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Abstract: Identification of dynamic networks has been a flourishing area in recent years.
However, there are few contributions addressing the problem of simultaneously identifying all
modules in a network of given structure. In principle the prediction error method can handle
such problems but this methods suffers from well known issues with local minima and how to
find initial parameter values. Weighted Null-Space Fitting is a multi-step least-squares method
and in this contribution we extend this method to rational linear dynamic networks of arbitrary
topology with modules subject to white noise disturbances. We show that WNSF reaches the
performance of PEM initialized at the true parameter values for a fairly complex network,
suggesting consistency and asymptotic efficiency of the proposed method.
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1. INTRODUCTION

A dynamic network consists of spatially interconnected
systems, where these interconnections cause the systems
to be dynamically correlated with each other. Dynamic
networks are generally subjected to external variables,
such as excitation and noise signals. Measured signals are
represented by nodes in the network while the systems
causing the interactions between the nodes are called
modules.

With a rising interest in data-driven modeling for iden-
tification in dynamic networks, several challenges should
be addressed. These can be roughly categorized as follows:
detection of network topology (Materassi and Innocenti,
2010; Materassi and Salapaka, 2012), conditions for net-
work identifiability (Gonçalves and Warnick, 2008; Weerts
et al., 2015, 2016, 2018a; Gevers et al., 2017), and identifi-
cation of modules in the dynamic network. Estimating all
modules in a dynamic network can be accomplished with
the prediction error method (PEM), but often requires
non-convex optimization. For large and complex networks
the computational effort required for non-convex problems
will increase, in addition, the number of local minima tend
to grow as the number of modules to estimate increases.
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In terms of parameter estimation, the literature focuses
on obtaining consistent estimates of separate modules or
a collection of modules in a dynamic network. Estimat-
ing a particular module in a dynamic network can be
achieved with closed-loop identification methods. Methods
such as the direct method (Ljung, 1999) and joint-IO,
obtain consistent estimates when the noise model has been
exactly modeled. Methods that do not depend on exactly
estimating the noise model are the two-stage method (Van
den Hof and Schrama, 1993) and the instrumental variable
(IV) method (Söderström and Stoica, 1983). Both methods
require the external excitation signals to be (partially)
measurable to obtain consistent estimates. The IV method
is the only aforementioned method that does not employ a
cost function. A framework for identifying a single module
or a collection of modules in dynamic networks has been
established in Van den Hof et al. (2013), generalizing the
aforementioned closed-loop identification methods. These
methods can be applied to one or several multi-input-
single-output (MISO) closed-loop problems. Related stud-
ies on identifying separate modules or sub-modules in
a dynamic network are given in (Dankers et al., 2015;
Galrinho et al., 2017; Everitt et al., 2018a,b).

Estimating the modules or collection of modules separately
comes at a cost in estimation accuracy and asymptotic
efficiency because certain correlations due to the intercon-
nections are not considered.

The subject of identifying all modules simultaneously in
dynamic networks is barely covered in system identifica-
tion literature. The joint-direct method (Weerts et al.,
2018b) is an identification approach that does predict all
nodes jointly. The identification criterion used here is still
in general a non-convex optimization problem.
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Assuming the topology of the network is known, the aim
of this paper is to propose a method to simultaneously
estimate all modules in a dynamic network providing
consistent and asymptotically efficient estimates, without
the need to solve non-convex optimization problems. The
Weighted Null-Space Fitting (WNSF) method (Galrinho
et al., 2019) has been shown to provide consistent and
asymptotically efficient estimates for single-input-single-
output (SISO) systems. This method avoids non-convex
optimization, and extensions to multivariate systems and
cascaded systems are available (Galrinho et al., 2018). For
networks that can be written as multivariate autoregres-
sive moving average exogenous (ARMAX) models, a multi-
step least-squares method is proposed in (Weerts et al.,
2018). It is shown that this method can be interpreted as
WNSF applied to multivariate ARMAX-models. Here we
continue these developments and extend WNSF to linear
dynamic networks of known topology, where the nodes are
subject to white disturbances rather than the type of noise
models considered in the ARMAX case.

The paper proceeds with a problem statement in Section
2 and describes the dynamic network setup that is consid-
ered for the extension of the WNSF method. Section 3 pro-
vides relevant background regarding the WNSF method,
followed by the proposed extension on the WNSF method
in Section 4. Section 5 provides a simulation to verify the
theoretical results. Here WNSF for dynamic networks is
compared to PEM initialized at the true parameters.

2. PROBLEM STATEMENT

A dynamic network can be expressed by L internal sig-

nals or nodes denoted as w(t) = [w1(t), . . . , wL(t)]
>

.
The modules considered are linear time invariant (LTI)
systems. Following Van den Hof et al. (2013), the network
is expressed as

w(t) = G(q, θ)w(t) +R(q, θ)r(t) + e(t)

w(t) =
(
I −G(q, θ)

)−1(
R(q, θ)r(t) + e(t)

)
,

(1)

where

• G(q, θ) is an off-diagonal matrix with its elements
Gij(q, θ) either stable proper rational transfer func-
tions containing at least one delay, or zero.

• r(t) = [r1(t), . . . , rM (t)]
>

is a vector of external
excitation signals, and R(q, θ) is an L ×M transfer
function matrix with proper rational elements. In
addition, R(q, θ) is assumed full rank.

• e(t) = [e1(t), . . . , eL(t)]
>

is a vector of unmea-
sured white noise sequences with zero mean and
E[e(t)e>(s)] = Λδt−s where δτ is the Kronecker delta
function.

It is assumed that the nodes w(t) and the external ex-
citations r(t) are available to the user and are sufficiently
informative so that the network is identifiable. In addition,
it is assumed that the network is well-posed, implying

that all principle minors of
(
I − G(q,∞)

)−1
are nonzero

(Dankers, 2014). Thus I − G(q, θ) is invertible and the
inverse consists of causal transfer functions. In addition,
the topology of the network is assumed to be known.
Furthermore, we assume the data is generated accord-
ing to (1) with θ = θ0, where θ consists of numerator

and denominator coefficients of the transfer functions Gij ,
i, j = 1, ..., L, and Rij , i = 1, ...L, j = 1, ...,M .

The objective of the paper is to obtain a method that can
estimate θ without non-convex optimization.

3. WEIGHTED NULL-SPACE FITTING

The Weighted Null-Space Fitting (WNSF) method from
Galrinho et al. (2019) and Galrinho (2018) is a multi-
step least-squares method drawing on the seminal work
of Ljung and Wahlberg (1992) where the properties of
the least-squares method applied to ARX-models with
increasing model order is analyzed. WNSF was originally
developed for SISO systems, the origins of this method can
be traced back to the work of Durbin (Durbin, 1959), see
Galrinho (2018). Below we give a brief review which in the
next section is followed by our extension to the network
case.

The first step is an intermediate step, estimating a non-
parametric (high-order) finite impulse response (FIR) or
autoregressive exogenous (ARX) model. The second step
aims to reduce this estimate to a parametric model using
least squares. In the final step, the parametric model is
re-estimated with weighted least squares. This leads to a
consistent and asymptotically efficient estimate.

Step 1: Non-parametric model
For ease of notation superscript η is used to indicate the
non-parametric model while θ is used for the parametric
model. Consider a SISO output error (OE) model where
the plant is defined by G(q, θ), assumed to have one
delay. The stable rational function G(q, θ) can be well
approximated using a non-parametric FIR model y(t) =
Bηu(t) + e(t) with Bη =

∑n
k=1 bkq

−k, by choosing a
sufficiently large order n. This model can be written in
regressor form, resulting in the least-squares estimate

b̂nN =

[
1

N

N∑
t=1

ϕ(t)ϕ>(t)

]−1
1

N

N∑
t=1

ϕ(t)y(t). (2)

where
ϕ(t) = [u(t− 1) · · · u(t− n)] (3)

The estimation error can be expressed as εnb = b̂nN − gn0 ,
with gn0 being the vector of the n first impulse response co-
efficients of the true system. This error has approximately
a normal distribution with zero mean and covariance

P = σ2
e

[
1

N

N∑
t=1

ϕ(t)ϕ>(t)

]−1
, (4)

where σ2
e is the noise variance of e(t).

Step 2: Reduction to parametric model
While the estimate in Step 1 is attractive from a compu-
tational point of view, its variance will typically be high
since the number of parameters, n, has to be large in
order for the approximation to be valid. Reducing the non-
parametric model from the previous step to a parametric
model allows us to reduce the variance. Neglecting the
truncation error, the relation between the models is given
by

Bη =

n∑
k=1

bkq
−k =

Lθ

F θ
= Gθ (5)

By rewriting (5) to
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F θ
n∑
k=1

bkq
−k − Lθ = 0, (6)

the relation can be rewritten to be linear in the parameters
θ according to

bn−Q(bn)θ = 0, with Q(bn) =
[
−Qb(bn)

Im×m
0n−m×m

]
, (7)

where Qb(bn) = Tn×n{[0 b1 · · · bn−1]>} is a lower
triangular Toeplitz matrix with [0 b1 · · · bn−1] in the first
column. By substituting the estimate of bn in Q(bn) an
estimate of θ can be obtained from (7) via weighted least
squares

θ̂N = [Q>(b̂nN )WQ(b̂nN )]−1Q>(b̂nN )Wb̂nN (8)

where W is either set to W = I or W = P−1 for obtaining

the initial estimate θ̂
(0)
N . Notice that the unknown noise

variance σ2
e appears in (4), but since it is a scalar quantity

it can be discarded in the weighting matrix without
affecting the estimate.

Step 3: Re-estimation of the parametric model
When substituting the estimates of bn into the left-hand
side of (7), the expression no longer equals zero but
instead, neglecting the truncation error, it holds that

b̂nN −Q(b̂nN )θ = T (θ)εnb , (9)

with T (θ) = Tn×n{[1 f1 · · · fm]>}, depending on only the
denominator coefficients of the parametric model. With
εnb being approximately zero mean normal with covari-
ance matrix P , it follows that the right-hand side of
(9) is approximately zero mean normal with covariance
matrix T (θ)PT>(θ). This correlation structure should be
accounted for when estimating θ and can be handled using
weighted least-squares in the following way. The aforemen-
tioned covariance matrix can be approximated using the

estimate of θ obtained in Step 2 as T (θ̂
(0)
N )PT>(θ̂

(0)
N ). A

new estimate of θ is formed by setting the weighting matrix
W to the inverse of this matrix, i.e.

W = W (θ̂
(0)
N ), where W (θ) := T−>(θ)P−1T−1(θ). (10)

It is proven in (Galrinho et al., 2019) that both θ̂
(0)
N and

θ̂
(1)
N are consistent estimates and in addition, θ̂

(1)
N is proven

to be asymptotic efficient. Since finite sample size N is
used in practice it could be beneficial to iterate the last

step, i.e. to use θ̂
(k)
N in (10) and then computing θ̂

(k+1)
N

using (8), iterating until a final value or stopping criterion
is reached, see for an example Section 5.

4. WEIGHTED NULL-SPACE FITTING FOR
DYNAMIC NETWORKS

4.1 Algorithm

In this section WNSF is extended such that it is suitable
for identifying all the modules in a dynamic network
simultaneously. The steps described in the previous section
can be followed.

Step 1: Non-parametric model
Consider the system defined in (1), where the rational
functions of the separate modules in matrices G(q, θ) and
R(q, θ) are defined as

Gij(q, θ) =
Lij(q, θ)

Fij(q, θ)
, Rij(q, θ) =

Cij(q, θ)

Dij(q, θ)
. (11)

with

Lij(q, θ) = lij1 q
−1 + · · ·+ lijml

q−ml ,

Fij(q, θ) = 1 + f ij1 q
−1 + · · ·+ f ijmf

q−mf ,

Cij(q, θ) = cij1 + cij2 q
−1 + · · ·+ cijmc

q−mc−1,

Dij(q, θ) = 1 + dij1 q
−1 + · · ·+ dijmd

q−md .

(12)

For ease of notation the ordersmf ,ml,md,mc are assumed
to be equal for the respective polynomials.

The parameter vector to estimate contains the rational
functions of both G(q, θ) and R(q, θ) and has structure

θ = [θ1 · · · θL]> ∈ RL(mf+ml+md+mc), (13)

where

θi = [f i1 · · · f iL li1 · · · liL di1 · · · diL ci1 · · · ciL], (14)

f ij = [f ij1 · · · f ijmf
], lij = [lij1 · · · lijml

],

dij = [dij1 · · · dijmd
], cij = [cij1 · · · cijmc

].
(15)

Moreover, to satisfy the structure ofG(q, θ) given in (1) the
elements f ii and lii corresponding to the diagonal elements
are omitted for i = 1, . . . , L since these elements are zero.

In the first step a non-parametric ARX model is used

Āηy(t) = Bηr(t) + e(t). (16)

where

Āη = IL−


0 Aη12 . . . Aη1L

Aη21 0
. . . Aη2L

...
. . .

. . .
...

AηL1 A
η
L2 . . . 0

 , with Aηij =

n∑
k=1

aijk q
−k,

Bη with elements Bηij =

n∑
k=0

bijk q
−k,

(17)
where the parameter vector ηn is defined as

ηn = [η1 · · · ηL]>,

with ηi = [ai1 · · · aiL bi1 · · · biL],

and aij = [aij1 · · · aijn ], bij = [bij1 · · · bijn ].

(18)

The dynamic network, described by the non-parametric
model (16), can be expressed in regressor form

y(t) = ϕ>(t)ηn + e(t), (19)

with
ϕ>(t) = diag

(
ϕ>1 (t), ϕ>2 (t), . . . , ϕ>L (t)

)
, (20)

where the elements of ϕ(t) are functions of delayed outputs
and excitation signals

ϕ>i (t) = [ϕ>y (t) ϕ>r (t)], (21)

with
ϕ>y (t) = [ϕ>y1(t), . . . , ϕ>yL(t)],

ϕ>r (t) = [ϕ>r1(t), . . . , ϕ>rM (t)]
(22)

and
ϕ>yk(t) = [yk(t− 1), . . . , yk(t− n)],

ϕ>rk(t) = [rk(t), . . . , rk(t− n− 1)].
(23)

The least squares estimate of ηn is obtained similar to (2),

replacing b̂nN with η̂nN and using ϕ(t) defined in (20).

Furthermore, the estimation error covariance can be de-
rived as was done in Section 3, see (4), but the noise
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is no longer scalar. An appropriate approximation of the
covariance matrix is given by

P (Λ̂) =
[ 1

N

N∑
t=1

ϕ(t)Λ̂−1ϕ>(t)
]−1

,

Λ̂ =

σ̂
2
e1 0

. . .

0 σ̂2
eL

 =
1

N

N∑
t=1

ε(t, η̂nN )ε>(t, η̂nN ),

(24)

with prediction error ε(t, η̂nN ) = y(t)− ϕ>(t)η̂nN .

Step 2: Reduction to parametric model
The non-parametric model (16) is related to the paramet-
ric model (1) by Āη = 1 − Gθ and Bη = Rθ. Since the
WNSF algorithm allows element-wise parameterization,
the relation using (17) can be rewritten as Aηij = Gθij and

Bηij = Rθij giving

Aηij =

n∑
k=1

aijk q
−k =

Lθij
F θij

= Gθij ,

Bηij =

n∑
k=0

bijk q
−k =

Cθij
Dθ
ij

= Rθij .

(25)

Rewriting this gives
n∑
k=1

aijk q
−kF θij − Lθij = 0,

n∑
k=0

bijk q
−kDθ

ij − Cθij = 0.

(26)
The same procedure for determining Q(ηn) from Section
3 can be followed, giving

Q(ηn) = diag(Q1, . . . , QL),

Qi(ηn) =

[
Qf,l 0

0 Qd,c

]
,

(27)

where Qf,l and Qd,c share the same structure, defined by

Qf,l = diag
(
[−Qf

i1

Ql
i1

], . . . , [−Qf
iL

Ql
iL

]
)

Qd,c = diag
(
[−Qd

i1

Qc
i1

], . . . , [−Qd
iL

Qc
iL

]
) (28)

Moreover,

Qf
ij

(ηn) = Tn,mf
{[aij1 , . . . , a

ij
L ]>} Ql

ij

(ηn) = Īn×ml
,

Qd
ij

(ηn) = Tn,md
{[bij1 , . . . , b

ij
L ]>} Qc

ij

(ηn) = Īn×mc
.

(29)
where the Toeplitz matrices are lower triangular and Īn×m
has Im×m at the top with zeros elsewhere.

The initial estimate θ̂
(0)
N can now be obtained analogously

to (8), using Q(η̂nN ), and with W = P−1(Λ̂) as weighting.

Step 3: Re-estimation of the parametric model
With the initial estimate of θ obtained in the previous
step, the noise variance estimate is updated according

Λ̂ =
1

N

N∑
t=1

ε(t, θ̂
(0)
N )ε>(t, θ̂

(0)
N ), (30)

obtaining the prediction error with

ε(t, θ̂
(0)
N ) = y(t)−

[
G(q, θ̂

(0)
N ) R(q, θ̂

(0)
N )
] [y(t)
r(t)

]
. (31)

Again the same procedure for determining T (θ) from
Section 3 can be followed. T (θ) is now defined by

T (θ) = diag
(
T 1(θ), . . . , TL(θ)

)
T i(θ) = diag

(
T f

i1

(θ), . . . , T f
iL

(θ), T di1(θ),

. . . , T diL(θ)
)
,

(32)

where T fij

(θ) = Tn,n{[1, f ij1 , . . . , f
ij
L ]>},

T dij (θ) = Tn,n{[1, dij1 , . . . , d
ij
L ]>},

(33)

are lower triangular Toeplitz matrices. The weighting

matrix can now be defined as W = W (θ̂
(0)
N , Λ̂), where

W (θ,Λ) := T−>(θ)P−1(Λ)T−1(θ). (34)

Again analogously to (8) the new estimate θ̂
(1)
N is obtained

by using the newly defined W in (34) and Q(η̂nN ) in (27).
Similar to the SISO case, one can make the choice to
continue iterating to improve accuracy.

Algorithm 1 The algorithm for WNSF suitable for gen-
eral dynamic networks is constructed as

(1) estimate non-parametric ARX model (16), using least
squares (2) to obtain η̂nN ,

(2) reduce the non-parametric model to a parametric
model (8), using Q(η̂nN ) defined in (27) and W =

P−1(Λ̂) from (24), obtaining θ̂
(0)
N ,

(3) improve the estimates by updating weighting matrix

in (8) to W (θ̂
(0)
N , Λ̂) according to (34) with Λ̂ from

(30), resulting in θ̂
(1)
N . Continuing to iterate gives

θ̂
(k+1)
N .

4.2 Theoretical analysis

According to Remark 5 (Chapter 3) in Ljung and
Wahlberg (1992) their asymptotic results for SISO ARX
models can be extended to multivariate systems. The SISO
case is therefore used to prove the asymptotic properties
of the dynamic network by considering the element-wise
notation. The data generating system, denoted in the
element-wise ARX structure is given by

A0
ij(q) =

∞∑
k=1

a0,ijk q−k, B0
ij(q) =

∞∑
k=0

b0,ijk q−k (35)

It should be observed that the term b0,ij0 is no longer neces-
sarily assumed zero, since R(q, θ) does not have to contain
a delay. Although this case is not covered in Assumption
S1 of Ljung and Wahlberg (1992), Remark 4 (Chapter 2)
is still true, meaning the impulse responses still decrease
at a certain lowest rate and Assumption S1 still holds. In
addition, the input is obtained in open loop, where the
sequence {r(t)} is assumed to be sufficiently exciting and
independent of {e(t)}, where {e(t)} is considered to be
Gaussian white noise.

The assumptions and conditions from Galrinho (2018)
and Ljung and Wahlberg (1992) therefore still hold. This
indicates that Theorem 7.1 from Galrinho (2018), for
applying WNSF to multivariate systems, also is valid
for dynamic networks. Hence, for LTI dynamic networks
subjected to white noise disturbances, WNSF obeys the
following properties under assumptions of identifiability
and sufficient richness of the excitation:

(i) θ̂
(0)
N → θ0, as N →∞ w.p.1.,

(ii) θ̂
(1)
N → θ0, as N →∞ w.p.1.,

(iii)
√
N(θ̂

(1)
N − θ0) ∼ AsN (0,M)
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with

M = lim
n→∞

[Q>(ηn0 )T−>(θ0)P̄−1(Λ)T−1(θ0)Q(ηn0 )]−1,

(36)
where P̄−1(Λ) = Ē

[
ϕ(t)Λ−1ϕ>(t)

]
. (37)

5. NUMERICAL ILLUSTRATION

In this section we compare the performance of Algorithm
1 with PEM initialized at the true parameters by means
of a simulation study. PEM provides asymptotically ef-
ficient estimates when converging to a global minimum.
The simulation results suggest that Algorithm 1 has the
same large sample properties as PEM, supporting the
theoretical considerations in the preceding section.

In the simulation we consider the following system

G(q, θ) =


0 0 0 G14 0 0
0 0 0 0 0 G26

G31 0 0 0 G35 0
0 G42 0 0 0 0
G51 0 0 0 0 G56

0 0 G63 0 0 0

 ,
R(q, θ) = diag(R11, R22, R33, R44, R55, R66),

(38)

with the elements Gij(q, θ) =
Lij

Fij
given by

L14

L26

L31

L35

L42

L51

L56

L63


=



0.13 0
0.11 0
0.13 0
−0.67 0.44
−0.11 0
−0.30 0.28
−0.32 0.19
−0.11 0


[
q−1

q−2

]
, (39)



F14

F26

F31

F35

F42

F51

F56

F63


= 1 +



−1.20 0.50 0 0 0 0
1.11 1.85 −1.12 0.89 −0.26 0.11
−2.14 2.30 −1.57 0.70 −0.16 0
−0.98 0.25 0 0 0 0
−2.06 2.06 −1.07 0.28 0 0
−1.93 1.46 −0.51 0.07 0 0
−1.31 0.51 0 0 0 0
−1.79 1.67 −0.98 0.26 0 0




q−1

q−2

q−3

q−4

q−5

q−6


(40)

and the elements Rij(q, θ) given by

R11 =
1

1 + 0.25q−1
, R22 =

0.20− 0.40q−1

1− 1.30q−1 + 0.36q−2
,

R33 =
1

1 + 0.45q−1
, R44 =

0.50

1 + 0.58q−1
,

R55 =
1.40 + 0.45q−1

1 + 0.95q−1
, R66 =

0.21

1 + 0.73q−1
,

(41)
where the parameters are rounded to two decimal places.

Table 1. Successful computation of estimates
with Algorithm 1 given in % over sample sizes

N

N 300 1212 4899 19797 80000
Algorithm 1 28% 61% 91% 100% 100%

The excitation signals {r(t)} and noise sequences {e(t)}
are normally distributed with zero mean, where the vari-
ances of {r(t)} are set to 1 and the variances of {e(t)} are
set to {3, 1, 2, 1, 3, 2.5}. The output data is gathered
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Fig. 1. MSE between θ̂N and θ0 as function of sample size,
averaged over the Monte Carlo runs
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Fig. 2. MSE between Λ̂ and Λ0 as function of sample size,
averaged over the Monte Carlo runs

by defining the system as (I − G(q, θ))−1 with the input
data given by R(q, θ)r(t) + e(t).

In Algorithm 1 different model orders n = {20, 30, 40}
for the ARX model are tested and the n that results in the
smallest prediction error is selected. Also implemented is
the option to continue to iterate a 1000 times, the iteration

stops earlier when ||θ̂(final)N − θ̂(final−1)N ||/||θ̂(final−1)N || <
0.0001 is reached, where the final estimate for the iteration

process θ̂
(k+1)
N is indicated as θ̂

(final)
N . PEM is implemented

using idgrey in the Matlab System Identification Toolbox,
Matlab version 2018b and is initialized at the true param-
eters.

We perform M = 100 Monte Carlo runs for five in-
teger sample sizes logarithmically spaced between 300
and 80000. Fig. 1 presents the sample mean-square error
(MSE) as a function of sample size N , i.e. MSE(N, k) =
1
M

∑M
l=1 ||θ̂kN,l − θ0||2 , where θ̂kN,l is the estimate in the

kth iteration of Monte Carlo run l. The figure shows the
different steps of Algorithm 1 and PEM initialized at the
true parameters. The results show that steps 2 and 3
of Algorithm 1 converge to PEM as the sample size N
grows. Continuing to iterate is most beneficial for smaller
N , where it improves accuracy the most. It should be

Table 2. Average computation time in seconds
over sample sizes N

N 300 1212 4899 19797 80000
Algorithm 1 15.75 7.60 7.52 22.84 99.26
PEM-true 104.84 55.67 44.67 48.20 93.58
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noted that Algorithm 1 does not handle small N well when
the orders of the module transfer functions are increased,
meaning it does not always successfully compute an esti-
mate of θ. This success rate, for the simulation shown in
Fig. 1, is presented in Table 1. Therefore, the MSE is only
taken over the successful Monte Carlo runs.

Table 2 presents the average computation time for both
methods. For Algorithm 1 the computation time is shown

using θ̂
(final)
N . As seen from the table, the computation

time for Algorithm 1 increases with the sample size.
However, the code has not been optimized and we have
seen that tailoring the code to the network topology can
significantly reduce the computation time.

Fig. 2 shows the MSE for the noise variances MSEσ(N, ε) =
1
M

∑M
l=1 ||Λ̂l(ε)− Λ0||2, where only the diagonal elements

σ2
ei and its estimates are evaluated and where the pre-

diction error ε depends on η̂nN or θ̂
(0,1,final)
N for Monte

Carlo run l. The estimated noise variances converge to the
true noise variances as N increases, except for the noise
variance computed with ε(t, η̂nN ). A possible explanation
for this may be that the truncation error becomes visible.
Besides, it should be noted that there is no significant dif-
ference between deriving the noise variance using predic-

tion error ε(t, θ̂
(1)
N ) or ε(t, θ̂

(final)
N ). The latter phenomenon

also appears in other simulations we have tested. This

suggests that the improvements in accuracy for θ̂
(k+1)
N

mainly comes from the improved estimate of T (θ0) used

in the weighting matrix W (θ̂
(k)
N , Λ̂) (34). Moreover, other

simulation tests also seem to suggest the R(q, θ) is not
restricted to be full rank.

The simulation results confirm the consistency of θ̂
(0,1,k+1)
N ,

derived in the preceding section. In addition, the results
suggest that for a large sample size Algorithm 1 is asymp-

totically efficient for θ̂
(1,k+1)
N .

6. CONCLUSION

In this contribution we have presented an extension of
WNSF that is tailored to identify LTI dynamic networks
with known topology, without the need to solve non-
convex optimization problems. The main assumption is
that the nodes are subject to white noise. Simulations
on a fairly challenging network indicate that the method
is consistent and competitive with PEM (even in the
idealized situation when this method is initialized at the
true parameter values). An interesting extension under
study is to handle colored noise.
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