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Abstract:

This work presents the stability analysis and design of a lateral controller for a nonlinear
ground vehicle applying the concept of polynomial sum of squares relaxations. The system
is approximated by a polynomial vector field that describes the lateral vehicle dynamics. The
resulting polynomial system falls on a class of non-affine in input system, which makes the control
synthesis more involved. This issue is circumvented by an input-affine approximation, simplifying
the stability analysis and the design procedure of a polynomial state-feedback controller able
to enlarge the region of attraction (RoA). We also compare the estimated region of attraction

with the standard LQR optimal controller.
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1. INTRODUCTION

One of the fundamental concerns in systems and control
theory is that of determining the stability of an equilibrium
point of a dynamical system. Among existing methods,
those based on Lyapunov functions are even nowadays
dominant in literature (Summers (2013); Khodadadi et al.
(2014); Nikravesh (2018); Ahmadi and Majumdar (2019)).

Recently, besides the advances on polynomial optimiza-
tion based on sum of squares (SOS) relaxations, signifi-
cant research has been performed on the development of
Lyapunov-based analysis tools for computing regions of
attraction (Tacchi et al. (2018)), reachability sets (Jones
and Peet (2019)), reach-avoid sets (Landry et al. (2018))
and for nonlinear control synthesis (Singh et al. (2019)).

Regarding vehicle stability, estimating the region of attrac-
tion (RoA) is an important subject of study. The RoA is
a safe subset of the state space in which the equilibrium
point is stable, in other words, it describes the boundary
on how far from equilibrium the vehicle can reach where
stability is assured. Such characteristics respond if an
unintentionally spin is still safe or will lead to divergence.
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Early works have mainly relied on linear systems theory
to guarantee local stability. Lyapunov’s second method
was first used in Johnson and Huston (1984) with a
linearized vehicle model. The RoA estimate was then
found manually by calculating the largest level set of the
candidate function that fits within the region. Since then,
Lyapunov-based methods were used aiming more accurate
and representative estimates of the RoA (Sadri and Wu
(2012); Németh et al. (2016); Masouleh and Limebeer
(2017)).

For general nonlinear systems, there is still no convex
optimization method that can be used to search for a
Lyapunov function. However, restricting our search to a
class of polynomial vector field systems and considering
the Lyapunov function strictly written as a sum of squares
polynomial form, the problem can be tractable by convex
optimization (Parrilo (2003)).

The main contributions of this paper are threefold: first,
we extend the sum of squares algorithm proposed in Jarvis-
Wloszek et al. (2005) and Masouleh and Limebeer (2017)
to address the control problem for the class of non-input-
affine systems; second, the control design synthesis is eval-
uated under input saturation with a detailed discussion
about numerical issues and computational complexity; and
third, we evaluate the SOS approach on a realistic nonlin-
ear model of a ground vehicle which is a challenging system
due to the tire-ground interaction dynamics.

The remainder of the paper is organized as follows. In
Section 2 we provide the necessary background about the
SOS theory. Section 3 shows the vehicle mathematical

14588



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

model and the polynomial vector field approximation. In
Section 4 we propose an affine transformation to use the
tools provided by the SOS decompositions. Section 5 deals
with estimations of the region of attraction under open-
and closed-loop analysis. In Section 6 we compare the SOS
technique with the traditional LQR controller. Finally, in
Section 7 we give our conclusion and suggest ideas for
future work.

2. BACKGROUND DEFINITIONS AND THEOREMS
2.1 SOS applied to system stability analysis

A polynomial p(z) is SOS if it can be decomposed into
the sum of the square of n polynomials, i.e., p(z) =
>, p?(z) where p;(z) € R[z]. Here we denote by Rz]
the set of real polynomials and by X, the set of SOS
polynomials in n variables.

We are concerned about the stability of equilibrium points
characterized in the sense of Lyapunov. The systems
of interest are described as a set of coupled ordinary
differential equations of the form:

&= f(x) + g(x)u, (1)
where x € R" is the state variables, u € R™ is the control
input vector, f : D — R™ is a vector of polynomial state
functions, g : D — R™ ™ is a matrix of polynomial control
functions, with D C R™. Without loss of generality, it is
assumed that the equilibrium point of interest € D is at
the origin of R™.

In the robotic field, global asymptotic stability is hardly
verified. Due to the nature of these systems, it is more
likely to see a domain of attraction locally arranged around
the equilibrium point.

The following result provides sufficient conditions for local
asymptotic stability of (1) (Khalil (2002)):

Lemma 1. Let v = 0. If there exists v > 0 and a
continuously differentiable function V' : D — R such that

(1) V(0) = 0 and V(z) > 0 for all = € D\{0},
(2) Qy={zeD| V(m) < 4} is bounded,
(3) ©,  {re D | V(w) = 3L f(x) < 070},

then the open-loop solution of (1) asymptotically con-
verges to the origin for any initial condition xo within €2,.
In this case, €1, is called a domain of attraction of the
trivial solution.

The problem of finding a Lyapunov function that satisfies
the non negativity conditions can be converted into a
convex problem using the SOS relaxation technique. In
agreement with Lemma 1, we can estimate the region
of attraction size by finding the largest level set v of a
Lyapunov function on which the stability conditions hold.

Additionally, the approach can be extended to a state feed-
back controller design intending to expand these regions.
Allowing input u to be generated by a polynomial K(z),
Lemma 1 can be extended to the closed-loop system. Fol-
lowing Jarvis-Wloszek et al. (2005) and Papachristodoulou
(2005), an SOS program able to tackle this problem is
stated as:

Program 1. Given positive definite polynomials ¢; =

Z;.Lzl eijx?d, for some natural number d and some small

real positive coefficients €;;, and a shaping function s(z),
a stable closed-loop invariant set Q, = {z € D|V < ~}
around the origin can be obtained by finding V' € %,
K € R[z] and ¢; € &, for i € {1,2,3}, such that

V- p1 € En; (2)
(s=B)q1 —(V—7v) € Xy, (3)
°)%

—%(f+gK)Q2—302+(V—7)Q3EEn. (4)

The first SOS constraint guarantees positive definiteness
of V(x), the second constraint ensures {x € Dl|s(z) <
B} € {z € D|V(z) < ~} and the third restriction
enforces negativeness of 1% along with the closed-loop
system trajectories. Clearly, one should try to maximize
B in order to increase the volume of the RoA.

Constraints (3) and (4) are bilinear in the decision vari-
ables due to the products of 8 ¢1, V.V K ¢ and (V —7) gs.
The problem can be tractable by decomposing it into
sub-steps of convex problems with an iterative bounding
procedure. It is an application of block-coordinate descent
method (Shen et al. (2017)) that relies on fixing some of
the decision polynomials and handle restrictions separately
thought an iterative algorithm.

Algorithm 1. Tterative bounding procedure (Jarvis-
Wloszek et al. (2005)) Choose an initial Vp candidate and
specify the shaping function s(x). Define the degrees of
polynomials V', K and ¢;. Set ¢; with small coefficients ;.
Proceed to IC-Step.

o KC-Step: Maximize v with V and ¢ fixed to obtain
K such that (4) holds;

e ~v-Step: Maximize v with V' and K fixed to obtain 7,
g2 and ¢z such that (4) holds;

e (3-Step: Maximize 8 over ¢; with V and v fixed to
obtain # and ¢; such that (3) holds;

e V-Step: Keep K, v, 3, q1, g2, and g3 fixed and find
V such that (2)-(4) hold. If § no longer improves
conclude the iterations, otherwise, return to IC-Step.

2.2 FExpanding the RoA with state feedback and input
saturation

Expanding the region of attraction with state feedback
is a problem that resumes to synthesize a state feedback
controller u = K(z) with K(z) € R[x] that enlarges the
invariant set {1, such that the origin is an asymptotically
stable equilibrium point of the closed-loop system.

Recognizing the physical limitations of the vehicle in
study, it is necessary to define upper and lower bounds
for the control laws. Program 1 must guarantee that
[wi] < Ui maz Where u; mqp are the known input bounds
and i € {1,....,m}. As shown by Jarvis-Wloszek et al.
(2005), taking into account the effect of saturation through
the control design procedure, two conditions are obtained:

{CE € D|V(CC) S ’7} C {fﬂ S D|Kl(l') S ui,m,am} (5)
{z € D|V(z) <7} C {z € D|Ki(2) > —ti maa}

These set containment ensures that |u;| = |K;(x)
Ui, maz for all z inside the invariant set {z € D|V (z) <
In SOS decomposition, the conditions take the form:

<
7}
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((ui,mar - Kl) + (V - 7)44,1) € Ena
((ui,max + KZ) + (V - 7)(]571') S Ena (6)
G4a,ir G50 € Xn-

and must be included in Program 1 when the system is
conditioned to input saturation.

3. GROUND VEHICLE MATHEMATICAL MODEL

A ground vehicle may be described by two subsystems.
The first describes the body motion by rigid body dynam-
ics and kinematics. The second describes the tire-ground
interaction which is the primary source of forces that make
the vehicle move.

3.1 Equations of motion

The planar model with lumped axle, also known as bicycle
model, is illustrated in Figure 1. It is a simplification of
the four-wheel vehicle model and assumes a single tire at
each axle with twice the force capability of the individual
tires. Rolling and pitching motions are neglected. The
bicycle model can be found in many literature works. Some
detailed derivations are given in Rajamani (2011) and Liu
(2013).

Fig. 1. Diagram of the bicycle model.

The state vector is described in terms of vehicle’s longitu-
dinal velocity u, lateral velocity v and yaw rate r which
is the rotational velocity around the z-axis, all of them
specified at the center of gravity (CG). By inspection,
the equations of motion are derived by analyzing balance
between forces and moments (Newton-Euler equations) in
x, y and z-axis. From Figure 1 we have:

m(t — rv) = Fpp + Fppcosd — Fyysind,

m(0 +ru) = Fypcosd + Fy, — Fypsing,  (7)

L7 = a(Fyycosd + Fppsind) — bFy, + cM,,

where m is the vehicle mass, Fyy; and F,; are lateral and
longitudinal forces and subscrlpts i € {f,r} denotes front
and rear wheels, respectively. I, is the vehicle’s yaw inertia,
0 is the front tire steer angle and «; are the slip angles.
Distances a and b are measured from CG to front and rear
axles. Constant ¢ is the distance between wheels on the
same axle of the equivalent four wheel planar vehicle and
M, is the yaw moment term.

To analyze the vehicle lateral stability, we may linearize
the system considering a rectilinear uniform movement

(constant longitudinal velocity wug), resulting in the decou-
pling of longitudinal and lateral dynamics.

In this work, the stability analysis process focuses on
the dynamic characteristics of a electric vehicle with rear
independent motorized wheels. As consequence, the front
longitudinal force F,; is purely reactive and thus it is
acceptable to consider F,y ~ 0. Considering the lineariza-
tion is made for rectilinear uniform motion, the steering
angle ¢ is small. The corresponding lateral dynamics are
considerably simplified and described by:

m(v+ru0) :Fyf+Fyr7 (8)
I.t = aFyy — bF,, +cM.,.

where the variables now represent variations of the trim
condition.

The control inputs are steering angle §, which indirectly
defines the magnitude of Fy;, and the yaw moment M,
achieved by the differential torque.

3.2 Tire forces

The behavior of tire-ground forces interaction has been
subject of several studies for their highly nonlinear nature
Pacejka (2005); Dugoff et al. (1970); Hirschberg et al.
(2007). Typically, they are modeled as a function of their
wheel loads, camber and tire slips. This study makes
use of the Magic Formula (MF) tire model given in
Pacejka (2005), an analytical model with well defined
characteristics largely applied in academic studies. The
MF describes lateral tire forces F,; as a function of the
wheel slip angle «;

F,i(a;) = Dsin(C arctan(B(1 — E)a; + Earctan(Bay))), (9)

with ¢ € {f,r} denoting front and rear quantities. Con-
stants B, C, D and E are semi empirical parameters that
characterize shape, peak, increasing rate and saturation
(see Pacejka (2005)). These parameters follow Ono et al.
(1998).

The slip angle (see Figure 1) is characterized by the
absolute speed components of the wheel center in a local
wheel coordinate system, i.e., it is the angle between the
longitudinal u,, and lateral v,, components of the absolute
wheel velocity, o; = arctan ;. By considering a planar
motion kinematics, the slip angles can be exactly rewritten
as:

cos ou + sin §(v + ar)

(v — br)
o, = arctan .
U

Given that we are using the linearized lateral dynamics, we
may assume small values of «;, and therefore arctan(«;) ~
a;. Expressions (10) and (11) are then simplified to

a; = arctan (cos d(v+ ar) — sin 6u>7 (10)

(11)

v+ ar

— 5, (12)

Ckfz w

v—br

(13)

Ay =
u
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3.8 Polynomial approximation

The SoS theory can only be applied to control affine
systems described by polynomial functions. Therefore, (9)
must first be approximated by the following function:

Fyi(ow) = XT_opig? = pio +pinci + pioa + -+ + pinaf (14)
where ¢ is the polynomial order and coefficients p;; can be
found with nonlinear least-squares algorithm.

To assemble the complete lateral dynamics model, we need
to guarantee that all functions involved are polynomials of
their arguments. The ordinary differential equations are
obtained by substituting (12) and (13) into polynomial
approximation (14) which can then be substituted into (8).
The two complete equations achieved describe the lateral
dynamics with states z = [v,7]7 and inputs u = [0, M.]7.

It is essential to observe that approximation (14) is a func-
tion of states x and input §, consequently, lateral forces
Fyi(z,0) necessarily contain elements with exponents of
order ¢ and terms with arguments 8,62 ...87 will appear.
This makes the polynomial model not affine in input é.

4. INPUT AFFINE APPROXIMATION

The control synthesis problem through SOS decomposition
is exclusively intended to affine in control systems, other-
wise we fall on a non-convex problem. To keep convexity
and the control design a feasible problem we propose an
affine approximation.

With the two controls inputs u; = § and us = M., the
state space representation (1) must be written as

&= f(z) + g1(z)ur + g2(z)us. (15)

By inspection of system (8), input M, only affects 7,
consequently, input vector go(z) can be straightforward
obtained:

b=t ol | a9

——
g2(x)

However, defining g1 (x) requires some abstraction. With
the polynomial approximation (14), the control actuation
with respect to g; will be on the form

g1(2,0) = g1, (2)d + g1, (2)6° + ... + g1, ()8 (17)
To use the tools provided by Algorithm 1, g; (x, §) must be
affine in §. For this reason, (17) is reduced here to its first
order approximation near a given steady state J point

9 _
91(.6) ~ g1(2,6) + S5 | (5-9). (18)
x,6
Hence, substituting (18) into (16):
. - 0 - 0
&= f(2) +91(.6) - S5 55+ =5 55 + ga(a) M.,
. ;
flx) g1(z)
(19)
the system may be written as:
i = f(x) 4+ g1(z)d + ga(x) M., (20)

where & is affine in 6 and M, and thus the iterative
bounding procedure can be applied. Now we can search
for two control laws Ki(x) and Ka(x) that expand the
region of attraction of the vehicle system.

5. CONTROL DESIGN APPLICATION

The main rationality about using SOS decomposition is
to approximate the RoA by a level set of a Lyapunov
function. It is expected that as we choose higher order
Lyapunov functions we may improve our representation of
the domain of attraction. In a similar form, larger RoAs
estimates are expected as we increase the order of the
control law K (x). Understanding these characteristics, our
results are presented varying the degrees combinations of
V(z) and K (z). First we estimate the RoA under an open-
loop analysis and further expand it with state feedback and
input saturation.

Algorithm 1 requires a candidate shaping function s(x), an
initial Lyapunov function Vj(x), polynomials ¢; and the
degree specification for polynomials g;(z).

The shaping function gives dimensional scaling and reflects
the influence of certain directions in the state space. Its
importance relies on the fact that s(z) provides the shape
or mold of the regions over which we will be verifying
the Lyapunov conditions. Since it is not intuitive to
visualize, we follow the suggestion presented in Masouleh
and Limebeer (2017) where a Lyapunov function of lower
degree is used as the shaping function when finding higher-
order Lyapunov functions, i.e., s(x) is defined as our best
second-order V(z), obtained from previous runs, when
searching for a V(z) of fourth-order and so on. The idea
comes from the fact that as the degree of the Lyapunov
function is increased, region (V' (x) — =) better aligns with
the gradient of our dynamic model and, therefore, is a
suitable s(z) candidate for new searches, systematically.

Regarding the choice of Vj(x), following the suggestion
made in the majority of works focused on estimating the
RoA using SOS constraints, an easy and good choice is the
quadratic Lyapunov function Vj;,, = z7 Pz derived from
the linearized vehicle model associated with the Lyapunov
equation (Tamba and Nazaruddin (2018); Iannelli et al.
(2019)).

Coefficients €; and es are defined as small positive con-
stants around the magnitude of 107% and the tire force
approximation (14) is chosen to be a 7th order polynomial.

In order to satisfy the degree bounds recognized in (2)-(4),
the function degrees are defined as:

deg(1) = deg(V)

deg(q1) = max{deg(V) — deg(s), 2}

deg(qa) = 2

deg(qs) = deg(g2) + deg(ga) + deg(K1) — 1

deg(¢2) = deg(gs) (21)
)

deg(ga,;) = deg(gs,i max{deg(V) — deg(K1), 2},

5.1 RoA estimation

With our configuration now set up, we can evaluate Algo-
rithm 1. The SOS constraints are implemented using SOS-
TOOLS (Papachristodoulou et al. (2013)) package that
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reformulates the problem as a semidefinite programming
which is solved via SeDuMi.

The physical vehicle parameters used in this study are
listed in Table 1.

Table 1. Vehicle main physical parameters.

Symbol [ Parameter name [ Value
m Vehicle mass 1500 kg
I, Yaw inertia 3000 kg/m?
a Distance from CG to front wheels 1.2 m
b Distance from CG to rear wheels 1.3 m
c Half of wheelbase distance 0.9 m
Omazx Steering saturation 15 °
Moo Differential moment saturation 1200 N

As a first application we estimate the RoA of the un-
controlled system (K (x) = 0). Steering angle is set to 5
degrees with constant longitudinal speed uy = 10m/s. For
the trim condition selected and using the physical parame-
ters given above, the state matrices of the linearized model
are

o 1.846 —10.166
A= 8k || = {—0.6830 —1.4316]’ (22)
ov  Or (@,7)
o 10263 0
_ |95 an. ~ [10.
B=1dg Oo || = {6.158 0.25x103}’ (23)
a5 om.| (M=)

given with the international system units.

Figure 2 shows the RoA estimates. The phase portrait of
the polynomial vehicle model is shown in background along
with the equilibrium points denoted by black dots.

' <ra©d/s>
M
\

=

—9 . | |
—10 -5 0 5 10

v (m/s)

‘ — deg(V)=2 — deg(V)=4 deg(V)=6 — deg(V)=8 ‘

Fig. 2. RoA estimates for a cornering maneuver. Steering
angle is set at 5 degrees, longitudinal speed uy =
10m/s. Shaping function s(z) is chosen to be the
Lyapunov function of lower degree.

It can be noted that the RoA estimates become more
representative as we increase the degree of V' (x). When we
choose s(x) to be the best V' (x) of lower order, restriction
(3) ensures that the new Lyapunov function with higher
degree will contain the previous one. To quantify these
improvements, we propose comparing surfaces area of the
estimated RoA. Table 2 shows the improvement we obtain
as advancing in the search of V(z) of higher orders.

Table 2. Rising area of the estimated RoA as
increasing the order of polynomial V(x).

deg(V) 2 4 6 8
11.6949 | 16.3942 | 18.6345 | 21.0372

Area

By increasing the order of V(z), the number of decision
variables of the resulting SDP grows rapidly. The combina-
tion of this characteristic with the fact that system (1) was
assembled as a seventh-order polynomial vector field turns
our restrictions strongly sensitive to a relative change in
x and, as consequence, numerical scaling failure is more
likely to occur. Unfortunately, computational growth is
still a generic trend in SOS optimizations.

5.2 FExpanding the RoA with state feedback

We will now focus our attention on expanding the RoA
with state feedback and input saturation. In an attempt
to get better estimates, as discussed above, s(x) is boot-
strapped by the previous Lyapunov function. Again, steer-
ing angle is set to +5 degrees with constant longitudinal
velocity u = 10m/s. The controller saturation limits are
|61, maz] < 15 degrees and |ug mqz| < 1200N.

Figure 3 shows the RoA estimates for certain degrees of K;
and V. It is straightforward to verify that RoA estimates
are indeed increased with a state feedback controller.

v (m/s)
(c) (d)

v (m/s)

\ — deg(V)=2 — deg(V)=4 dcg(V):G‘

Fig. 3. Estimated stability regions of the controlled system.
Lyapunov functions are shown for different degrees.
RoA is estimated by considering a control laws K; of
(a) degree 1, (b) degree 2, (c) degree 3 and (d) degree
4.

Increasing the controller degree slightly expand the RoA
estimates. In fact, higher order polynomial controller con-
tains the lower ones, thus RoA is indeed expected to in-
crease as far as numerical ill-conditioning arises. For these
simulations, searching for a Lyapunov function of order 8
resulted in numerical failure. The rational for this failure
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is that, by growing the order of K and V, high degree
monomials are used in the SOS program, as consequence,
the number of variables increases and the order of the
polynomial coefficients become vastly different.

Table 3 shows the area of the RoA estimates as a metric
of comparison. It follows that the area increases as we
increase the order of polynomials K;(x) and V(z). As
expected, increasing the Lyapunov function order gives a
more representative estimative of the RoA and, similarly,
increasing the K;(x) order also potentially leads to im-
provement since we widen the search space. According to
Table 3 this is partially true. For K;(z) and V (z) of order
4 and 6, respectively, the algorithm ran into numerical
problems (by the same reasons discussed above) and the
estimation is compromised, noticed by the decrease in RoA
estimation.

Table 3. Area of the estimated RoA under a

polynomial state feedback controller of arbi-

trary degree.

deg(V)
2 4 6
1| 225626 24.2682 26.0119
deg(K) 2| 232137 27919 25.7333
3 | 233177 27.8489  30.2255
4| 227976 25.0768  27.7607

In practice, the preferred controller would be chosen ac-
cording to its ability to expand the region of attraction.
Clearly, the larger the RoA’s area, the larger the set of
initial conditions for which the controller will asymptot-
ically stabilize the system. Additionally, one concern in
control system design is the numerical conditioning of the
control gains. The numerical results are shown in Table 4
and occasional ill-conditioning of the gain matrix has not
been observed.

Table 4. Polynomial controller gains K; of
degrees varying from 1 to 4 obtained with the
sixth-order Lyapunov Functios.

K, of degree 1

Ky (z) = —0.038v + 0.099r

Ks(x) = 154.39v — 839.357

K, of degree 2

Ki(z) = 1.69 x 107302 — 0.04vr + 0.0672 — 0.01v + 0.037

Ko(z) = —5.24v% + 84.43vr — 172.2872 4 101.14v — 814.33r

K, of degree 3

Ki(z) = 0.0060%r — 0.03vr2 + 0.07r% — 0.04vr + 0.0772 — 0.003v — 0.04r

Ks(z) = —1.39v3 + 2.09v%r + 36.29vr? — 75.8073 — 4.55v2 + 70.89vr—
—218.2872 + 134.05v — 637.57r

K, of degree 4

Ki(z) = =2 x 10~ %0? + 2.6 x 1074037 + 0.01v%r2 — 0.050r% 4 0.07r* — 1.9 x 10~ 403+
+0.01v%r — 0.06vr2 + 0.1373 4 3.1 x 10~3v2 — 0.02vr — 0.02r2 — 0.01v + 0.117

Ko (z) = 0.10* — 0.9603r — 6.50%r2 4+ 73vr® — 111.4r% — 0.250% — 6.54v2r+
+73.59vr2 — 220.30r% — 7.94v2 + 87.120r — 184.51r2 + 82.47v — 395.69r

The control gains magnitude is explained by its corre-
sponding inputs. Kj(x) is with respect to input J, ex-
pressed in radians, and Ky(z) with respect to M, with
maximum value of 1.2kN.

6. SOS VS LQR CONTROL PERFORMANCE

We now wish to compare the control synthesis using
SOS decomposition with other known control design tech-

nique. Among the optimal controllers in control theory,
the linear quadratic regulator (LQR) is a well-known de-
sign approach that provides practical feedback gains. The
controller is designed for a linear model of the system,
described by matrices (22) and (23).

Control gain is calculated by K = R !BTP where P
can be found by solving the continuous time algebraic
Riccati equation. The quadratic components, ) and R,
that establish a compromise between control effort and
performance, are chosen to be:

5 0 1x 103 0
Q= , R= ; (24)
0 50 0 4x1073

which allow K to be straightforwardly computed. Q and
R are with the international system units.

Given the control gain, the iterative procedure reduces
the complexity considerably. With K; and K fixed, the
controller synthesis step (K-Step) is summarized to find
polynomials g4 ; and ¢s,, such that (4) and (6) hold.
The number of decision variables is now constant. The
remaining steps of Algorithm 1 follow normally.

Figure 4 shows the estimated RoA under an LQR closed-
loop controller. Comparing to Figure 3, the region is very
similar in shape and alignment, but not in size. The esti-
mated RoA clearly comprehends the upper saddle point
and surpasses the boundary of the uncontrolled plant,
however, due to the fixed controller law, the algorithm
quickly converges.

———

r (rad/s)

v (m/s)

\ — deg(V)=2 — deg(V)=4

deg(V)=6 ‘

Fig. 4. Estimated stability region of the system with
an LQR feedback controller. Lyapunov functions are
shown for different degrees.

The areas of the estimated RoAs are shown in Table
5. As expected, the region enlarges as we increase the
Lyapunov function order. Comparing with the areas of
Table 3, the estimated RoA under an LQR control gain
is remarkably lower. The reason is simple: Algorithm 1
works by expanding the domain of attraction {1, and then
finding the largest level set of the resulting Lyapunov
function that is contained in €),. Evidently, the estimated
region under the SOS closed-loop analysis should be more
representative when comparing to LQR, which is not
designed for this purpose.
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Table 5. Rising area of the estimated RoA as
increasing the order of polynomial V(z) under
an LQR closed-loop gain.

deg(V) 2 4 6
Area 16.3337 | 17.6150 | 18.7786

7. CONCLUSION

In this work, we have shown how the sum of squares tech-
nique can be used to analyze the stability of a nonlinear
vehicle system.

The methodology, based on the construction of appropri-
ate Lyapunov function certificates, is carried out using
sum of squares techniques through SOSTOOLS package.
Furthermore, estimating the region of attraction and de-
signing a state feedback control law were explored algo-
rithmically.

The ordinary differential equations of the well-known bi-
cycle dynamic model are presented and the system is ap-
proximated to a polynomial vector field. The mathematical
system falls on a class of nonaffine-in-input system and
control design using SOS decomposition cannot be han-
dled directly. We then propose an affine linearization and
the numerical issues and ill-conditioning coming from this
solution are discussed. Moreover, the proposed controller
design includes the nonlinearities comprised by input con-
straints associated with the system actuator dynamics.

The work done so far has presented algorithmic solutions
to stability analysis and control synthesis for a vehicle
model. Future work will be focused on the class of rational
polynomial systems and how it can be structured so
that the resulting semidefinite programming conditions are
numerically well-conditioned.
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