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Abstract: Drilling is an important means of obtaining resources. It is important to determine
appropriate drilling states adjustment priority to guide operation of the drilling. However, the
priority of drilling states adjustment is difficult to determine because of the influence of multiple
parameters. In this paper, a priority comprehensive evaluation method is developed to solve
this problem. Firstly, support vector regression (SVR) method and long short-term memory
(LSTM) neural network are introduced to build rate of penetration (ROP) prediction model
and mud pit volume (MPV) prediction model, respectively. Then, the comprehensive evaluation
vector is obtained by fuzzy comprehensive evaluation method based on analysis of formation
drillability, rock characteristic, pump pressure variation, ROP and MPV fluctuations. Finally,
the drilling states adjustment priority is determined by the principle of maximum membership
and comprehensive analysis method. The simulation based on actual drilling data indicates
that the proposed method can determine the adjustment priority and guide the operation of
the drilling process.
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1. INTRODUCTION

Drilling is an important means of obtaining resources and
energy. During the drilling process, proper operation is
of great significance to increase the drilling speed and
maintain safety. Before conducting operation, the adjust-
ment priority of drilling states needs to be determined
to provide a reference for the operation. The adjustment
priority means the adjustment order of drilling states, that
is, improve rate of penetration or maintain mud pit volume
at first.

The priority of the drilling states adjustment is mainly
determined by the encountered formation. For example, if
the encountered formation is relatively stable, the ROP
can be improved by increasing the weight on bit (WOB),
and the fluctuation of the bottom hole pressure caused by
the high WOB can be tolerated, that is, the efficiency can
be improved within a certain safety variation. However,
the encountered formation is variable, when a complex
and fractured formation is encountered, the adjustment
priority of the drilling states is difficult to determine. In
addition, variation of drilling parameters can also affect
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the adjustment of the drilling states, such as pump pres-
sure variation and MPV fluctuation. How to integrate var-
ious parameters to determine the drilling state adjustment
priority is an important issue.

In the recent research, the evaluation of the drilling states
adjustment priority transform into separate evaluations of
efficiency and safety. In the aspect of drilling safety, it is
mainly focused on analyzing the kick and the mud lose. A
new hydrate formation region (HFR) prediction model was
established to evaluate the wellbore blockage risk in differ-
ent drilling stages based on mass, momentum and energy
balance equations (Liu et al., (2019)). Based on second
order Taylor series expansion and Rosenbluthe method,
two analytical methods were proposed to calculate col-
lapse and fracture pressures in the form of the probability
distribution (Ma et al., (2019)). A PSO-SVR algorithm
was developed to obtain the risk evaluation results and
realize the real-time dynamic risk evaluation (Liang et
al., (2019)). A fuzzy synthetic evaluation method was
developed to reduce the drilling risk and applied to the
real project (Liu et al., (2013)).

Although drilling safety is important, more scholars pay
attention to drilling efficiency evaluations to analyze how
to improve ROP. The improvement of ROP can reduce
drilling time and bring economic benefits.

In terms of efficiency evaluation, the drilling rate index
and ROP are used to evaluate the efficiency. Five artificial
neural network methods were used to build drilling rate
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index prediction models to analysis the drilling efficiency
(Fattahi et al., (2017)). Rock mechanics experiments
were conducted to show that rate of penetration has high
relationship with drilling rate index and quantify hardness
(Moein et al., (2014)). A data-driven model was built to
predict ROP and drilling efficiency can be improved based
on the formation information (Hegde et al., (2017)).

The above independent evaluation of efficiency and safety
can guide the drilling process to some extent. Separate
analysis of efficiency or safety is not comprehensive, and
determination of adjustment priority needs to consider
multiple parameters. Fuzzy comprehensive analysis can
be used to solve such multi-parameter decision-making
problems (Hu et al., (2018)). However, the determination
of the drilling state adjustment priority needs to consider
the trend of some parameters, such as ROP and MPV.
Fuzzy comprehensive analysis method can not predict the
trend of ROP and MPV. Therefore, it is necessary to
introduce prediction models to predict ROP and MPV.
In addition, the decision vector generated by the fuzzy
comprehensive evaluation method cannot determine the
adjustment priority directly. For these reason, a two-
level evaluation method is developed to determine the
priority of the drilling state adjustment. The SVR method
and the LSTM method are introduced to construct the
ROP and MPV prediction models, respectively. After
that, Based on analysis of drilling parameters, the fuzzy
comprehensive evaluation method and the comprehensive
analysis method are used to determine the priority of the
states adjustment of the drilling system.

The structure of this paper is listed below. Section 2 de-
scribes the drilling process and its characteristics. Section
3 introduces the basic framework of evaluation method.
Section 4 and section 5 detail the prediction models and
fuzzy comprehensive evaluation method. Section 6 verifies
the proposed method by using the actual drilling data.
Section 7 concludes the paper.

2. DRILLING PROCESS DESCRIPTION AND
ANALYSIS

This section briefly describes and explains the character-
istics of the drilling process.

2.1 Introduction of the drilling process

As shown in Fig. 1, the drilling system consists of two
subsystems, the drill string system and the circulation
system, which is referred from Gan et al., (2019). The drill
string system is mainly composed of derrick, rotary table,
drill string and drill bit. It provides sufficient pressure and
power to the drill bit to achieve continuous rock breaking.
The circulation system is mainly composed of drilling
fluid, mud pump and mud pit. The mud pump pushes
the drilling fluid into the hollow drill string, which ejects
from the bottom hole, and returns to the ground through
the annulus. In this process, the drilling fluid is used to
maintain stable bottom hole pressure, carry the cuttings
back to the ground and lubricate the drill bit. The drilling
system parameters are shown in the Table 1.

Table 1. List of parameters in the drilling
system

Drilling process variables Abbrevation Unit
Weight on bit WOB kN

Rotation Speed RPM r/min
Pump pressure SPP Mpa

Flow rate Q m3/min
Mud Weight MW g/cm3

Depth / m
Formation drillability FD /
Rock characteristics RC /
Rate of Penetration ROP m/hr

Mud Pit Volume MPV m3

Driller house

Derrick

Swivel
Hook

Mud pump

Mud pit

Ratory

Table

Circulation
system

Drill string
system

Formation Drill string

Bottom hole

   assembly Annular

Drill bit

Target point

Fig. 1. The structure of the drilling system

2.2 Description of the drilling process characteristics

There are a large number of physical reactions in the
drilling process, and the entire drilling system is very
complicated. However, the drilling system still provides
information to evaluate the priority of drilling states
adjustments.

(1)Nonlinearity and complex: There are strong fluid-solid
relational reaction between the drill string, drill bit, mud,
and formation rocks. As a result, the relationships among
the drilling parameters and ROP are complex and nonlin-
ear. In addition, although the MPV also has a complex
nonlinear relationship with the drilling parameters, the
trends of MPV has time series characteristics, and the time
series prediction method can well fit the trends.

(2)Multi-parameter effects: Drilling states adjustment pri-
ority are subject to numerous factors. It is difficult to
determine by observing changes in one or two parameters,
and it is necessary to consider variations of multiple pa-
rameters. In addition, the variations of some parameters
have fuzziness in the determination of priority. The fuzzy
comprehensive evaluation method can solve such multi-
parameter fuzzy decision problem, which is introduced to
determine adjustment priority in our research.

(3)Decision making difficulties: During the drilling process,
the MPV is maintained by adjusting the MW and Q of the
circulation system, the ROP is improved by adjusting the
WOB and RPM of the drill string system. The adjustment
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of MW can also improve ROP to some extent, but it
may also cause fluctuations in MPV. Moreover, when drill
bit contacts with the bottom rock, the vibration often
appears due to unstable formation at bottom hole (Kamel
et al., (2014)), which will cause fluctuation of bottom hole
pressure (Zhao et al., (2016)) and mud pit volume (MPV).
These vibrations can be mitigated by adjusting WOB and
RPM. In other words, the MPV is also affected by WOB
and RPM. The variations of the MPV is also related to the
operating parameters of the drill string system. Therefore,
the coupling relationships make the determination of the
priority of drilling state adjustment more difficult.

These characteristics, such as nonlinearity, multi-parameter
effects, decision making difficulties make it difficult to
determine the adjustment priority of drilling process. In
addition, the one step ahead values of some parameters
also affects the adjustment priority. Therefore, a reliable
evaluation method needs to be developed that can predict
drilling parameters and determine adjustment priority.

3. THE MAIN STRUCTURE OF THE PRIORITY
EVALUATION METHOD

In order to determine the adjustment priority, we develop a
comprehensive evaluation method, which includes model-
ing and comprehensive evaluation. The framework of eval-
uation method is shown in Fig. 2. In the modeling process,
two prediction models are built to predict the ROP and
MPV. Then, the fuzzy comprehensive evaluation method
and comprehensive analysis are combined to determine the
adjustment priority. ∆P in Fig. 2 denotes the fluctuation
of SPP.

For modeling process, the ROP prediction model is con-
structed by SVR method and MPV prediction model is
constructed by LSTM neural network. The SVR method
is a regression method based on support vector machine,
which is often used to establish nonlinear models to solve
prediction problems (Chen et al., (2015); Xiang et al.,
(2018)) and suitable for ROP modeling. The LSTM neural
network is adopted to build the MPV prediction models.
The LSTM neural network has a good effect in solving time
series prediction problems (Yang et al., (2019); Wang et
al., (2018)) and suitable for MPV modeling. The output
of the ROP and MPV prediction models are served as the
inputs of the comprehensive evaluation.

In terms of comprehensive evaluation, FD, RC, ∆P , MPV
and the output of prediction models are used as evaluation
inputs. The membership functions evaluate the influences
of various factors. The comprehensive analysis method
determines the final adjustment priority by analyzing
the evaluation results based on maximum membership
principle and drilling requirements.

4. ROP AND MPV PREDICTION MODEL

In this section, the support vector regression (SVR)
method is employed to establish the ROP prediction model
and the long short term memory (LSTM) neural network
method is used to build the MPV prediction model.

SVR model

Stage 1

LSTM model

WOB RPM QDepth FD 1MPV 2MPV kMPV

Fuzzy comprehensive evaluation

Stage 2

ROP PDFD RC
1kMPV
+ kMPV

Comprehensive analysis

Evaluation result

Adjustment priority

Stage 3

Fig. 2. The framework of the evaluation method

4.1 The SVR prediction model

For ROP prediction model, the support vector regression
(SVR) method is adopted to build prediction model. SVR
is a regression method based on support vector machine
(Shevade et al., (2000)), which has been applied in the
drilling process.

There are n sets of data for building prediction model.

The input data Uin,i=
(
xkwob,i, x

k
rpm,i, x

k
Depth,i, x

k
q,i, x

k
fd,i

)
and output data Hout,i = xk+1

ROP,i, in which the i denotes
the sample sequence and k denotes the time sequence.
The Uin,i is composed of current parameters, WOB, RPM,
Depth, Q, FD, while the Hout,i corresponds to one step
ahead ROP. For SVR prediction model, it has certain
causal relation:

f(x) = ωφ(Uin,i) + b (1)

where φ(·) is a nonlinear mapping function, then the slack
variable ξi and ξ∗i are introduced. The problem of fitting
ω and b can be transformed into a quadratic programming
problem

min :
1

2
‖ω‖2 + C

n∑
i=1

(ξi + ξ∗i ),

s.t.

{
Hout,i − ωφ (Uin,i)− b ≤ ε+ ξi
−Hout,i + ωφ (Uin,i) + b ≤ ε+ ξ∗i

ξi ≥ 0, ξ∗i ≥ 0

(2)

where C denotes the penalty factor and ε > 0 is a small
number. Further, some basis function has to be used to
approximate the nonlinear function φ (x). In this paper,
the widely used radial basis function

K (x, x′) = exp

(
−‖x− x′‖2

2σ2

)
(3)

is selected. Then, by using the Lagrange function, the
fitted function becomes

Ĥout,i =

n∑
i=1

(ai − a∗i )K (U ′in,i, Uin,i) + b (4)
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Fig. 3. The structure of the RNN

where ai and a∗i are the Lagrange multipliers arising in the
the dual problem to this optimization problem.

Two hyper-parameter, C and σ, need to be carefully
designed in the SVR prediction model. The grid search
method and k-fold cross validation (k-FCV) are combined
to obtain them. Two hyper-parameter are searched in the
range of C = 2sc, sc = −10,−9.5, ..., 10 and σ = 2sg,
sg = −10,−9.5, ..., 10. Parameters C and σ are updated
according to the size of the grid. When C and σ are given,
the average error is computed as

e(C,σ) =
1

k

k∑
u=1

eu (5)

where eu is the uth error in k-fold cross-validation method.
The optimal parameters C and σ are obtained with
minimal e(C,σ).

4.2 The LSTM neural network prediction model

Accurate prediction of MPV change trend can provide a
reference role drilling process decision-making. The change
of MPV has obvious characteristics on the long and short
time scale. On the long time scale, it gradually decreases.
On the short time scale, the trend of MPV is similar to a
sine wave. Therefore, LSTM neural network is introduced
to build MPV prediction model.

For the LSTMNN prediction model, suppose there is a
time series of MPV as follow:

s = (st−1, st−2, ..., st−h) (6)

The h consecutive lags from s to forecast the future
MPV, st. The origin data sets for predicting P =
{st1 , st2 , st3 , ..., stk} are

S1 = {st1−1, st1−2, ..., st1−d} ,
S2 = {st2−1, st2−2, ..., st2−d} ,
...,
Stk = {stk−1, stk−2, ..., stk−d}

(7)

where P is the MPV to be predicted at time t1, t2, ..., tk, si
is the corresponding consecutive lags. The time series si is
selected as the input of the LSTMNN, and P is the output
of the LSTMNN. The length of the time series data d is
36 in our research.

LSTM neural network is a modified recurrent neural
network (RNN), which is shown in Fig. 3.

The output layer and hidden layer can be calculated as

ŷt = g (V st) (8)

st = f (Uxt +Wst−1) (9)

RNN is difficult to solve long-term sequence problems due
to gradient disappearance or gradient explosion. There-
fore, the LSTM neural network was developed to solve
this problem (Hochreiter et al., (1997)). The LSTM neural
network retains long-term time sequence cell states Ct by
introducing forgetting gate, input gate, and output gate.

The cell state Ct can record long-term sequence informa-
tion, which can be calculated as

Ct = ft ◦ Ct−1 + it ◦ C̃t (10)

where ft is the output of forget gate, it is the output of
input gate, ◦ denotes multiply by element. C̃t denotes a
vector of new candidate values of cell states.

The output gate is calculated as

outt = σ (Wo · [ht−1, xt] + bo) (11)

The final output of hidden layer is determined by the
output gate and cell state, which can be calculated as

ht = outt ◦ tanh (Ct) (12)

A back propagation trough time (BPTT) method is used
to adjust weights and biases of the LSTM neural network
with the objective function being

L (t) = min
1

2

R∑
i=1

(yi − ŷi)2 (13)

5. DRILL STATE ADJUSTMENT PRIORITY
EVALUATION

The fuzzy comprehensive evaluation method is used to
determine the priority of the drilling state adjustment.
First, the evaluation set U = [ FD ROP RC ∆P ∆V ]
is determined. The evaluation set contains five evaluation
factors, namely FD, ROP , RC, ∆P and ∆V . ∆P and ∆V
denote fluctuation of SPP and MPV. The weight vector A
of evaluation factors is set to A = [ 0.1 0.3 0.1 0.3 0.2 ].
The comment set for the evaluation factor is set to V =
[ 0 1 2 ]. For each evaluation factor, if the comment value
is large, the drilling efficiency can be adjusted at first. On
the contrary, the drilling safety can be adjusted at first.

For each comment value, the membership functions of
evaluation factors (eva) are set as

CV =0 (eva) =


eva − palbV =0

pamb
V =0 − palbV =0

, palbV =0 < eva < pamb
V =0

paubV =0 − eva

paubV =0 − pamb
V =0

, pamb
V =0 ≤ eva < paubV =0

CV =1 (eva) =


eva − palbV =1

pamb
V =1 − palbV =1

, palbV =1 < eva < pamb
V =1

paubV =1 − eva

paubV =1 − pamb
V =1

, pamb
V =1 ≤ eva < paubV =1

CV =2 (eva) =


eva − palbV =2

pamb
V =2 − palbV =2

, palbV =2 < eva < pamb
V =2

paubV =2 − eva

paubV =2 − pamb
V =2

, pamb
V =2 ≤ eva < paubV =2

(14)

The eva denotes the evaluation factors FD, ROP , ∆P
and ∆V . The value of membership functions parameter-
s palbV=0, pambV=0, paubV=0, palbV=1, pambV=1, paubV=1, palbV=2,
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pambV=2, paubV=2 are shown in Table 2. These parameters are
not fixed in the drilling process, which can be modified
according to the operation requirements.

Table 2. Model performance indicators

eva FD ROP ∆P ∆V

palbV =0 7 0 0.2 0.14

pamb
V =0 10 1 0.3 0.20

paubV =0 12 2 0.4 /

palbV =1 4 1 0.05 0.08

pamb
V =1 6 2.5 0.15 0.12

paubV =1 8 4 0.25 0.16

palbV =2 0 3 0 0

pamb
V =2 2.5 4.5 0.05 0.05

paubV =2 5 6 0.1 0.1

These membership functions are set according to the
actual drilling needs. The RC indicates the completeness
or fracture of the rock, which can be determined by the
operator. The RC can be divided into frauture, semi-
complete, complete and corresponding to 0, 1, and 2 of
the comment set.

Therefore the fuzzy evaluation matrix is constructed as

R =


CV =0 (FD) CV =1 (FD) CV =2 (FD)
CV =0 (ROP ) CV =1 (ROP ) CV =2 (ROP )
CV =0 (RC) CV =1 (RC) CV =2 (RC)
CV =0 (∆P ) CV =1 (∆P ) CV =2 (∆P )
CV =0 (∆V ) CV =1 (∆V ) CV =2 (∆V )

 (15)

The comprehensive evaluation vector can be calculated as

S = A ·R (16)

The priority of the drilling state adjustment is determined
by comprehensive analysis of S based on the maximum
membership principle and actual drilling requirements.

6. SIMULATION RESULTS

The validity of the evaluation method is verified by the
actual drilling data. The best parameters C and σ for ROP
prediction model are 1.41 and 1.00, respectively. A total
of 336 sets of data are used for modeling, with 298 sets of
data for training and 38 sets of data for testing. For the
prediction models, five criteria are used to for verification:

(1) Root-mean-squared error:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (17)

(2) Maximum absolute error (MAE):

MAE =
1

N

N∑
i=1

|ŷi − yi| (18)

(3) Mean absolute percentage error (MAPE):

MAPE =
1

N

N∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣× 100% (19)
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Fig. 4. Prediction result of ROP
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Fig. 5. Prediction result of MPV

(4) Maximum absolute error:

emax = max (|ŷi − yi|) (20)

The prediction results are shown in the Fig. 4 and Fig. 5.
The performance indicators of the two prediction models
are shown in Table 2.

Table 3. Model performance indicators

RMSE MAE MAPE emax

ROP model 0.2036 0.1759 6.816% 0.3808

MPV model 0.0407 0.0331 0.3679% 0.0824

It can be seen from Fig. 4, Fig. 5 and Table 3, the
prediction values of ROP and MPV are close to the actual
value. For the ROP prediction model, the value of the
membership function hardly changes even at the point
of maximum absolute error. In addition, there is a clear
upward trend in ROP because the formation becomes
stable and it is easy to increase the ROP. For the MPV
prediction model, the prediction model can follow the
downward trend of MPV, and at the maximum absolute
error point, the prediction error has no affect on the
value of the membership function. Although the prediction
values have some errors with the actual value, these errors
are acceptable for the practical application.
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In terms of comprehensive evaluation, three different
depths of drilling data are used to evaluate the priority
of the drilling state adjustment.

U1 = [7, 4.2, complete, 0.07, 0.06]
U2 = [8, 2.4, semi− complete, 0.17, 0.10]
U3 = [7, 1.2, fracture, 0.27, 0.18]

(21)

The fuzzy evaluation matrix of S1, S2, and S3 are

R1 =


0 0.50 0

0 0 0.80

0 0 1

0 0.20 0.60

0 0 0.80

 , R2 =


0.33 0 0

0 0.93 0

0 1 0

0 0.80 0

0 0.50 0

 , R3 =


0 0.50 0

0.80 0.13 0

1 0 0

0.70 0 0

0.67 0 0

(22)

The comprehensive evaluation vector of U1, U2, and U3

are
S1 = [ 0 0.11 0.68 ]
S2 = [ 0.03 0.72 0 ]
S3 = [ 0.68 0.09 0 ]

(23)

For S1, drilling efficiency will be prioritized based on the
principle of maximum membership. For S3, the fluctua-
tions of MPV and SPP are relatively large, and according
to the principle of maximum membership, drilling safety
will be adjusted first. For S2, the priority is difficult to
determine by maximum membership function. However,
from the perspective of RC, and ∆P and ∆V , the current
drilling process is in a low safety state. Therefore, in order
to ensure stable operation of the drilling process, drilling
safety will be adjusted first.

7. CONCLUSION

In this paper, a comprehensive evaluation method is devel-
oped to determine drilling states adjustment priority. This
method can make multi-parameter decisions by analysing
RC, ∆P , ∆V , FD and MPV . The adjustment priority
can guide the drilling operation. Before evaluation, the
SVR method and LSTM neural network are used to build
ROP and MPV prediction models, and the output of the
prediction models are served as part of the evaluation
factors. Simulation results based on actual drilling data
show that the accuracy of the prediction model can meet
the actual needs and the determined priority can guide
drilling process operations. In addition, we also focus on
building a comprehensive control systems for the drilling
process, one of which will run our method. The priority
of drilling states adjustment will provide an important
reference for drilling process control.
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