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Abstract: For all its successes, Reinforcement Learning (RL) still struggles to deliver formal
guarantees on the closed-loop behavior of the learned policy. Among other things, guaranteeing
the safety of RL with respect to safety-critical systems is a very active research topic. Some
recent contributions propose to rely on projections of the inputs delivered by the learned policy
into a safe set, ensuring that the system safety is never jeopardized. Unfortunately, it is unclear
whether this operation can be performed without disrupting the learning process. This paper
addresses this issue. The problem is analysed in the context of Q-learning and policy gradient
techniques. We show that the projection approach is generally disruptive in the context of Q-
learning though a simple alternative solves the issue, while simple corrections can be used in the
context of policy gradient methods in order to ensure that the policy gradients are unbiased.
The proposed results extend to safe projections based on robust MPC techniques.
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1. INTRODUCTION

Reinforcement Learning (RL) is a tool for tackling optimal
control from data. RL methods seek to increase the closed-
loop performance of the control policy deployed on the
system as observations are collected. RL methods often
rely on Deep Neural Networks (DNN) to carry the pol-
icy approximation πθ. Control policies based on DNNs
provide limited opportunities for formal verifications of
the resulting closed-loop behavior, and for imposing hard
constraints on the evolution of the state of the real system.
The development of safe RL methods is currently an open
field of research (J. Garcia, 2013).

In order to tackle safety issues in RL, it has been recently
proposed, see (Wabersich et al., 2019) and references
therein, to use projections of the inputs delivered by the
RL policy πθ into safe sets, which is known by construc-
tion to ensure the safety of the system. The construction
of the safe set can, e.g., rely on specific knowledge of the
system, or robust model predictive control techniques. The
projection then operates as a safeguard that prevents RL
from taking unsafe decisions, and adopts the safe decision
that is the closest to the RL policy when RL is unsafe.

In this paper, we investigate the interaction between these
safe policy projections and the learning process deployed
by RL. We show that because the projection modifies
the policy developed via RL, it can disrupt the learning
process performed such that the learned policy can be
suboptimal. The problem occurs both in the context of Q-
learning and policy gradient approaches using actor-critic
methods. We then propose simple techniques to alleviate
the problem. In the context of Q-learning, we show that
the projection technique in general jeopardizes optimality,
as it is the projection of a (possibly) optimal policy on a
set, and that the problem is best alleviated by relying on a

direct minimization of theQ function learned by RL, under
the safety constraint that the inputs must belong to the
safety set, as proposed in (Zanon and Gros, 2019). In the
context of the deterministic policy gradient approaches, we
show that, in order to prevent the projections to bias the
policy gradient estimations, the actor-critic method must
be corrected with a correction which is simple to deploy. In
the context of stochastic policy gradient methods, we show
that the actor-critic must be constructed in a particular
way to prevent the projection from biasing the policy
gradient estimations. We finally show that these results
extend to the case of a projection performed via robust
Model Predictive Control (MPC) techniques.

The paper is structured as follows. Section 2 provides
some background material. Section 3 details the projection
approach in the context of Q-learning, and proposes an
approach to address the resulting difficulties. Section 4 de-
tails the projection approach for policy gradient methods,
both deterministic and stochastic, and proposes simple
actor-critic formulations that prevent the projection from
biasing the policy gradient estimations. Section 5 extends
the results to the case in which the projection is performed
via robust MPC. Section 6 proposes a simple simulation
example using robust linear MPC in the stochastic policy
gradient case, and Section 7 provides conclusions.

2. BACKGROUND

In the following, we will consider that the dynamics of the
real system are possibly stochastic, evolving on continuous
state-input spaces. We will furthermore consider stochastic
policies π, taking the form of conditional probability den-
sities π [u |x] : Rm × Rn → R+, denoting the probability
density of selecting a given input u when the system is in
a given state x. We will also consider deterministic policies
π (x) : Rn → Rm delivering u as a function of x. For a
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given stage cost L(x,u) ∈ Rn × Rm → R and a discount
factor γ ∈ [0, 1], the performance of a policy π is assessed
via the total discounted expected cost

J(π) = Eπ

[

∞
∑

k=0

γkL(xk,uk)

∣

∣

∣

∣

∣

uk ∼ π [ · |xk]

]

, (1)

where Eπ is the expected value of the closed-loop trajec-
tories under policy π, including the initial conditions x0.

In the deterministic policy case, the policy in (1) takes the
form of a Dirac distribution centered at π. The optimal
policy associated to the state transition, the stage cost L
and the discount factor γ is deterministic and given by

π⋆ = argmin
π

J(π). (2)

Reinforcement Learning seeks to find the parameters θ
such that the parametrized policies πθ or πθ approximate
closely π⋆, using observed state transitions. Q-learning
methods build the optimal policy approximation indi-
rectly, as the minimizer (Sutton and Barto, 2018):

πθ (x) = argmin
u

Qθ (x,u) , (3)

where Qθ is an approximation of the true optimal action
value function Q⋆, solution of the Bellman equations
(Bertsekas, 2007):

V⋆ (x) = min
u

Q⋆ (x,u) , (4a)

Q⋆ (x,u) = L(x,u) + γE [V⋆(x+) |x, u] . (4b)

The approximation Qθ ≈ Q⋆ is built using Temporal-
Difference or Monte-Carlo techniques.

In contrast, policy gradient techniques manipulate directly
the policy parameters according to the policy gradients
∇θJ (Sutton et al., 1999). Actor-critic techniques evaluate
the policy gradient resulting from a stochastic policy
as (Sutton et al., 1999)

∇θJ(πθ) = E [∇θ log πθ[u |x]Aπθ
(x,u)] , (5)

where Aπθ
is the advantage function associated to the

policy πθ, defined as

Aπθ
(x,u) = Qπθ

(x,u)− Vπθ
(x) , (6)

and where

Vπθ
(x) = E [L(x,u) + γVπθ

(x+) |x, u] , (7a)

Qπθ
(x,u) = L(x,u) + γE [Vπθ

(x+) |x, u] , (7b)

are the value and action-value functions associated to πθ.

Similarly, the policy gradient ∇θJ(πθ) associated to a
deterministic policy πθ reads as (Silver et al., 2014)

∇θJ(πθ) = E [∇θπθ(x)∇uAπθ
(x,πθ(x))] , (8)

where the advantage function Aπθ
is defined by (6)-

(7) taken over a Dirac-like policy density corresponding
to a deterministic policy. The advantage functions Aπθ

and Aπθ
can be estimated using Temporal-Difference or

Monte-Carlo techniques.

In the context of Reinforcement-Learning, enforcing the
safety of the inputs generated by a policy is not triv-
ial (J. Garcia, 2013). Indeed, for safety-critical systems,
discovering unsafe inputs from experiments is overly costly,
and is typically rather done in extensive simulation cam-
paigns. As an alternative, recent publications have pro-
posed to approach the safety problem underlying RL by
adding a safety layer to the RL process, which serves as a
safeguard to the policy, see (Wabersich et al., 2019) and
references therein. We detail that approach next.

2.1 Safe Policy

In this paper, we consider Reinforcement Learning subject
to safety limitations. More specifically, we will consider
constraints:

h (x,u) ≤ 0 (9)

that must be respected at all time in order for the
system safety to be ensured. Moreover, we will consider
a (possibly) state-dependent safe set S (x) such that

uk ∈ S (xk) , ∀ k, (10)

entails that (9) is satisfied at all times. We ought to stress
here the difference between (9) and S (x). Satisfying (9) at
time k entails that the system is safe at that time k, while
S is such that enforcing (10) at time k entails that the
system safety can be guaranteed at all time in the future.
In the following, we will assume that S can be described
via inequality constraints on s, typically different than h:

S (x) = {u | s (x,u) ≤ 0} . (11)

Set S (x) can be complex and non-convex. Let us addition-
ally label X the set of states x such that S (x) is non-empty,
and W = {x,u | s (x,u) ≤ 0}. In some applications, the
safe set S can be computed explicitly using reachability
analysis, but that can be prohibitively difficult in general.
Inner convex approximations can then be needed. An ap-
proach based on an implicit representation has been the
object of recent publications (Zanon and Gros, 2019; Gros
and Zanon, 2020).

Assuming that a safe set S is available, a natural approach
to ensure the feasibility of a policy πθ learned via Rein-
forcement Learning techniques is to perform a projection
into the safe set S, i.e., to solve online the problem:

π⊥
θ
(x) = argmin

u

1

2
‖u− πθ (x) ‖

2 (12a)

s.t. s (x,u) ≤ 0, (12b)

hence seeking the closest safe input to the RL policy πθ

under the Euclidian norm ‖ · ‖. While (12) imposes safety
by construction, the optimality of the projected policy
π⊥

θ
is, in general, not guaranteed if πθ is obtained via

RL techniques that disregard the fact that the projection
operation (12) takes place. The resulting optimality loss is
arguably problem-dependent, and not investigated here.
In this paper, we will focus on how (12) can be combined
with RL such that optimality of π⊥

θ
is achieved.

3. SAFE Q-LEARNING VIA PROJECTION

In this section we consider the deployment of the Q-
learning technique under the safety limitation (11). The
minimization in (4a) is then restricted to S (x). In the
context of Q-learning, one seeks to adjust the parameters
θ supporting the function approximation Qθ such that
Qθ ≈ Q⋆ is achieved in some sense. The parameters
are typically adjusted using Temporal-Difference (TD) or
Monte-Carlo techniques, aimed at (approximately) solving
the least-squares problem

θ∗ = argmin
θ

E

[

(Q⋆ −Qθ)
2
]

. (13)

In a safe-learning context, the expected value in (13) is
restricted to the safe state-input set W, such that Qθ ≈ Q⋆

may only hold in W. The RL policy πθ is then selected
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Fig. 1. Illustration of the possible loss of optimality result-
ing from using the projection (12) in Q-learning.

according to (3). Let us then investigate the effect of
applying the projection (12) on the policy obtained from
(3). To that end, let us introduce a trivial but useful result.

Lemma 1. Assume that Qθ = Q⋆ holds over W. Then the
optimal policy under the safety requirement (10)-(11) is
provided by:

πsafe
⋆ (x) = argmin

u

Qθ (x,u) (14a)

s.t. s (x,u) ≤ 0, (14b)

Proof. By contradiction. Let us assume there is a safe
policy π̃safe that achieves better closed-loop performance
than πsafe

⋆ (x) on X. Because π̃safe is safe, it follows that

π̃safe (x) ∈ S (x) , ∀x ∈ X. (15)

If π̃safe achieves better closed-loop performance than
πsafe

⋆ (x), and since Qθ = Q⋆ holds over W, then there
is a x ∈ X such that:

Q⋆ (x, π̃safe (x)) < Q⋆

(

x,πsafe
⋆ (x)

)

. (16)

However, since both π̃safe and πsafe
⋆ (x) are restricted to

deliver inputs in S (x), (16) is in contradiction with (14).
�

Remark 1. Note that because Qθ = Q⋆ may not hold
outside of W, Qθ may take its minimum outside of S (x)
for some states x ∈ X. As a result, constraint (14b) is
required in order to generate a safe policy.

3.1 Projection Approach for Q-Learning

Consider the projection (12) of the policy (3) obtained
via Q-learning. We ought to first observe that if Qθ = Q⋆

holds overW, the projected policy is optimal whenever the
learned policy πθ ∈ S (x). Unfortunately, this observation
does not necessarily extend to the situation where πθ (x) /∈
S (x). In order to support this observation, let us consider
a trivial example displayed in Fig. 1. This shows that
π⊥

θ
(x) = πsafe

⋆ (x) does not hold in general. However,
Lemma 1 readily delivers a way to alleviate this problem:
assuming that a Q-function approximation Qθ ≈ Q⋆ over
Z has been learned, a safe policy can be devised from
using πsafe

⋆ (x) obtained from (14) as opposed to a generic
projection (12). One then must be careful to include the
input restriction u ∈ S (x) in the evaluation of the TD
error underlying the Q-learning. When using SARSA, no
special care needs to be taken in the learning process,
as (14) generates all inputs in S (x). An approach to
formulate (14) via robust MPC is presented in (Zanon and
Gros, 2019).

This section shows that the direct minimization (14) of the
Q function approximation under the safety constraints is

arguably better suited than the two steps approach: (3)
followed by (12). We ought to extend the discussion to the
context of the policy gradient methods using actor-critic
techniques. This discussion is more technical, and is the
object of the next section.

4. SAFE POLICY GRADIENT VIA PROJECTION

Policy gradient methods are often preferred over Q-
learning because they alleviate the known issue that solv-
ing the least-squares problem (13) does not necessarily
imply that one has found parameter θ that yields the best
closed-loop performance of the policy (3). Indeed, policy
gradient methods seek a direct minimization of the closed-
loop cost (1) via gradient steps over (1), and therefore yield
(at least locally) optimal policy parameters. Similarly to
the discussion of Section 3, when deploying policy gradient
techniques jointly with a projection on the safe set (12),
the optimality of the resulting policy is unclear. As a
matter of fact, we will show in this section that the learning
process ought to be corrected in order for the estimation of
the gradient of (1) to be unbiased. Subsection 4.1 will cover
the deterministic policy gradient case, while subsection 4.2
will cover the stochastic policy gradient case.

4.1 Projected Policy and Deterministic Policy Gradient

In the context of deterministic policies, we will show next
that a correction must be applied in the policy gradient
computation to account for the safe projection (12). This
correction is provided in the following Proposition.

Proposition 1. Consider the projection (12) where ‖ · ‖
stands for the Euclidian norm, and assume that the
constraints (12b) satisfy the Linear Constraint Qualifica-
tion (LICQ) and strict Second-Order Sufficient Conditions
(SOSC). The gradient of the projected policy π⊥

θ
with

respect to the policy parameters θ then reads as:

∇θπ
⊥
θ (x) = ∇θπθ (x)M (x) , (17a)

M (x) = N
(

N⊤HN
)−1

N⊤, (17b)

where N ∈ Rm×nA is a state-dependent orthonormal null
space to the gradient of the strictly active constraints, i.e.:

∇usA
(

x,π⊥
θ
(x)

)⊤
N (x) = 0, N (x)

⊤ N (x) = I, (18)

with A gathering the set of strictly active constraints s,
and H is the Hessian associated to (12).

Proof. The solution to (12) satisfies the KKT conditions:

r =

[

∇uL (x,u,µ)
diag(µA)sA (x,u)

]

= 0, (19)

where L = 1
2‖u − πθ (x) ‖2 + µ⊤s (x,u). The Implicit

Function Theorem guarantees that if LICQ and SOSC
hold, the gradient of the projected policy reads as:

[

H ∇usA
∇us

⊤
A 0

] [

∂u/∂θ
∂µA/∂θ

]

= −

[

∇uθL
⊤

0

]

. (20)

We then observe that ∇us
⊤
A
∂u/∂θ = 0 entails that

∇θπ
⊥
θ
(x)

⊤
=

∂u

∂θ
= Nn, (21)

for some vector n. We further observe that:

N⊤

(

H
∂u

∂θ
+∇usA

∂µ
A

∂θ

)

= −N⊤∇uθL
⊤
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follows from (20), such that, using (18) and (21) we get

N⊤HNn = −N⊤∇uθL
⊤. (22)

Since we have

∇uθL = −∇θπθ, H = I+∇2
u

(

µ⊤
A
sA

)

, (23)

this entails n = (N⊤HN )−1N⊤∇θπ
⊤
θ
. �

Hence the gradient of the projected policy is a form of
projection of the gradient of the original policy πθ (x)
into the null-space of the safety constraints. We will define
N (x) = Im×m for all x for which all constraints are
strictly inactive, and N (x) = 0m×1 for all x where the
active constraints fully block the inputs. We observe that
the set of states x where some constraints are weakly
active—such that the gradient of the policy is only defined
in the sense of its sub-gradients—is of zero measure and
can therefore be disregarded in the context discussed here.
In the particular case of a safety set S described as a
polytope, such that the constraints s are affine, H = I
holds and matrix M simplifies to M = NN⊤.

We can then form the Corollary to Proposition 1 providing
a correct policy gradient evaluation.

Corollary 1. Let us assume that (12) fulfills LICQ and
SOSC. Then the policy gradient associated to the safe
policy π⊥

θ
reads as:

∇θJ
(

π⊥
θ

)

= E

[

∇θπ
⊥
θ
∇uAπ

⊥

θ

]

(24)

= E

[

∇θπθM∇uAπ⊥

θ

]

where Aπ⊥

θ

is the advantage function associated to the

projected policy π⊥
θ
. All terms in (24) are evaluated at x,

u = π⊥
θ
(x) with x distributed according to the probability

density of the states in closed-loop under policy π⊥
θ
.

Proof. We observe that for any x such that no constraint
is weakly active, the equality

∇θπ
⊥
θ ∇uAπ⊥

θ

= ∇θπθM∇uAπ⊥

θ

holds. If (12) fulfills the LICQ condition, the set of
states where some constraints are weakly active is of zero-
measure, such that the equality

∇θJ
(

π⊥
θ

)

= E

[

∇θπ
⊥
θ ∇uAπ⊥

θ

]

= E

[

∇θπθM∇uAπ⊥

θ

]

holds. �

If deploying the projected policy approach (12) and an
actor-critic method not accounting for the projection op-
eration, the policy gradient will generally be such that:

∇θJ
(

π⊥
θ

)

6= E

[

∇θπθ∇uAπ⊥

θ

]

, (25)

where the projection matrix M (x) is omitted. This omis-
sion will, in general, produce a biased policy gradient (25)
if the policy projection is not accounted for in the RL
method when computing the policy gradient. It is therefore
recommended to form and use the projection matrix M
when computing the policy gradient.

It can be advantageous in some cases to adopt a stochastic
policy gradient method instead of the deterministic one
discussed in this section. In the stochastic policy gradient,
the same question arises regarding the learning process
being biased by the projection in the safe set. We discuss
this case in the next subsection.

Fig. 2. Illustration of the Dirac-like effect resulting from
projecting a Normally distributed stochastic policy on
a safe set, chosen as a circle here.

4.2 Projected Policy and Stochastic Policy Gradient

When using a stochastic policy gradient technique, the in-
puts are chosen as samples us drawn from a parametrized
conditional probability density representing the policy:

us ∼ πθ[ · |x ]. (26)

The safe projection then ought to be performed over the
samples us, i.e.:

π⊥
θ (x,us) = argmin

u

1

2
‖u− us‖

2 (27a)

s.t. s (x,u) ≤ 0. (27b)

The inputs generated by π⊥
θ
(x,us) are safe by construc-

tion. The resulting projected policy is itself stochastic, as
it results from the nonlinear transformation (27) of the
probability density πθ[ · |x ]. Let us label the probability
density resulting from the projection of the stochastic
policy πθ[ · |x ] via (27) as π⊥

θ
[ · |x ]. Unfortunately, since

the projection operator defined by (27) is not injective, the
density π⊥

θ
[ · |x ] can adopt a “Dirac-like” structure on the

boundary ∂S of the safe set S, due to the fact that sets
of inputs of dimension larger than one is projected onto a
single point on ∂S. This issue is illustrated in Fig. 2. As a
result, the score function of π⊥

θ
is not trivially defined, and

the construction of the policy gradient of π⊥
θ
is not obvious.

The following proposition shows that a trivial modification
of the stochastic policy gradient allows one to circumvent
this difficulty.

Proposition 2. The policy gradient associated to π⊥
θ

is
given by the actor-critic equation:

∇θJ
(

π⊥
θ

)

= E

[

∇θ log πθ[us|x]Aπ⊥

θ

(x,u)
]

, (28)

where u = π⊥
θ
(x,us) is the input obtained from (27)

satisfying LICQ and SOSC, and the expected value op-
erator E[·] is taken over the state and input distribution
obtained in closed-loop under the projected stochastic
policy π⊥

θ
[ · |x ].

Proof. In order to build a proof using simple arguments,
let us consider the interior-point approximation of the
projection problem (27):

πτ (x,us) = argmin
u

1

2
‖u− us‖

2−τ
∑

i
log(−hi (x,u)) ,

(29)

such that
∥

∥πτ (x,us)− π⊥
θ
(x,us)

∥

∥ = O(τ) holds. Let us
define πτ [ · |x ] the density resulting from transforming
πθ[ · |x ] via (29). If (27) satisfying LICQ and SOSC,
then (29) is locally bijective in us, and the score function
associated to πτ is well-defined. The associated policy
gradient reads as:

∇θJ (πτ ) = E [∇θ log π
τ [u|x]Aπτ (x,u)] , (30)
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where u = πτ (x,us). Let us further define function π−1
τ

the local inverse of πτ at us, i.e.,

π−1
τ (x,πτ (x,u)) = u, (31)

holds in a neighborhood of us. The existence of (31) is
guaranteed for τ > 0 if (27) satisfies LICQ and SOSC. We
then observe that the transformation (29) of the density
πθ yields:

πτ [u |x] = π
[

π−1
τ (x,u) |x

]

det

(

∂π−1
τ (x,u)

∂u

)

. (32)

For us given, (29) is independent of θ, such that

∇θ det

(

∂π−1
τ (x,u)

∂u

)

= 0. (33)

As a result, the score function of πτ reads as:

∇θ log π
τ [u |x] = ∇θ log πθ

[

π−1
τ (x,u) |x

]

= ∇θ log πθ [us |x ] , (34)

where us is the sample corresponding to u obtained from
(29). Combining (34) and (30), we observe that

∇θJ (πτ ) = E [∇θ log πθ [us |x ]Aπτ (x,πτ (x,us))] .

The equivalence between (29) and (27) for τ → 0 implies
that (28) holds. �

Remark 2. Proposition 2 allows one to use the projection
technique in the context of RL based on a stochastic policy
approach together with an actor-critic technique, where
the score function of the unprojected policy can be used
in conjunction with the advantage function associated to
the projected policy. The score function of the unprojected
policy must then be evaluated on the unprojected sample,
rather than on the projected input applied to the system.

As mentioned earlier, the construction of the constraints
s underlying the safe set S (x) can be difficult. We extend
next the proposed results to MPC-based techniques allow-
ing one to build the safety constraints implicitly, via model
predictive control techniques.

5. MPC-BASED PROJECTIONS

It is in general difficult to build the safe set S from
condition (9). Indeed, an input u applied at a given time k
can have lasting consequences and, while not endangering
the system at time k, jeopardize its safety in the future. In
order to alleviate this problem, the safety constraints can
be built implicitly via Model Predictive Control (MPC)
techniques. In that context, let us consider

Xk

(

x,u0,π
S
)

, k = 0, . . . ,∞ (35)

an outer approximation of the trajectory dispersion of the
real system starting from the initial conditions x, hence
X0

(

x,u0,π
S
)

= x, and subject to the input sequence

u0, uk = πS (xk), where πS is an arbitrary policy. The
safe set can then be described as an inner approximation:

S (x) ⊆
{

u0 | ∃πS s.t. h
(

xk,π
S(xk)

)

≤ 0

∀xk ∈ Xk

(

x,u0,π
S
)

, ∀ k > 0
}

, (36)

which can then be used in (12) or (27). If MPC techniques
are used, a generalization of the projection technique can
be considered. In the deterministic policy case, one can
then use the generic robust formulation:

(

u0,π
S
)

(x0) = arg min
u0,πS

1

2
‖u0−πθ (x0)‖

2+φ
(

πS,πθ

)

(37a)

s.t. h (x,u0) ≤ 0, (37b)

h
(

xk,π
S(xk)

)

≤ 0, (37c)

∀xk ∈ Xk

(

x,u0,π
S
)

, ∀ k > 0.

We can then select π⊥
θ
(x) = u0 (x) as a safe control input.

In the stochastic policy case, the equivalent formulation
reads as:
(

u0,π
S
)

(x0) = arg min
u0,πS

1

2
‖u0 − us‖

2 + φ
(

πS, πθ

)

(38a)

s.t. (37b)− (37c), (38b)

where us ∼ πθ[ · |x ] is a sample drawn from the stochastic
policy. The cost function φ in (37) can be independent of
πθ, or, e.g., any metric in the functional space underlying
the deterministic policies πθ and πS. A similar construc-
tion can be done for φ in (38).

The following corollaries show that Propositions 1 and 2
hold in the context of (37) and (38) under some conditions.

Corollary 2. Proposition 1 holds for (37) with:

∇uθL = −∇θπθ +∇uθρθ (u0,x) , (39a)

H = I+∇2
u0
ρθ (u0,x) +∇2

u0

(

µ⊤
A
sA

)

. (39b)

where

ρθ (u0,x) = min
πS

φ
(

πS,πθ

)

s.t. (37c), (40a)

Proof. Problem (37) can be put in the form:

u0 = argmin
u0

1

2
‖u0 − πθ (x) ‖

2 + ρθ (u0,x) (41a)

s.t. s (x,u0) ≤ 0, (41b)

One can then readily observe that Proposition 1 applies to
(41), with (39). �

Corollary 3. The results of Proposition 2 hold for (38) if
function φ is independent of θ.

Proof. Problem (38) can be put in the form:

u0 = argmin
u0

1

2
‖u0 − us‖

2 + ρθ (u0,x) (42a)

s.t. s (x,u0) ≤ 0, (42b)

where ρθ is based on φ
(

πS, πθ

)

. One can verify that
Proposition 2 is independent of the choice of cost function
in the projection as long as it is independent of θ, and
holds as long as it satisfies LICQ/SOSC. As a result, if φ
is independent of θ, Proposition 2 readily applies to (42).

�

If function φ depends on θ, more elaborate techniques
must be used, see (Gros and Zanon, 2020).

6. SIMULATED EXAMPLE

In this section, we present a simple example illustrating
Corollary 3. Let us consider the dynamic system:

xk+1 =

[

cos a sin a
− sina cos a

]

xk + uk + nk, (43)

where a = 20◦, nk ∈ R2 is truncated Normal centred of
covariance Σn = 0.1I, and restricted to a ball of radius 0.1,
i.e., nk ∈ B (0, 0.1). We consider a safety constraint:
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Fig. 3. Illustration of the input and state trajectories at
the beginning (grey curves) and end (black curves)
of the learning. The circles in the right graph display
the state standard deviation. The markers show the
evolution of the MPC references ûref , x̂ref .

h (x) = x⊤x− 1 ≤ 0. (44)

We will use the baseline cost:

L (x,u) = 10−2‖x− xref‖
2 + ‖u− uref‖

2. (45)

The MPC will be based on the noise-free model

x̄k+1 = 1.1

[

cos â sin â
− sin â cos â

]

x̄k + uk, (46)

where â = 25◦, and the policy πS will be selected as:

πS (x,u) = u−KS (x− x̄k) , (47)

where KS is the LQR corresponding to (46) for Q,R = I.
We can represent the dispersion set as a ball, i.e.,

Xk

(

x,u0,π
S
)

= B (x̄k, rk) (48)

of radius rk+1 = ‖A‖∞rk +max
n∈B(0,0.1) ‖n‖, and r0 = 0.

We then build the robust MPC scheme:

u0,...,N−1(x) = argmin
u0,...,N−1

1

2
‖u0 − us‖

2+
N−1
∑

k=1

γkL (x̄k,uk)

(49a)

s.t. (46), x̄0 = x, h (xk) ≤ 0 (49b)

∀xk ∈ B (x̄k, rk) , ∀k. (49c)

with γ = 0.9, and use π⊥
θ
(x) = u0 (x). We consider the

stochastic policy πθ delivering the samples us as Normal,
centred at π̄θ (x), and of isotropic covariance σπI, where

π̄θ (x) = ûref −K (x− x̂ref) , (50)

and the policy parameters are θ = {ûref , x̂ref , K}. A batch
approach was used to compute the policy gradients, using
(28), using 30 batches of duration 20, and LSTDV/LSTDQ

techniques. The initial condition x0 = [ 0 1 ]
⊤

was used.
The MPC horizon is N = 10. A linear compatible ad-
vantage function approximator was used, built upon a
quadratic value function approximation. Fig. 4 displays
the evolution of the policy parameters through the learn-
ing, Fig. 5 shows the evaluation of the closed-loop per-
formance, and Fig. 3 shows the evolution of the system
trajectories through the learning process.

7. CONCLUSION

In this paper, we discussed the projection approach as a
method to enforce the safety of a policy learned via RL.
We showed that the approach is detrimental in the context
of Q-learning, and that a direct minimization of the Q
function under the safety constraints is arguably more
suited. We showed that in the context for deterministic
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Fig. 4. Evaluation of the policy parameters θ associated
to the feedback matrix K in (50) over the learning
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Fig. 5. Evaluation of the policy performance (1) over the
learning, normed to 1.

policies, the actor-critic method needs a simple correction
in order for the policy gradient estimation to be unbiased.
Similarly, in the context of stochastic policies, the actor-
critic needs to be constructed in a very specific way in
order for the policy gradient estimations to be unbiased.
We showed that the results extend to the case of a
projection performed via Robust MPC.
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