion et al. (2001). Typical
regions are:

• half-plane, D = {s = x + jy ∈ C : ax + by + c < 0},
where a, b, c are real scalars, obtained with the set
{d1, d2, d3} = {0, a+ jb, 2c}.
• disk of center s0 ∈ C and radius r > 0, D = {s ∈
C : |s− s0| < r}, obtained with the set {d1, d2, d3} =
{1,−s0, s0s∗0 − r2}.

In the case of time-delay systems, due to its infinite dimen-
sional nature, it is impossible to impose the eigenvalues to
belong to certain bounded set. At least, in the literature
of time delay systems, one can find the concept of α-
stability, meaning that the eigenvalues belong to the set
for which Re(s) ≤ α. If α < 0, it means therefore that the
system is exponentially stable with a convergence rate α
(see Hien and Trinh (2016) and references therein). The
idea in this paper is to define regions that are, in this
case, forbidden for the eigenvalues. Knowing the specific
properties of eigenvalues of time delay systems of the form
(1), suitable regions can be chosen so as to state a certain
level of performances.

3. MAIN RESULT

3.1 A first stability result

Two approaches are generally considered to study the
stability of (1): the Lyapunov method and the robust
analysis. This latter is employed in this paper with the
quadratic separation method (see Kao and Rantzer (2007);
Peaucelle et al. (2007) and references therein). It consists
in modeling the time-delay system (1) as an uncertain
feedback system as shown in Figure 2. The uncertainty ∇
embeds the delay dynamics in the feedback block (different
types of uncertain models are presented in Peaucelle et al.
(2007); Iwasaki and Hara (1998); Ariba et al. (2018))
and some linear relationships between system signals are
specified in the feedforward block. The stability is then
tested with the conditions stated in the following theorem.

+

+
w

w

z

z

Figure 2. Feedback system.

Theorem 1. (Peaucelle et al. (2007)). Given the intercon-
nection defined by Figure 2 where E and A are two real
valued matrices and∇ is a linear operator which represents
the system uncertainties. This latter is assumed to belong
to an uncertain set ∇∇. For simplicity, we assume that E is
full column rank. The uncertain feedback system of Figure
2 is well-posed and stable if and only if there exists a
Hermitian matrix Θ = Θ∗ satisfying both conditions[

1
∇

]∗
Θ

[
1
∇

]
≤ 0 , ∀∇ ∈ ∇∇ , (3)

[ E −A ]
⊥∗

Θ [ E −A ]
⊥
> 0. (4)

Most of the work includes the modeling part (describing
matrices E , A and ∇) and finding a separator Θ (based on
some inequality constraints w.r.t. the uncertainty ∇). This
latter part is built such that the inequality (3) is satisfied
for all possible uncertainties belonging to ∇∇. Then, the
second condition (4) provides the stability test, usually
formulated as an LMI condition.

Let us consider, for instance, the stability criterion given
below, extracted from (Ariba et al., 2018, Theorem3), and
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established with the quadratic separation approach. It is
a pointwise delay stability condition 2 for systems of the
form of (1). It makes use of the Bessel inequality and
combines a set of transfer functions that describes the
dynamical behaviour of (1). All these transfer functions
are embedded in the ∇ matrix

∇ =
[
s−11(N+1)n, e

−hs1n, δ̃N (s)
]
. (5)

Transfer functions s−1 and e−hs are, respectively, the
standard integrator and delay related transfer functions.

The additional ones δ̃N (s) = [δ01n δ11n . . . δN1n]
T

, with

δk(s) =
∫ 0

−h Lk(θ) esθ dθ (Lk are Legendre polynomials

defined over the interval [−h, 0]), are delay-related transfer
functions introduced to reduce the conservatism of the
approach. Matrix ∇ being considered as an uncertain
feedback, each transfer function has to be bounded. The
following quadratic inequalities have been proven in Peau-
celle et al. (2007); Ariba et al. (2018) for all s ∈ C such
that 3 Re(s) > 0.[

1n
s−11n

]∗ [
0 −P
−P 0

] [
1n

s−11n

]
≤ 0,

[
1n

e−hs1n

]∗ [−Q 0
0 Q

] [
1n

e−hs1n

]
≤ 0,

N∑
k=0

(2k + 1) δ∗kRδk ≤ h2R,

where P , Q and R are n × n positive definite matrices.
From these inequalities, the separator Θ (9) is derived.

This particular choice of matrix ∇ connects internal sig-
nals w(t) and z(t) via w(t) = ∇z(t) with

w(t) =


x(t)

δ̃N−1[x(t)]
x(t− h)

δ̃N [ẋ(t)]

 , z(t) =

 ẋ(t)

δ̃N−1[ẋ(t)]
x(t)
ẋ(t)

 . (6)

Then, the feedforward block is described by :[
1(N+3)n

0(N+1)n×(N+3)n

]
︸ ︷︷ ︸

E

z(t) = A w(t) (7)

with A defined in (8).
Applying Theorem 1 with this modeling strategy has

led to the stability criterion below, which has shown very
interesting results in terms of reduction of conservatism.

Theorem 2. (Ariba et al. (2018)). Assume that A + Ad is
a non singular matrix. For a given constant delay h and
for a given N ≥ 1, if there exist positive definite matrices
P ∈ R(N+1)n×(N+1)n,Q,R ∈ Rn×n such that the following
LMI is satisfied:

[ E −A ]
⊥∗

Θ [ E −A ]
⊥
> 0,

where matrices E , A are defined in (7) and Θ by (9):

Θ =

[
Θ1 Θ2

Θ∗2 Θ3

]
(9)

2 Note that any other sophisticated stability conditions (delay-
range, uncertain delay, robust w.r.t system matrices...) could have
been considered. The pointwise delay case having a less cumbersome
LMI test is preferred for sake of simplicity.
3 This condition ensures that transfer functions are defined for any
s in the right half plane, and thus no eigenvalues lies in this zone.

A =



A 0 . . . . . . 0 Ad 0 . . . 0 0

0

.

.

.

0

0 . . . . . . 0

.

.

.
.
.
.

0 . . . . . . 0

0

.

.

.

0

1 0 0

. . .
.
.
.

0 1 0

1 0 . . . . . . 0 0 0 . . . 0 0

A 0 . . . . . . 0 Ad 0 . . . 0 0

1
1
0

.

.

.

0

0 . . . 0

−
2

h
1 0

. . .

0 −
2(2N + 1)

h
1

−1
1
0

.

.

.

0

−1 0 0 . . . 0
0 −1 0 . . . 0
1 0 −1 0

. . .
. . .

. . .

0 1 0 −1


. (8)

with

Θ1 = diag
(
0(N+1)n,−Q,−h2R

)
,

Θ2 = diag
(
− P, 0n, 0n×(N+1)n

)
,

Θ3 = diag
(
0(N+1)n, Q,R, 3R, . . . , (2N + 1)R

)
,

then system (1) is asymptotically stable for the given h.

Proof 1. See Ariba et al. (2018).

In this theorem, as in other results Iwasaki and Hara
(1998); Peaucelle et al. (2007), the uncertain set ∇∇ is
chosen such that

∇∇ = {∇(s), Re(s) > 0}.
We work on that set in the next paragraph to design a
performance analysis criterion. The quadratic separation
appears to be a convenient framework for this objective be-
cause all the structure of the uncertain feedback modeling
(5)-(6)-(7) remains unchanged, only the separator matrix
Θ needs to be recalculated if the domain of definition of s
is modified.

3.2 Performance analysis

The performance of a time delay system is directly linked
to the placement of its eigenvalues in the complex plane.
Constraining the infinitely many eigenvalues to a desired
region is impossible, except for vertical half planes. The
principle of the proposed approach consists in specifying
that the Laplace variable s, used in quadratic constraints
for each transfer functions defined in ∇, belongs to the
desired region D. As mentioned earlier, starting from a
given stability criterion, the key idea is to redefine condi-
tion (3) with a new separator Θ depending on D, while the
other matrices remain unchanged. The resulting condition
of Theorem 1 will then imply that there is no eigenvalue in
D, what can be translated into some performance indexes
(responsiveness, damping). This methodology requires ad-
ditional constraints on the definition of the uncertain ma-
trix ∇. The following lemmas show the new separator for
each transfer functions in ∇.

The proofs of all lemmas and additional remarks are given
in the long version Ariba and Gouaisbaut (2020) of this
present paper.

Lemma 1. A quadratic constraint for s−1 is given by the
following inequality for any positive definite matrix P in
Rn×n, [

1n
s−11n

]∗ [
d1P d2P
d∗2P d3P

] [
1n

s−11n

]
≤ 0,

∀s ∈ D, s 6= 0.
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Lemma 2. A quadratic constraint for e−hs is given by the
following inequality for any positive definite matrix Q in
Rn×n,[

1n
e−hs1n

]∗ [
−e2ahQ 0

0 Q

] [
1n

e−hs1n

]
≤ 0, ∀s ∈ D,

where a is the real part of the leftmost point of the region
D in the complex plan.

Lemma 3. A quadratic constraint for δ̃N (s) = [δ0 δ1 . . . δN ]
T

is given by the following inequality for any positive definite
matrix R ∈ Rn×n,


1n
δ01n
δ11n

...
δN1n


∗ 

µR 0 0 . . . 0
0 R 0 . . . 0
0 0 3R
...

...
. . .

0 0 (2N + 1)R




1n
δ01n
δ11n

...
δN1n

 ≤ 0,

∀s ∈ D and µ = − h
2a

(
1− e−2ah

)
.

We can now state a theorem for the performance analysis
for time-delay systems (1).

Theorem 3. Assume that A+Ad is a non singular matrix.
For some given complex scalar parameters {d1, d2, d3}
that define a region D in the complex plan (2). For a
given constant delay h and for a given N ≥ 1, if there
exist positive definite matrices P ∈ R(N+1)n×(N+1)n, Q,
R ∈ Rn×n such that the following LMI is satisfied:

[ E −A ]
⊥∗

Θ [ E −A ]
⊥
> 0,

where matrices E , A are defined in (7) and Θ by:

Θ =

[
Θ1 Θ2

Θ∗2 Θ3

]
with

Θ1 = diag
(
d1P,−e2ahQ,−

h

2a
(1− e−2ah)R

)
,

Θ2 = diag
(
d2P, 0n, 0n×(N+1)n

)
,

Θ3 = diag
(
d3P,Q,R, 3R, . . . , (2N + 1)R

)
,

then system (1) has no eigenvalues in D for the given h.

The parameter N corresponds to the degree of the Leg-
endre polynomial that is used to approximate the delay
transfer function in the uncertain feedback modeling Ariba
et al. (2018). It has been shown that increasing N reduces
the conservatism of the criterion, at the expense of the
numerical burden.

3.3 Numerical example

As an illustrative example, let us consider the following
system with a delay h = 1s:

ẋ(t) =

[
0 1
−2 0.1

]
x(t) +

[
0 0
1 0

]
x(t− 1) (10)

Several tests have been run to illustrate the ability of The-
orem 3 to assess the absence of any eigenvalue of (10) in
some specific location. Those simulations are summarized
in Table 1 and plotted on Figure 3. For each test, the for-
bidden regionD for eigenvalues (orange zones) is compared
to the actual location of (10). The eigenvalues location is

determined with a matlab function that approximates the
characteristic roots of linear delay differential equations
(based on the work of Breda et al. (2015)). Obviously,
when any region of D overlaps any pole spot, the LMI
condition of Theorem 3 is unfeasible. It can be noticed
that in some cases it is necessary to increase N so that
Theorem 3 is able to detect the “D-stability”. Reducing
the conservatism is especially required when a region gets
closer to an eigenvalue.

test regions Thm. 3 result

1
half-plane: Re(s) > −0.3

LMI feasible for N ≥ 2
disc: r = 2, s0 = −3 + 20j

2
half-plane: Re(s) > −0.3

LMI feasible for N ≥ 4
disc: r = 3, s0 = −8 + 6j

3
half-plane: Re(s) > −0.3

LMI feasible for N ≥ 8
disc: r = 1, s0 = −4 + 11j

Table 1. Configuration parameters for the anal-
ysis of (10).

4. APPLICATION TO AN ACTIVE MASS DAMPER
SYSTEM

4.1 Description of the system

The practical application considered in this work is a
bench-scale building like tall structure. The test stand is
a Quanser experimental model and is depicted in Figure
1. The aim is to design a control system that dampens
actively vibrations with an actuated cart on the top.

A schematic of the plant and notations are illustrated in
Figure 4. For small floor deflection, the top of the structure
is modeled as a linear spring-mass system. xf is the floor
horizontal displacement and xc is the cart position. This
latter is actuated with a DC motor that induces a linear
force Fc. Applying the Lagrange’s method and combining
with the equation of the motor, a linear model of the plant
is derived:

ẋ(t) =

0 0 1 0
0 0 0 1
0 278.9 −18.6 0
0 −336 5.9 0

x(t) +

 0
0

2.99
−0.96

u(t) (11)

where the state space vector consists of x = [xc xf ẋc ẋf ]
T

.
The control signal u is the voltage input of the DC motor
driving the cart. A standard pole placement design pro-
vides the state feedback gain K = [6.9 −103 −2.8 −26.9]
to have the closed-loop poles {−8,−16,−6± 2i}.

4.2 Delay based control

A state feedback control requires the full state x to be
available. This requirement may be a major drawback in
practice as engineers usually aim at limiting the use of sen-
sors for several reasons: feasibility, reliability, cost, main-
tenance... It is proposed to approximate a state feedback
control with a time-delay system approach. The key idea
is to replace the static state feedback control with a static
output feedback combined with a static delayed output
feedback. This approach recently updated by Selivanov
and Fridman (2018) assumes basically that,

u(t) = −Kx(t)
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Figure 3. Analysis of (10): test 1, test 2 and test 3 from left to right.

Figure 4. Schematic of the plant and notations.

can be approximated by

u(t) = −K1y(t)−K2y(t− h),

where y = [xc xf ]
T

is the measured output, namely
the positions. Note that the control law remains quite
simple compared to a dynamical control system when a
state observer is implemented. As often in mechanical
system representation, the second part of the state x is
the derivative of the first one. The method is based on
the following approximation of the derivative non causal
transfer function:

ẏ(t) ' y(t)− y(t− h)

h
. (12)

Applying a static state feedback control to system (11)

with a state structured as x = [y ẏ]
T

, the following closed-
loop formulation is obtained

ẋ(t) = Ax(t)−BKαy(t)−BKβ ẏ(t)

where Kα and Kβ are components of the state feedback
gain K = [KαKβ ]. Approximating the last term with (12),
a delay based feedback formulation is obtained:

ẋ(t) = Ax(t)−B
(
Kα +

1

h
Kβ

)
y(t) +

1

h
BKβy(t− h),

= Ax(t)−BK1y(t) +BK2y(t− h).
(13)

The analysis of the properties of the above feedback system
amounts to the analysis of a standard time-delay system:

ẋ(t) = A1x(t) +A2x(t− h), (14)

with A1 = A − B
(
Kα + 1

hKβ

)
C and A2 = 1

hBKβC.

Let us exploit Theorem 3 to analyze the stability and
performances of (14). In this application, besides stability,
it is required to dampen the structure oscillations. This
feature can be addressed with an appropriate setting of
eigenvalues location. The objective is to prove that the
properties of the theoretical closed-loop system (the linear
system (11) with a state feedback) is preserved with the
delay based feedback (static output feedback + static
delayed output feedback).

4.3 Simulation

As mentioned above, a standard state feedback control
with gain K = [6.9 − 103 − 2.8 − 26.9] for the linear
system (11) leads to a stable and damped closed-loop
system with poles {−8,−16,−6± 2i}. The parameters for
the delay based control are calculated according to (13).
For instance, setting a delay h = 60 ms, the resulting
static gains are

K1 = [−40.5 −552.8] and K2 = [−47.5 −449.5] .

The closed-loop system is then turned into a time-delay
system as (14):

ẋ(t) =

 0 0 1 0

0 0 0 1

121 1936 −18.6 0

−39 −866 6 0

 x(t) +
 0 0 0 0

0 0 0 0

−142 1347 0 0

46 431 0 0

 x(t− 0.06)

(15)

Theorem 3 can then be applied to perform a performance
analysis and to confirm that the eigenvalues of the result-
ing system (15) are sufficiently damped (see Figure 5).
We aim at ensuring that the oscillatory behavior of the
response is reduced, similarly to the full state feedback
control case. Figure 6 shows simulations of both control
laws and an open-loop test. The initial condition for the
floor position is 0.5m. The open-loop response shows the
highly oscillatory behavior of the flexible structure. The
system response with the delay based control is fairly
similar to the one with the state feedback control and a
significant vibration reduction is observed. Several simula-
tions have been run to find a delay h for the control (13)
that minimizes the amplitude of oscillations. Results with
h = 60 ms are satisfactory as shown in Figure 6.

Figure 5. Performance analysis for system (15).
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Figure 6. Damping the floor deflection, simulation results.

4.4 Experimentation

This paragraph presents the experimental test with the
bench-scale building (see Figure 1). The delay based con-
trol law is now implemented on a data acquisition de-
vice, a Q2-usb board with real-time computing capability.
The sampling period is 1 ms. The experimental results
confirm the simulations of the previous paragraph. The
experiment starts at rest (zero initial conditions), the
system is stimulated by a brief push with the hand as
an impulsive disturbance. The three configurations have
been tested, and the corresponding measurements of the
structure deviation xf are plotted on Figure 7. Once again,
the delay based control response is similar to the one with
the state feedback control, and both are able to dampen
oscillations. However, the former one requires only position
information, that is two measures are used instead of four.
The performance requirement in terms of damping was
beforehand assessed with a performance analysis for the
equivalent time-delay system.

Figure 7. Damping the floor deflection, experimental re-
sults.

5. CONCLUSION

This paper studies the performance analysis for linear
time-delay system. A sufficient condition ensuring that all
eigenvalues are absent from a specific region D is proposed.
The condition is built with the quadratic separation tech-
nique and is formulated as an LMI condition. Then, the
criterion is used to analyze the performances of an active
mass damper system controlled with a delayed output
feedback. Indeed, the closed-loop system is expressed as
a time-delay system, the delay h being also a design pa-
rameter. Analyzing the eigenvalues location in the complex

plane, we are able to assess the damping property of the
control law. The validity of the approach is demonstrated
with simulations and experimental tests. Future works
include the design of more complex delayed control laws
and the conservatism reduction of performance analysis.
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