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Abstract: For identifiability of a single module in a dynamic network, excitation signals need
to be allocated at particular nodes in the network. Current techniques provide analysis tools for
verifying identifiability in a given situation, but hardly address the synthesis question: where to
allocate the excitation signals to achieve generic identifiability. Starting from the graph topology
of the considered network model set, a new analytic result for generic identifiability of a single
module is derived based on the concept of disconnecting sets. For the situation that all node
signals are measured, the vertices in a particular disconnecting set provide the potential locations
to allocate the excitation signals. Synthesis approaches are then developed to allocate excitation
signals to guarantee generic identifiability.
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1. INTRODUCTION

Due to the increasing complexity of current technological
systems, the study of large-scale interconnected dynamic
systems receives considerable attention. As a modeling
framework for dynamic networks, we consider the net-
work of transfer functions introduced in (Gonçalves and
Warnick, 2008; Van den Hof et al., 2013), where vertices
represent the internal signals, and directed edges denote
transfer functions which are called modules. Identification
problems in this setup involve multiple aspects, including
estimation of one local module (Van den Hof et al., 2013;
Dankers et al., 2015; Materassi and Salapaka, 2019), esti-
mation of the topology (Materassi and Innocenti, 2010; Shi
et al., 2019), estimation of the full network model (Weerts
et al., 2018b) and identifiability of the models (Weerts
et al., 2018a; Hendrickx et al., 2019; Cheng et al., 2019a).

The analysis of identifiability of dynamic networks aims
for conditions under which network models in a model set
can be distinguished based on data. This analysis provides
guidelines for users to choose an appropriate model set
such that the identification problem has a unique solu-
tion. Two notions of identifiability have been addressed in
the literature, including global identifiability and generic
identfiability. On the one hand, global identifiability re-
quires models to be distinguishable from all other models
in the model set (Weerts et al., 2018a; van Waarde et al.,
2018). On the other hand, generic identifiability requires
that almost all models can be distinguished from the other
models in the set (Bazanella et al., 2017; Hendrickx et al.,
2019; Weerts et al., 2018c). The advantage of considering

? This project has received funding from the European Research
Council (ERC), Advanced Research Grant SYSDYNET, under the
European Union’s Horizon 2020 research and innovation programme
(grant agreement No 694504).

generic identifiability is that the theoretical results can
typically be formulated into graphical conditions on the
network structure. This formulation can lead to efficient
graphical approaches to analyze generic identifiability.

In addition, two different practical settings are considered
for the study of generic identifiability. In one setting, all
node signals can be measured and a subset of nodes is
excited (Weerts et al., 2018c; Cheng et al., 2019a), while
also allowing excitation through noise signals; while in
the other setting, a subset of node signals is measured
and all nodes can be excited while excitation is provided
through external excitation only (Bazanella et al., 2017;
van Waarde et al., 2018; Hendrickx et al., 2019). A recent
contribution (Bazanella et al., 2019) extends the later work
to partial measurement and partial excitation.

For generic identifiability when all node signals are mea-
sured, analysis results for generic identifiability of a single
module can be found in (Weerts et al., 2018c). However,
the results do not provide a structured method to allo-
cate excitation signals for generic identifiability. In (Cheng
et al., 2019b), an approach to allocate signals is devel-
oped for generic identifiability of a full network based on
the pseudotree covering; however, this approach is hardly
applicable to a single module. In this work, the research
question is how to allocate the excitation signals such that
one single module becomes generically identifiable.

This research question is addressed by deriving a new
analytic result for generic identifiability of a single module
using the concept of disconnecting sets. Given the output
of a target module, it is further found that the vertices in
the disconnecting set from the input of the module to the
other inputs of the output provide the potential locations
for allocating the excitation signals. Then synthesis ap-
proaches are developed to allocate excitation signals such
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that generic identifiability of a single module is guaran-
teed. Due to the limited space, the proofs are presented in
the longer version of this paper (Shi et al., 2020).

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Dynamic networks and graphical representation

A dynamic network encompasses the relationship among
scalar-valued internal signals wj , deterministic excitation
signals rk which can be manipulated by the user, and
unmeasured disturbances el, where j ∈ {1, · · · , L}, k ∈
{1, · · · ,K}, l ∈ {1, · · · , p} and p 6 L. Following (Van den
Hof et al., 2013), the interconnection among the signals is
modeled using linear time-invariant systems, and for any
j, the equation of wj is written as

wj(t) =
∑
j 6=i

Gji(q)wi(t) +
∑
k

Rjk(q)rk(t) +
∑
l

Hjl(q)el(t),

(1)

where q is the delay operator, i.e. q−1wj(t) = wj(t − 1),
and its matrix form is obtained as

w(t) = G(q)w(t) +R(q)r(t) +H(q)e(t),

where G(q) is hollow, w(t) = [w1(t), · · · , wL(t)]>, r(t) =
[r1(t), · · · , rK(t)]>, and e(t) = [e1(t), · · · , ep(t)]>. Further-
more, model (1) satisfies the following assumptions:

Assumption 1

• Gji(q) is a stable and proper rational transfer op-
erator if nonzero, and Rji(q) is a stable and proper
rational transfer operator;
• (I − G(q))−1 is stable and all principal minors of

limz→∞(I −G(z)) are non-zero;
• H(q) is monic, proper and minimum-phase when
p = L; When p < L, i.e., rank-reduced noises, H(q) is

structured as H(q) =

[
Ha

Hb

]
, with Ha square, proper,

monic, stable and minimum phase, see (Weerts et al.,
2018a) for more details;

• e(t) is white noise vector with covariance matrix
Λ > 0;

• w(t) and r(t) can be measured.

We further define X(q) , [R(q) H(q)] and call both ex-
citation and noise signals external signals. We use modules
to refer to the transfer functions in G(q).

It can found that a network model is completely spec-
ified by (G(q), R(q), H(q),Λ). Following (Weerts et al.,
2018a,c), a set of such models can be obtained by a ra-
tional parametrization of every entry in network matrices
(G(q), R(q), H(q)) and a parameterization of Λ:

Definition 1. A parameterized network model set for a
network of L internal variables, K excitation signals and
p noise process is defined as

M = {(G(q, θ), R(q, θ), H(q, θ)),Λ(θ)|θ ∈ Θ ⊆ Rn},
with all its elements satisfying Assumption 1. �

There can also be prior knowledge or users’ choices such
that certain entries in the network matrices ofM are fixed
to zero. Then these entries in the matrices of M should
be zero functions. This structural information of M can

also be encoded by a directed graph G = (V, E), where
V = W ∪ X is a set of vertices representing the set of all
internal signals W and the set of all external signals X ,
and E ⊆ V ×V denotes a set of directed edges. A directed
edge exits if and only if the corresponding entry in the
matrices of M is not fixed to zero. For example, Gji(q, θ)
is not a zero function if and only if the directed edge from
wi to wj exists in G. Then this model set with its structural
information is specified by the setM with its graph G. In
this work, we typically assume that the above structural
information of a model set is available.

As mentiond in (Weerts et al., 2018a,c), there can also be
information that certain entries of the network matrices
can be non-parameterized and known, while the other non-
zero entries are unknown and parameterized.

For notation, we sometimes use G to denote G(q, θ),

similarly for other functions of θ and q. We denote T , (I−
G)−1X, Twr , (I −G)−1R and Twe , (I −G)−1H, while
Φv̄(w) is the power spectrum of Twe(q)e(t).

2.2 Generic identifiability of a single module

Generic identifiability is a property of a network model set.
By combining the identifiability concept in (Weerts et al.,
2018a) and the concept of genericity in (Bazanella et al.,
2017), generic identifiability of module Gji can be defined
as follows.

Definition 2. Module Gji in M is generically identifiable
if for almost all θ1 ∈ Θ, it holds that{
Twr(q, θ1) = Twr(q, θ2)

Φv̄(ω, θ1) = Φv̄(ω, θ2)
=⇒ Gji(q, θ1) = Gji(q, θ2),

for all θ2 ∈ Θ. Gji is globally identifiable if the above
implication holds for all θ1 ∈ Θ. �

In the above definition, the notion of almost all means
all elements in a set except the elements in a subset of
Lebesgue measure zero.

Since Twr and Φv̄ can typically be identified based on
the measured w(t) and r(t), identifiability refers to the
situation that a unique module can be found based on
Twr and Φv̄. Following directly from Proposition 1 and
Definition 5 of (Weerts et al., 2018a), Definition 2 can be
simplified under certain conditions.

Lemma 1. Let M satisfy one of the following conditions:

• all modules in G(q, θ) are strictly proper, or
• there is no algebraic loop 1 in G(q, θ) and
H∞(θ)Λ(θ)H∞(θ)T is diagonal for all θ, with
H∞(θ) := limz→∞H(z, θ);

then module Gji in M is generically identifiable if for
almost all θ1 ∈ Θ, it holds that

T (q, θ1) = T (q, θ2) =⇒ Gji(q, θ1) = Gji(q, θ2), (2)

for all θ2 ∈ Θ. Gji is globally identifiable if the above
implication holds for all θ1 ∈ Θ. �

In this work, we consider M that satisfies both the as-
sumptions in Definition 1 and the conditions in Lemma 1.
1 There exists an algebraic loop around node wn1 if there exists a
sequence of integers n1, · · ·nk such that G∞

n1n2
G∞

n2n3
· · ·G∞

nkn1
6= 0,

with G∞
n1n2

:= limz→∞ Gn1n2 (z).
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In addition, the model set should also satisfies (Weerts
et al., 2018a,c):

• Every parameterized entry in (G,R,H) covers all
possible proper transfer functions 2 ;
• All parameterized transfer functions are parameter-

ized independently.

In this setting, generic identifiability of a single module
is related to the maximum number of vertex disjoint
paths as defined in Section 2.3 (Weerts et al., 2018c).
Before introducing the results in the above paper, we first
introduce the important signals used in the results:

• Wj denotes the set of all in-coming internal signals of
wj(t) through unknown modules;
• Xj denotes all external signals that do not have

unknown directed edge to wj .

Thus, Xj also contains all external signals that do not have
directed edges to wj as the corresponding transfer func-
tions are zero. Then the graphical conditions in (Weerts
et al., 2018c) are collected here 3 :

Theorem 2. Given a network model set M and its graph
G, the following conditions are equivalent:

(1) module Gji of M is generically identifiable;
(2) bXj→Wj

= bXj→Wj\{wi} + 1;
(3) there exists a set P containing the maximum number

of vertex disjoint paths from Xj toWj \{wi} and also
a directed path from Xj to wi, such that P and the
directed path are vertex disjoint. �

Condition (2) does not appear explicitly in (Weerts et al.,
2018c); however, condition (3) can be phrased equivalently
as condition (2). Related graphic results can be found
in (Hendrickx et al., 2019) for a different setting where
all internal signals are excited and a subset of them is
measured. For that same situation, a graphic simplification
procedure is developed in (van Waarde et al., 2018) for
testing global identifiability of a full network.

Theorem 2 is demonstrated in the following example.

Example 1. Given the network model set in Fig. 1(a),
where the target module is G41 and all indicated transfer
functions are unknown, we have W4 = {w1, w2, w3} and
X4 = {r1} such that bX4→W4

= 1 consisting of one path
r1 → w1. However, since bX4→W4\{w1} also consists of one
path r1 → w2 and thus bX4→W4\{w1} = bX4→W4

= 1, G41

is not generically identifiable based on Theorem 2. 4

The above result allows to analyse generic identifiability
for a given situation. However it does not address the
synthesis problem: Given a network model set, how to
allocate external signals such that module Gji becomes
generically identifiable? In this work, we assume that the
user can allocate excitation signals. In the next sections,
new analytic results are derived, which lead to several
synthesis approaches.

2 within the constraints of Assumption 1 and Lemma 1
3 The following generic identifiability result holds under the assump-
tion that all nonzero entries in G, R, H are fully parametrized,
and that there are no fixed, non-parametrized modules unequal to
zero. However the result also holds true when the non-parametrized
modules are chosen “generically”, i.e. when they do not introduce any
particular dependencies in the network model (Cheng et al., 2019b).

w1 w2 w3

r1

w4

(a)

w1 w2 w3

r1

w4

r2

(b)

Fig. 1. Generic identifiability of G41 is considered (thick
line). G41 is not generically identifiable in (a) but
becomes generically identifiable in (b) if an extra
signal u2 is allocated at w2.

2.3 Notations and concepts

Given W̄ ⊆ W and X̄ ⊆ X , TX̄ X̄ denotes a submatrix of T
with the rows and the columns corresponding to W̄ and X̄
respectively. Throughout the paper, wi is used to denote
both a signal and a vertex in G. For any directed edge
(wi, wj) ∈ E , wi is called an in-neighbor of wj , and wj is
called an out-neighbor of wi. For any vertex in V, e.g. wi,
N+

wi
and N−wi

denote the set of all out-neighbors and the
set of all in-neighbors of wi, respectively. A (directed) walk
in G from one vertex to another, e.g. from wi to wj , is a
sequence of vertices and out-going edges starting from wi

to wj , while a (directed) path is a walk without repeating
any vertex. The length of a directed path is the number
of edges in the path, and a single vertex is regarded as
a directed path to itself with length zero. In addition, we
use wi → wj to denote a directed path from wi to wj , and
V1 → V2 denotes paths from some vertices in V1 to some
vertices in V2. We refer to internal vertices as the vertices
in a path excluding the starting and the ending vertices,
and note that a directed path with length zero or length
one does not have any internal vertex.

Two directed paths are internally vertex disjoint if they do
not share any internal vertex, while they are called vertex
disjoint if they do not share any vertex, including the start-
ing and ending vertices. If two paths share any common
vertex, we say that they intersect. Given two subsets of
vertices V1 and V2, bV1→V2 denotes the maximum number
of vertex disjoint paths from V1 to V2.

3. DISCONNECTING SETS FOR GENERIC
IDENTIFIABILITY

In this section, we derive a new analytic result based on
the concept of disconnecting sets, which shows to be more
suitable for synthesis. A vertex set D is a disconnecting
set from a vertex set V1 to a set V2 if there is no directed
path from V1 to V2 when the vertices in D are removed
(Schrijver, 2003). Note that a disconnecting set from V1 to
V2 may also include vertices in V1 ∪ V2. We call a discon-
necting set with the minimum cardinality a minimum dis-
connecting set. The duality between vertex disjoint paths
and disconnecting sets is explained in Menger’s theorem,
which is also explored in (Hendrickx et al., 2019).

Theorem 3. (Menger’s theorem (Schrijver, 2003)). Let V1,
V2 be two subsets of the vertices in a directed graph. The
maximum number of vertex disjoint paths from V1 to V2
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equals the cardinality of a minimum disconnecting set from
V1 to V2. �

We illustrate the relevance of the concept of disconnecting
sets to our synthesis problem in the following example.

Example 2. Given the network model in Fig. 1(a), {w2} is
a disconnecting set from {w1} to the other in-neighbors of
w4, i.e., {w2, w3}. Now, we allocate an extra excitation
signal r2 at w2, as shown in Fig. 1(b), and we find
that bX4→W4 > bX4→W4\{w1}, which implies that G41 is
generically identifiable according to Theorem 2. 4

In Example 2, generic identifiability of Gji is achieved
when the vertices in a disconnecting set from {wi} to the
other in-neighbors of wj are excited. In the following, we
prove that this result holds for the general case. Before
proceeding, a graphical result is provided.

Lemma 4. In a simple directed graph, given a set P of
vertex disjoint paths from vertex set V1 to a vertex set
V2, there exists a set Pnew of vertex disjoint paths from
V1 to V2 such that |Pnew| = |P|, and paths in Pnew are
internally vertex disjoint with V̄, where V̄ can be either
V1, V2 or V1 ∪ V2.

The above graphical result will later be used to derive the
synthesis approach in Algorithm 1. Moreover, based on
Lemma 4, a new analytic result for generic identifiability
of a single module can be derived.

Theorem 5. Given atork model setM and igraphG, mod-
ule Gji is generically identifiable inM if and only if there
exists a set of external signals X̄j ⊆ Xj and a disconnecting
set D from {wi} ∪ X̄j to Wj \ {wi} such that

bX̄j→D∪{wi} = |D|+ 1. (3)

In the above result, a disconnecting set D from {wi} ∪ X̄j

to Wj \ {wi} always exists, and one simple example is
Wj \ {wi}. However, generic identifiability of Gji requires
the existence of a special disconnecting set which satisfies
equation (3). In addition, note that D and Wj \ {wi}
are not necessarily disjoint, while {wi} and D have to be
disjoint to satisfy equation (3).

Theorem 5 can be visualized in Fig. 2, where the paths
from wi and X̄j to Wj \ {wi} intersect with D. Due to (3),
a set of vertex disjoint paths exist that consists of a path
X̄j → wi and multiple paths X̄j → D. As shown in Fig. 2,
we can further concatenate X̄j → D and D → Wj \ {wi},
which leads to a set of paths P from X̄j toWj \{wi}, that
are vertex disjoint with the path X̄j → wi. Then based on
condition (3) of Theorem 2, Gji is generically identifiable.

wi j \ {wi}

Fig. 2. A graphical visualization of Theorem 5.

Theorem 5 is also closely related to the existing identifica-
tion method. The considered signals in the disconnecting

set can be shown to be the selected signals for the iden-
tification of Gji using the direct method (Dankers et al.,
2015). There, the internal signals selected in the predictor
are the ones that intersect with all loops around the output
wj and all parallel paths from wi to wj , where the parallel
paths mean all the paths except the edge from wi to wj .

Proposition 6. Given G of a network model set where all
non-zero modules are unknown, consider the module Gji

and a set of internal signals D with wi /∈ D. Then D
disconnects from wi to Wj \{wi} if and only if D contains
an internal vertex of every parallel path from wi to wj and
a vertex of every loop around wj .

The above result shows that the identifiability result in
this work and the identification method in (Dankers et al.,
2015) coincide from the aspect of signal selection.

Remark 1. A suggestion that results from Theorem 5 is
that Gji could be generically identifiable from measured
internal signals D∪{wi, wj} only. This is indeed true, as it

can be shown that with U , {wi}∪D, and in the case that
X̄j contains only excitation signals, a consistent estimate
of Gji can be obtained using the estimated submatrices

T̂jU and T̂UX̄j
of T . This is a direct generalization of the

indirect method presented in (Gevers et al., 2018) and
extended in (Bazanella et al., 2019), where typically all
the in-neighbors of wj are used instead of U . The formal
proof of this result will be presented in future work. 4

4. SYNTHESIS APPROACH

Given a network model set with a set of initial external
signals X 0

j that do not have unknown directed edges to
wj , the synthesis problem aims to allocate a minimum
number of additional excitation signals X a

j such that
generic identifiability of a module Gji is guaranteed. For
synthesis, it is assumed that if rk is allocated directly at
wj , its corresponding transfer function Rjk is known.

Based on Theorem 5, the main idea of the synthesis
approaches is to first compute a disconnecting set D, and
then allocate external signals at suitable vertices such that
(3) is satisfied.

To reduce the number of allocated excitation signals, a
minimum disconnecting set should be used for synthesis;
additionally, recall from Theorem 5 that wi /∈ D is neces-
sary for (3). This implies that a minimum disconnecting set
D subject to wi /∈ D needs to be found. As standard graph-
ical algorithms for computing minimum disconnecting sets
do not take into account any constraint, we redefine the
disconnecting set to make standard algorithms applicable.

Lemma 7. Given a network model set M and its graph
G, for any subset X̄j ⊆ Xj , a minimum disconnecting set
from N+

wi
∪ X̄j to Wj \ {wi} is a minimum disconnecting

set D from {wi} ∪ X̄j to Wj \ {wi} subject to wi /∈ D. �

Based on the above approach, a minimum disconnecting
set D from N+

wi
∪ X̄j to Wj \ {wi} can be computed for

the synthesis problem, which is an unconstrained problem
and thus can be solved by standard graphic algorithms,
e.g. the Ford-Fulkerson algorithm (Schrijver, 2003). Then
based on the above lemma and Theorem 5, the following
synthesis approach can be derived.
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w3 w4 w5

w1

w7

w6

w2

e

w8

(a)

w3 w4 w5

w1

w7

w6

w2

e

w8

(b)

w3 w4 w5

w1

w7

w6

w2

e

w8

r1

r2

(c)

Fig. 3. An example of allocating signals for generic identifiability of G73 (thick line) using Algorithm 1. Starting from the
network model in (a), a disconnecting set (red vertices) is computed in (b). Since there already exists an external
signal e, we only need to add r1 and r2 as in (c), which achieves generic identifiability of G73.

Lemma 8. In a network model set M with its graph G,
given any minimum disconnecting set D from N+

wi
toWj \

{wi}, assigning distinct excitation signals to every vertex
in D∪ {wi} leads to generic identifiability of Gji inM. �

The above result leads to a synthesis approach with simple
implementation. However, the method is strictly local in
the sense that all excitation signals are directly allocated
at wi and D. In addition, the method does not take into
account the initially present external signals X 0

j ; however,
these signals can also be useful to satisfy equation (3)
and thus reduce the number of required allocated signals.
Therefore, we present a more comprehensive synthesis
approach in Algorithm 1, which makes use of X 0

j and
explores the freedom of allocating additional excitation
signals in the graph. Note that X 0

j can contain both
excitation signals and noise signals.

Given a network model set with a target module Gji and a
set of pre-existing signals X 0

j , Algorithm 1 first computes a

minimum disconnecting set D from {wi}∪X 0
j toWj\{wi},

and then removes the elements in D∪{wi} that are already
excited by the existing external signals through vertex
disjoint paths. Then it allocates additional signals to excite
the remaining vertices in D∪{wi} through vertex disjoint
paths. The validity of Algorithm 1 is shown as follows.

Theorem 9. In the returned Mout with the graph Gout
from Algorithm 1, the target module Gji is generically
identifiable. �

We demonstrate Algorithm 1 by the following example.

Example 3. In the network model in Fig. 3(a), the problem
is to allocate excitation signals such that G73 becomes
generically identifiable. X 0

7 = {e} is the only external
signal that is initially present. Firstly, a disconnecting set
from X 0

7 ∪ {w3} = {w3, e} to the other in-neighbors of
w7, i.e. W7 \ {w3} = {w4, w5, w6, w8}, is constructed as
D = {w4, w7}, indicated in Fig. 3(b). Based on Theorem 5,
generic identifiability of G73 requires three vertex disjoint
paths from external signals to D ∪ {w3} = {w3, w4, w7},
while D remains a disconnecting set from the external
signals to W7 \ {w3}. Following step 2 in Algorithm 1,
we find a path e → w4 from X 0

7 to D ∪ {w3} (colored
blue in Fig. 3(b)). Thus we only need to allocate extra

Algorithm 1 Signal allocation for a single module

INPUT: A network model set M with graph G, a target
module Gji, and a set of initial external signals X 0

j for
Gji;
OUTPUT: A new model set Mout with its graph Gout

1: Compute a minimum disconnecting set D from N+
wi
∪

X 0
j to Wj \ {wi};

2: Based on Lemma 4, compute a set P containing the
maximum number of vertex disjoint paths from X 0

j to
D∪{wi} while the paths are internally vertex disjoint
with D ∪ {wi};

3: Let D̄ ⊆ D∪{wi} denote all the ending vertices of the
paths in P;

4: if |P| < |D|+ 1 then
5: Find the set W̄ ⊆ W such that D is a disconnecting

set from W̄ to Wj \ {wi};
6: Build a subgraph Ḡ ⊆ G by removing all vertices in

P and their corresponding edges;
7: Find the set Wexp ⊆ W̄ such that in Ḡ, there are

|D| + 1 − |P| vertex disjoint paths from Wexp to
(D ∪ {wi}) \ D̄;

8: In G, assign distinct excitation signals to every
vertex inWexp, which leads to a new model setMout

with a new graph Gout;
9: Return Mout with the graph Gout;

10: else
11: Mout ←M and Gout ← G;
12: Return Mout with the graph Gout.
13: end if

excitation signals to create two vertex disjoint paths to
{w3, w7}, which should be vertex disjoint with e → w4.
As in step 5, the potential locations to allocate excitation
signals is W̄ = {w1, w2, w3, w4, w7, w8}, which satisfies
that D remains a disconnecting set from W̄ to W7 \ {w3}.
After removing e→ w4, we choose Wexp = {w1, w8} ⊆ W̄
to be excited. Now there are two vertex disjoint paths from
Wexp to {w3, w7}, and the paths are also vertex disjoint
with e → w4, as indicated by the blue paths in Fig. 3(c).
Then G73 is generically identifiable. 4

Even if Algorithm 1 requires fewer signals than the ap-
proach in Lemma 8, there is no guarantee for the minimal
number of additional signals when X̄j 6= ∅. However, since
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the number of allocated signals in Algorithm 1 is |D| +
1 − bX 0

j
→D∪{wi}, the following bound on the number of

additional signals required can be derived.

Corollary 10. Given a network model setM with its graph
G. Consider a set of initial external signals X 0

j that have
no unknown directed edge to wj . Let D be a minimum
disconnecting set from N+

wi
∪X 0

j toWj\{wi}, and c denote
the number of excitation signals available for allocation.
The number of additional excitation signals c is sufficient
to make Gji generically identifiable if

c > |D|+ 1− bX 0
j
→D∪{wi}.

The presented methods can also handle the presence of
known modules, which affects the construction ofWj . The
consequence of known modules is shown in this example.

Example 4. Consider a network model set with the same
topology as the one in Fig. 1, G43 and G42 are known in the
model set, as shown in Fig. 4. Based on the formulation of
W4 in Theorem 2, w3 and w2 do not belong to setW4 now,
as we haveW4 = {w1} in Fig. 4. Thus, in this example, the
minimum disconnecting set is an empty set, and generic
identifiability of G41 can be achieved by a single excitation
on w1, compared to two excitation signals in Fig. 1(b). �

w1 w2 w3

r1

w4

Fig. 4. Generic identifiability of G41 with known modules
(double-line arrows) can be achieved by only r1.

5. CONCLUSION

The synthesis problem to achieve generic identifiability of
one module in a dynamic network by allocating excitation
signals is addressed in this work. A new condition is
derived based on the concept of disconnecting set, and then
synthesis approaches are developed to allocated excitation
signals at the vertices in the disconnecting set. It has been
shown that generic identifiability of a single module can
be guaranteed by the synthesis approaches.
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