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Abstract: In this work, the problem of designing event-triggered control strategies for dis-
turbance rejection and reference tracking for discrete-time linear systems is addressed. Based
on the Lyapunov theory, LMI-based conditions for the guarantee of perfect reference track-
ing/disturbance rejection under the proposed event-trigger strategy are derived. Furthermore,
to avoid that the ETC strategy degenerates to a periodic one (in the case of non constant
signals), a practical tracking/rejection solution considering a trade-off between the reduction of
the control updates and the tolerance to a small error in steady state is proposed. The conditions
are then casted in LMI-based optimization problems to compute the triggering functions aiming
at reducing the control updates while ensuring the perfect or the practical tracking.

Keywords: event-triggered control; tracking; regulation; disturbance observer; discrete-time
systems.

1. INTRODUCTION

Aperiodic control strategies, especially event-triggered
control (ETC), are very important to deal with bandwidth
limitations in shared networks and energy consumption
in embedded and wireless systems (Akyildiz et al., 2002).
Event-triggered strategies update the control signal ac-
cording to a trigger condition. A systematic design analysis
of an ETC was presented in Tabuada (2007). In this work,
the trigger function was defined in terms of the control
error, and provides conditions for a lower bound on the
inter-event time. It should be noted that a large number of
ETC strategies have been developed in a continuous-time
framework (Peng and Li, 2018), (Heng et al., 2015). How-
ever, the final controller implementation will be in discrete-
time. This means that after design of the continuous time
controller a discretization will be required, leading to an
approximated implementation of the continuous ETC.

An early work addressing the problem of reducing the
bandwidth utilization in discrete-time networked control
systems by means of full state observers is described in
Yook et al. (2002). Lately, output-feedback methods for
discrete-time ETCs (also called periodic event-triggered
control, PETC) have been proposed in Heemels et al.
(2013). This work provides stability conditions based on
an hybrid system modeling, which allows to consider the
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continuous-time behavior of the plant and the impulsive
updating of the control. A model-based output-feedback is
proposed in Heemels and Donkers (2013), with guaranteed
stability based on LMI conditions. The model is used to
estimate the plant states even when not being updated by
the sensor. More recently, an output-based event-triggered
control solution with performance guarantee, while reduc-
ing the communication load has been presented in Khan-
hooei et al. (2017). This work considers a performance
expressed as an average quadratic cost and a plant dis-
turbed by Gaussian process and measurement noises. In
Eqtami et al. (2010) both nonlinear and linear discrete
time systems were considered. Sufficient conditions for
inter-execution times were derived and extended to a self-
triggered formulation. This framework was also expanded
to consider a Model Predictive Control. A state feedback
controller design strategy for discrete-time linear systems
subject to bounded disturbances is presented in Wu et al.
(2016). Criteria to design the controller in order to guar-
antee that the states are uniformly ultimately bounded
in an ellipsoidal-positive invariant set are proposed. The
minimization of this set is achieved by solving a set of
LMIs for the feedback control gain and the parameters of
the event-triggering condition.

An observer-based output-feedback control is proposed in
Jetto and Orsini (2011). The proposed trigger function is
based on the value of a functional at each instant, requiring
a number of periodic samples to be taken before a certain
threshold is reached and the system starts to operate
in an event-triggered fashion. In Groff et al. (2016) an
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event-triggered strategy for an observer-based controller is
considered. In particular, conditions for the stability of the
closed-loop system in terms of linear matrix inequalities
(LMIs), which are cast in optimization problems to tune
the trigger functions aiming at a reduction of the number
of events, are proposed.

Regarding the problem of reference tracking by an event-
triggered controller we can cite Ma et al. (2018), where
a continuous-discrete 2-D model is adopted to analyze
the tracking controller, and Postoyan et al. (2015), where
the stabilization of time-varying trajectories for unicycle
mobile robots is investigated.

In this work, an observer-based ETC strategy for tracking
and disturbance rejection is proposed in a discrete-time
framework. Considering a linear plant and a determin-
istic model for both the reference and disturbance (i.e.
generated by exosystems), we suppose that a discrete-
time observer and an observed state feedback control law
have been computed to ensure the stability of the closed-
loop system under a periodic sampling strategy. Moreover,
to achieve perfect tracking/rejection in steady state we
consider an observer for the disturbance and feedforward
gains, satisfying the regulator equations. From this setup,
instead of periodic control updating, an ETC strategy is
proposed. Based on Lyapunov theory, a first formal result
is provided to ensure that the tracking error converges to
zero under the proposed ETC. It is however observed that
the ETC degenerates to a periodic control updating strat-
egy in steady state for non constant disturbance and/or
reference signals. Thus a more practical approach is pro-
posed to achieve a trade off between reducing the control
updating in steady state and tolerating a given maximum
tracking error. In this sense, a formal result providing
conditions to ensure that the trajectories of the tracking
error are ultimately bounded under a relaxed triggering
function is proposed. From the derived conditions, LMI-
based optimization problems to compute the parameters
of the triggering functions aiming at reducing the control
updates are formulated.

Notation. For a given matrix M , M ′ denotes its trans-
pose. For symmetric matrices M and N , M > 0 means
that M is positive definite, and M > N means that
M − N > 0. tr(M) stands for the trace of matrix M .
I∗ and 0∗ are an identity matrix and a null matrix of
appropriate dimensions. In partitioned matrices, ∗ stands
for a symmetric block. diag(M1, ...,Mn) denotes the block-
diagonal matrix whose diagonal blocks are M1, . . . ,Mn.

2. DISCRETE-TIME SETUP

Consider the following linear discrete-time system:

xs[k + 1] = Axs[k] +Bu[k] +Bd[k],

ys[k] = Cxs[k],

e[k] = r[k]− ys[k],

(1)

where xs ∈ Rn, u ∈ R, ys ∈ R, d ∈ R and r ∈ R are the
system states, input, output, disturbance and reference
respectively, k ∈ N. The pairs (A,B) and (C,A) are
supposed controllable and observable, respectively.

The disturbance and reference are generated by the fol-
lowing dynamical models (exosystems):

• Disturbance:
xd[k + 1] = Adxd[k],

d[k] = Cdxd[k],
(2)

where xd ∈ Rnd and d ∈ R are the states of
the disturbance dynamics and the disturbance signal
respectively.

• Reference:
xr[k + 1] = Arxr[k],

r[k] = Crxr[k],
(3)

where xr ∈ Rnr and r ∈ R are the states of the refer-
ence dynamics and the reference signal respectively.

For the extended system considering (1) and (2), the
following discrete-time observer is considered:[

xo[k + 1]
xdo[k + 1]

]
=

[
A BCd
0 Ad

] [
xo[k]
xdo[k]

]
+

[
B
0

]
u[k]

−
[
Ko1

Ko2

]
(ys[k]− yo[k])

yo[k] = Cxo[k]

do[k] = Cdxdo[k]

(4)

where xo ∈ Rn, xdo ∈ Rnd , u ∈ R and yo ∈ R, do ∈ R are
the observer states, input, estimated output and estimated
disturbance, respectively. Ko1 ∈ Rn and Ko2 ∈ Rnd are the
observer gains. Then, consider an observed state feedback
control law given by

u[k] = Kc(xo[k]−Kr1xr[k]) +Kr2xr[k]− Cdxdo[k], (5)

where K ′c ∈ Rn is the feedback gain designed to stabilize
the system and Kr1 ∈ Rn×nr and Kr2 ∈ R1×nr are
feedforward gains.

Defining now the observation error as

x̃[k] =

[
xs[k]− xo[k]
xd[k]− xdo[k]

]
(6)

the closed-loop system obtained from the connection of
(1), (4) and (5) can be represented by the following
equations:

x̃[k + 1] = (Ao +KoCo)x̃[k] (7)

xo[k + 1] = (A+BKc)xo[k] +BKrxr[k]−Ko1Cox̃[k]
(8)

where

A0 =

[
A BCd
0 Ad

]
, Ko =

[
Ko1

Ko2

]
, C0 = [C 0 ] , (9)

and Kr = Kr2 −KcKr1.

We suppose that gains Ko, Kc, Kr1 and Kr2 have been
designed such that the following assumptions are satisfied.

Assumption 1. Ko and Kc are such that (Ao+KoCo) and
(A+BKc) are Schur stable.

Assumption 2. Kr1 and Kr2 verify the following equa-
tions:

Kr1Ar =AKr1 +BKr2, (10)

0 =Cr − CKr1 (11)

Equations (10) and (11) are the so-called regulator equa-
tions (Saberi et al., 2003). We show now that, under
Assumptions 1 and 2, the perfect reference tracking is
asymptotically achieved, i.e. e[k] → 0 as k → ∞. With
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this aim consider the following coordinate transformation
(Saberi et al., 2003):

xo[k] = xo[k]−Kr1xr[k] (12)

From (3), (8) and using equation (10), we have that:

xo[k + 1] = (A+BKc)xo[k]−Ko1Cox̃[k]. (13)

As Ko and Kc are such that (Ao +KoCo) and (A+BKc)
are Schur stable, from (7) and (13) we can conclude that
x̃[k] → 0, xo[k] → 0 and thus xo[k] → xs[k] as k → ∞.
Then, taking into account (11), for k → ∞ the tracking
error satisfies:
e[k] = r[k]− Cxo[k] = Crx[k]− C(xo[k] +Kr1xr[k])

= −Cxo[k]

and we conclude that limk→∞ e[k] = 0.

3. EVENT-TRIGGERED CONTROL PROBLEM

In this section, we propose an event-triggered implemen-
tation of the observer-based tracking controller defined by
(4) and (5). We consider that Ko, Kc, Kr1 and Kr2 have
been designed to ensure prefect tracking and disturbance
rejection under a periodic control updating strategy.

Using an ETC strategy, the update of the control signal
is transmitted to the actuator only at the time instants
ni, i = 0, 1, 2..., leading to the following observer-based
state feedback control law ∀k ∈ [ni, ni+1):

u[k] = u[ni] = Kcxo[ni] +Kr2xr[ni]− do[ni]. (14)

Then, at each sampling instant k, a decision on updating or
not the control signal applied to the plant should be made.
This decision will be based on an event that is associated
to the evolution of a trigger function.

In this paper, following the ideas proposed in Tabuada
(2007) and Heemels et al. (2013), we define

δx[k] = x̄o[ni]− x̄o[k], δd[k] = do[ni]− do[k],

δr[k] = xr[ni]− xr[k],
(15)

i. e., δj [k], with j = x, d, r are a measure of the difference
between the variable used for the last control update and
the current observed one, and we consider a trigger func-
tion f(δx[k], δd[k], δr[k], xo[k]). Thus, the control update
instants are given by the rule:

ni+1 = min{k > ni : f(δx[k], δd[k], δr[k], xo[k]) > 0}
(16)

In other words, if at any time-instant k ∈ N the event-
trigger function f(δx[k], δd[k], δr[k], xo[k]) is positive, a
new control signal is transmitted to the actuator device
and the plant control input is effectively updated.

The challenge consists in designing the function f(δx[k],
δd[k], δr[k], xo[k]) such that the closed-loop system with
the control law (14) is asymptotically stable. Moreover,
we aim at choosing f(δx[k], δd[k], δr[k], xo[k]) such that less
events are generated, or equivalently, the control updates
are reduced. These problems are formally addressed in the
next sections.

4. STABILITY CONDITIONS

Consider (7), (13), (14) and the definition of δj [k], j =
x, d, r given in (15). Then, the closed-loop system behavior
is described by the following equations:

xo[k + 1] = (A+BKc)xo[k] +BKcδx[k]−Bδd[k]

+BKr2δr[k]−Ko1Cox̃[k]
(17)

x̃[k + 1] = (Ao +KoCo)x̃[k], (18)

In this case, the following theorem regarding the stability
of the closed-loop system can be stated.

Theorem 1. Consider that Assumptions 1 and 2 are sat-
isfied. If there exist symmetric positive definite matrices
P1, P2, Q̄σ, Qδx , Qδd , Qδr and a matrix Qo of appropriate
dimensions such that

(Ao +KoCo)
′P1(Ao +KoCo)− P1 +Qo < 0 (19)

Φ− diag(P2, Qδx , Qo, Qδd , Qδr , Q̄σ) < 0 (20)

is verified, with

Φ =


ψ11 ψ12 ψ13 ψ14 ψ15 I
∗ ψ22 ψ23 ψ24 ψ25 0
∗ ∗ ψ33 ψ34 ψ35 0
∗ ∗ ∗ ψ44 ψ45 0
∗ ∗ ∗ ∗ ψ55 0
I 0 0 0 0 0

 , (21)

ψ11 = (A+BKc)
′P2(A+BKc), ψ12 = (A+BKc)

′P2BKc,

ψ13 = −(A+BKc)
′P2Ko1Co, ψ14 = −(A+BKc)

′P2B,

ψ15 = (A+BKc)
′P2BKr2, ψ22 = (BKc)

′P2BKc,

ψ23 = −(BKc)
′P2Ko1Co, ψ24 = −(BKc)

′P2B,

ψ25 = (BKc)
′P2BKr2, ψ33 = C ′oK

′
o1P2Ko1Co,

ψ34 = C ′oK
′
o1P2B, ψ35 = −C ′oK ′o1P2BKr2, ψ44 = B′P2B,

ψ45 = −B′P2BKr2, ψ55 = (BKr2)′P2(BKr2),

then the trajectories of the closed-loop system (17)-(18),
under the event-triggered strategy proposed in (16), with
the trigger function given by

f(δx[k], δd[k], δr[k], x̄o[k]) = δx[k]′Qδxδx[k] + δd[k]′Qδdδd[k]

+ δr[k]′Qδrδr[k]− xo[k]′Qσxo[k].
(22)

where Qσ = Q̄−1σ , converge asymptotically to the origin,
which implies that the tracking error e[k]→ 0 as k →∞.

Proof: Let V (xo[k], x̃[k]) = V1(x̃[k]) + V2(xo[k]) be a
Lyapunov function candidate for the composite system
(17), (18), with V1(x̃[k]) = x̃[k]′P1x̃[k] being a quadratic
function associated to the sub-system (18) and V2(xo[k]) =
xo[k]′P2xo[k] being a quadratic function associated to the
sub-system (17). Defining

∆V1(x̃[k]) = V1(x̃[k + 1])− V1(x̃[k]) (23)

∆V2(xo[k]) = V2(xo[k + 1])− V2(xo[k]) (24)

and omitting the dependency on k, ∆V1(x̃) and ∆V2(xo)
are given by:

∆V1(x̃) = x̃′
(
(Ao +KoCo)

′P1(Ao +KoCo)− P1

)
x̃ (25)

∆V2(xo) = x′o
(
(A+BKc)

′P2(A+BKc)− P2

)
xo

+ δ′x(BKc)
′P2BKcδx − 2x′o(A+BKc)

′P2Bδd

+ δ′r(BKr2)′P2BKr2δr + x̃′C ′oK
′
o1P2Ko1Cox̃

+ 2x′o(A+BKc)
′P2BKcδx + δ′dB

′P2Bδd

+ 2x′o(A+BKc)
′P2BKr2δr − 2δ′dB

′P2BKr2δr

− 2x′o(A+BKc)
′P2Ko1Cox̃− 2δ′x(BKc)

′P2Bδd

+ 2δ′x(BKc)
′P2BKr2δr − 2δ′x(BKc)

′P2Ko1Cox̃

+ 2δ′dB
′P2Ko1Cox̃− 2δ′r(BKr2)′P2BKo1Cox̃

(26)
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Provided that condition (19) is satisfied, it follows that
∆V1(x̃) is upper bounded as follows:

∆V1(x̃) < −x̃Qox̃ (27)

Moreover, if (20) is satisfied, from Schur complement and
considering that Qσ = Q̄−1σ , it follows that ∆V2(xo) is
upper bounded as follows:

∆V2(xo) < −x′oQσxo + δ′xQδxδx + δ′dQδdδd

+ δ′rQδrδr + x̃′Qox̃.
(28)

Now, looking at the Lyapunov function candidate differ-
ence equation we have:

∆V (xo, x̃) = ∆V1(x̃) + ∆V2(xo). (29)

Hence, from (27) and (28), it follows that:

∆V (xo, x̃) < δ′xQδxδx+δ′dQδdδd+δ′rQδrδr−x′oQσxo. (30)

Suppose now that ni+1−ni > 1 and k ∈ (ni, ni+1). In this
case, from (16), it means that f(δx, δd, δr, xo) ≤ 0, i. e.

δ′xQxδx + δ′dQδdδd + δ′rQδrδr − x′oQσxo ≤ 0 (31)

and it follows that ∆V (xo, x̃) < 0, ∀k ∈ (ni, ni+1).

On the other hand, suppose that at a given instant k,
f(δx, δd, δr, xo) > 0 (note that this situation includes the
case ni+1 − ni = 1). Then an event is triggered and, from
the triggering rule (16), we have that ni = k and it follows
that δx[k] = 0, δd[k] = 0 and δr[k] = 0, which also from
(30) implies that ∆V (xo, x̃) < 0, ∀k = ni, i = 1, 2, ...
Hence, we conclude that ∆V (xo, x̃) < 0,∀k ≥ 0. 2

Theorem 1 provides conditions for perfect tracking and
rejection. However, if the disturbance or reference signals
are not constant signals, the event-trigger mechanism will
not be effective in steady state. Indeed, in this case, the
event-trigger strategy will degenerate to the periodic one.
This can be clearly seen in the case of sinusoidal signals.
For perfect tracking and/rejection in this case, as the
system is linear, the control input in steady state must be
a perfect sinusoidal signal in discrete-time with the same
frequency of the one to be tracked or rejected. Hence, it
can be practical to consider a trade-off between obtaining
less control updates and tolerating a small tracking error in
steady state. This solution is proposed in the next section
by considering a relaxed triggering criterion.

5. TRACKING ACCURACY AND CONTROL
EVENTS

In this section, we analyze the relaxation of the triggering
conditions in order to decrease the control events at the
expense of an increase in the tracking error. A threshold
is applied to the triggering function; i.e. we consider a real
constant γ > 0 so that the triggering condition will be
given by fγ > 0 with fγ = f − γ.

In this case, instead of the convergence of the states of
system (17)-(18) to the origin, we will be interested in
guaranteeing that the trajectories are ultimately bounded
in an invariant ellipsoidal set

E(P, η) = {x ∈ R2n , x′Px ≤ η} (32)

with x = [x̃′ x̄′o]
′ and

P =

[
P1 0
0 P2

]
(33)

As a consequence, we have that the tracking error, which
is given by −Cx̄o[k] will be ultimately bounded as well.

This idea is formalized in the following Theorem.

Theorem 2. Consider that Assumptions 1 and 2 are sat-
isfied. If there exist positive scalars τ and γ̄, symmetric
positive definite matrices P1, P2, Q̄σ, Qδx , Qδd , Qδr and a
matrix Qo of appropriate dimensions such that

(Ao +KoCo)
′P1(Ao +KoCo)− (1− τ)P1 +Qo < 0 (34)

Φ− diag
(
(1− τ)P2, Qδx , Qo, Qδd , Qδr , Q̄σ

)
< 0 (35)[

−τη 1
1 −γ̄

]
< 0 (36)

with Φ defined as in (21), then the trajectories of the
closed-loop system (17)-(18), under the event-triggered
strategy proposed in (16) with the trigger function given
by

fγ(δx[k],δd[k], δr[k], x̄o[k]) = δx[k]′Qδxδx[k]

+ δd[k]′Qδdδd[k] + δr[k]′Qδrδr[k]

− x̄o[k]′Qσx̄o[k]− γ,
(37)

with Qσ = Q̄−1σ and γ = γ̄−1, converge in finite time to
the set E(P, η). Moreover, this set is positively invariant.

Proof: In order to show that the trajectories converge to
E(P, η) in finite time it suffices to ensure that

∆V (x) = ∆V (x̃[k], xo[k]) < −ε||x[k]||2 (38)

with some positive scalar ε, for all x /∈ E(P, η). Indeed,
these conditions ensure that V (x) = x′Px is exponentially
decreasing along the closed-loop trajectories ∀x /∈ E(P, η).

A sufficient condition to ensure (38) for all x /∈ E(P, η) is
the existence of a positive scalar τ such that

∆V (x) + τx[k]′Px[k]− τη − fγ(·) < −ε||x[k]||2 (39)

Taking into account that γ = γ̄−1, applying Schur com-
plement to (36) ensures that:

−τη + γ < 0 (40)

Now considering fγ(·) = f(·)−γ, with f(·) as in (22), from
the developments done in the proof of Theorem 1 and (40),
it is straightforward to see that (39) is satisfied for some
ε > 0 if matrix inequalities (34), (35) and (36) are verified.

We need now to show that E(P, η) is a positively invariant
set with respect to the closed-loop system. If (39) is
satisfied we have that

x[k + 1]′Px[k + 1]− x[k]′Px[k]− f(·)+
τx[k]′Px[k] + γ − τη < 0

(41)

set τ1 = (1− τ) and replacing τ = 1− τ1 in (41) we have

x[k + 1]′Px[k + 1]− τ1x[k]′Px[k]− f(·)
+γ + τ1η − η < 0

(42)

As fγ = f − γ ≤ 0, ∀k > 0, it follows that

x[k + 1]′Px[k + 1]− η − τ1(x[k]′Px[k]− η) < 0 (43)

and therefore x[k + 1]′Px[k + 1]− η < τ1(x[k]′Px[k]− η)

Note now that for x[k] ∈ E(P, η) one has x[k]′Px[k]−η ≤ 0.
Thus we conclude that if x[k] ∈ E(P, η) then x[k+1]′Px[k+
1] − η < 0 and therefore x[k + 1] ∈ E(P, η), which proves
the positive invariance of E(P, η). 2
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6. OPTIMIZATION PROBLEMS

Matrices Q̄σ, Qδx , Qδd and Qδr are free variables in
the LMIs (19) and (20). The idea is therefore to “tune”
Q̄σ, Qδx , Qδd and Qδr numerically. In order to have less
control updates the idea, from the function f defined in
(22), consists in ”minimizing” the weighting matrices Qδx ,
Qδr , Qδd and ”maximizing” Qσ = Q̄−1σ . Thus a suitable
criterion aiming at reducing the number of generated
events can be the following (Moreira et al., 2019):

minimize tr(Qδx) + tr(Qδd) + tr(Qδr ) + tr(Q̄σ)

In this case, the following optimization problem can be
formulated to compute the criterion matrices aiming at
reducing the events generation:

minimize tr(Qδx) + tr(Qδd) + tr(Qδr ) + tr(Q̄σ)

subject to: (19), (20)
(44)

with Qδx , Qδr , Qδd and Q̄σ free positive definite matrices
of appropriate dimensions. Note that problem (44) is
convex, since (19) and (20) are LMIs on the decision
variables.

On the other hand, for the relaxed triggering condition
(37), in addition to matrices Q̄σ, Qδx , Qδd and Qδr , param-
eter γ has to be appropriately chosen. Recall that in this
case we ensure only that the trajectories of (17) converge
to a positively invariant set E(P, η), or equivalently, the
tracking error will not converge to zero, but it will be
ultimately bounded. A trade off between a relatively small
tracking error and a reduction of the control updating
should therefore be managed. With this aim, consider the
following constraint:

P − η
[
0 0
0 σC ′C

]
≥ 0 (45)

This constraint ensures that E(P, η) is included in the set
Sσ = {x ∈ R2n ; xoC

′Cxo ≤ σ−1}, which implies that

the tracking error is confined in a ball with radius
√
σ−1.

Hence, the tolerated tracking error in stead state can be
regulated by the value of σ.

The idea is therefore to take into account in the criterion,
in addition to the ”minimization” of matrices Q̄σ, Qδx ,
Qδd and Qδr , the maximization of γ, or equivalently, the
minimization of γ̄, ensuring that constraint (45) is verified
for some given tracking error tolerance σ. For this, we
propose the following optimization problem:

minimize tr(Qδx) + tr(Qδd) + tr(Qδr ) + tr(Q̄σ) + γ̄

subject to: (34), (35), (36), (45)
(46)

Problem (46) is not convex due to the products τP and τη.
Nonetheless, as τ is a scalar, the optimal solution can be
iteratively obtained through the solution of LMI problems
by gridding the scalar τ .

7. NUMERICAL EXAMPLE

Consider system (1), with the following matrices:

A =

[
1.0000 0.0975

0 0.9512

]
, B =

[
0.0025
0.0488

]
, C = [1 0]

We consider the tracking of a constant reference and the
rejection of a sinusoidal disturbance of frequency ω =
0.25π. In this case it follows that:

Ar = Cr = 1, Ad =

[
0.9969 0.0999
−0.0628 0.9969

]
, Cd = [1 0] .

The state feedback and observer gains satisfying Assump-
tion 1 are given by:

Kc =

[
9.2269
7.7617

]′
, Ko1 =

[
1.3449
5.7430

]
, Ko2 =

[
28.1418
15.6801

]
,

The feedforward gains Kr1 and Kr2, satisfying the regula-
tor equations (10) are Kr1 = [1 0]

′
, Kr2 = 0.

We consider first the conditions given in Theorem 1, which
ensures the perfect tracking and rejection. In this case, to
compute the triggering matrices we solve the optimization
problem (44), which leads to:

Qσ =

[
1.03 −0.000224

−0.000224 0.7

]
, Qδx =

[
1.3 1.09
1.09 0.918

]
Qδd = 0.184, Qδr = 0.000588

The simulation of the closed-loop system with the obtained
trigger function is depicted in Figure 1, considering the
initial conditions xs[0] = [0 0]′, xo[0] = [10 0]′ and the
application of a reference step with amplitude equal to 10
at the initial instant. Moreover, a sinusoidal disturbance
with constant frequency ω = 0.25π and amplitude 5 is
applied at instant k = 120. The bars in the last plot
corresponds to the trigger instants. The amplitude of each
bar denotes the number of sampling instants elapsed from
the last event. The horizontal dashed line corresponds to
an amplitude of 1 sampling. We can notice that the event-
trigger strategy is quite efficient for reducing the control
update considering the constant reference tracking in the
absence of disturbance. However, when the disturbance
is added, although the perfect rejection is achieved (as it
is depicted in the third plot), the event-trigger strategy
degenerates to a periodic one, as expected.

Let us now consider the result stated in Theorem 2, with
the relaxed trigger function (37). In this case, for σ = 1,
the parameters of the trigger function obtained from the
solution of optimization problem (46) are the following:

Qσ =

[
0.871 −0.0462
−0.0462 0.841

]
, Qδx =

[
1.99 1.67
1.67 1.41

]
Qδd = 0.282, Qδr = 0.000604, γ = 0.749

For the same initial conditions, reference and disturbance
signals of the previous case, Figure 2 depicts the simulation
results considering the relaxed trigger function (37) with
the parameters above computed. We can observe now that
a small tracking error appears after the disturbance is
applied. On the other hand, the event-trigger mechanism
is now effective and much less control updates are needed.
This clearly illustrates the trade-off between precision and
the reduction of control updates for the tracking/rejection
of non-constant signals.

8. CONCLUDING REMARKS

In this paper we addressed the problem of reference track-
ing and disturbance rejection under event-triggered con-
trol. An observer-based control strategy has been devised
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Fig. 1. Simulation with the trigger function f(·)
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Fig. 2. Simulation with the trigger function fγ(·)

to deal with time varying references and disturbances
considering the regulator equations. In general, the ETC
strategy degenerates to a periodic one for non constant
signals. Thus a practical tracking/rejection solution con-
sidering a relaxed triggering condition was proposed. The
idea was to establish a trade-off between the reduction
of the control updates and the tolerance to a small steady
state error. The stability conditions were expressed as a set
of LMIs. Optimization problems were therefore proposed
to compute the triggering functions aiming at reducing
the control updates while ensuring the perfect or the
practical tracking. Simulation examples have illustrated
the effectiveness of the proposed ETC strategies. On going

work regards the extension of the approach to deal with
the multivariable case and parametric uncertainties.
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