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Abstract: Water demand prediction is the key link for the effective operation of urban
intelligent water supply system. Since the non-linearity and complex variability of water
consumption, it is difficult for traditional water demand prediction models to guarantee high
accuracy for a long period. Different holiday types and even tiny changes in temperatures can
affect urban water demand seriously. This paper proposes a Stacking-based hybrid model which
integrates multi-correction mechanisms to address these problems. A better stacking model is
proposed to minimize the generalization error. The stability and reliability of predictions are
improved through the design of multi-correction mechanisms such as high temperature weather
compensation feature, holiday-type correction model and water quantity fluctuation correction
model. Comparing different models before and after stacking also before and after correcting,
the prediction accuracy of the proposed hybrid model is much higher and the predictions are
more stable and reliable.

Keywords: Water supply system, Prediction methods, Hybrid models, Stacking methods,
Multi-correction mechanisms, Neural-network models, Time-series analysis.

1. INTRODUCTION

With the rapid growth of urban water consumption and
the shortage of water resources, the optimal planning
of water resources and water use systems has become
more and more important, see Zhang et al. (2012). At
present, the shortage of water resource has been emerging
as one of the urgent problems that many cities in China
are faced with due to the rapid urbanization, see Yin
et al. (2018). Water demand forecasting provides valuable
trigger in determining the time and the capacity for new
water resources development, see Mohamed and Al-Mualla
(2010). Therefore, as the premise and basis of water supply
management, the short-term water demand forecast has
been greatly developed.
? This work is supported by Key projects from Ministry of Sci-
ence and Technology (No.2017ZX07207005-01), National Natural
Science Foundation of China (No.61533013, 61633019), Shaanxi
Provincial Key Project (2018ZDXMGY-168) and Shanghai Project
(17DZ1202704).

There are quantities factors leading to the variation in
urban water demand, such as climatic factors (temper-
ature, humidity, and rainfall), see Firat et al. (2009),
public policy factors(pricing, conservation programs, and
education), see Babel et al. (2007), efficiency and techonol-
ogy, see Kayaga et al. (2011). To predict the short-term
urban water demand, the traditional models such as Grey
model(GM), see Xie and Liu (2009) and Kumar and
Jain (2010), support vector machine(SVM), see Ji et al.
(2014) and Wang et al. (2015), and neural network(NN),
see Tiwari and Adamowski (2013) , and Long and Qian
(2010). However, the limited generalization ability of a
single model could leads to the instability of the prediction.
Also, it is unsuitable to use single model to solve practical
prediction problems. Besides, the urban water demand is
greatly affected by high temperature weather and national
statutory holidays, which makes it difficult to maintain
the high prediction accuracy of the traditional models. To
address these problems, therefore, it is necessary to design
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comprehensive stacked model and reasonable correction
models with reference to the prior knowledges.

Combining impact factors modeling-based machine learn-
ing models and time series modeling-based deep learning
models, this paper proposes a hybrid model based on
muti-correction mechanisms and a better stacking method.
Compared with pure time series model, the introduction
of impact factor-based model enables the model to cap-
ture valuable information not only dependent on time
series. In addition, compared with the pure impact factors-
based model, the introduction of time series model en-
ables the model to make more effective use of historical
information. This combination, through the verification
of water demand data from a city of China, significantly
improves the prediction accuracy of urban water demand
and contributes to higher practical value. Moreover, the
water demand prediction accuracy during high temper-
ature weather and national statutory holidays are also
well improved after being corrected by the muti-correction
models. The major contributions of this paper are listed
as follows:

• A better stacking model is proposed to strengthen the
generalization ability of the hybrid model.
• High temperature compensation correction is intro-

duced to improve the prediction accuracy.
• Holiday-type correction model is designed to enhance

the prediction ability during national statutory holi-
days.
• Water quantity fluctuation correction model is con-

structed to reduce prediction instability.

The remainder of the paper is organized as follows. Pre-
diction methods is mainly introduced in Sec.2. Then the
data flow and the whole construct of proposed model are
described in Sec.3. In Sec.4, the model prediction results
are evaluated and compared with different models. Finally
the conclusion is drew in Sec.5.

2. PREDICTION METHODS

2.1 Analysis of impact factors

To achieve high accuracy of prediction, the key is to
make the optimal combination of multiple independent
features that highly relevant with urban water demand.
The features’ datatype would be numerical as well as
categorical. For numerical features, correlation analysis of
numerical features is carried out to determine the most
relevant factors for the prediction. Tcpt, Tmax and Tmin

are the high temperature compensation feature, the daily
maximum and minimum temperature. Dmax and Dmin

are the daily maximum and minimum dew points. Hmax

and Hmin are the daily maximum and minimum humidity.
Wmax and Wmin are the daily maximum and minimum
wind speed. Pmax and Pmin are the daily maximum and
minimum atmosphere pressure.

The correlation coefficients between water demand and
climatic impact factors are shown in table 1. It can
be concluded that Tcpt, Tmax and Tmin are the most
relevant factors for the urban water demand. Therefore,
the selected numerical features consist of Tcpt, Tmax and
Tmin. As for the categorical feature, climate types(sunny,

Table 1. Correlation coefficient (r) of factors
and Water demand

Impact factor r Impact factor r

Tcpt 0.613 Tmax 0.580
Tmin 0.556 Dmax 0.532
Dmin 0.535 Hmax 0.032
Hmin -0.148 Wmax -0.062
Wmin -0.114 Pmax -0.472
Pmin -0.437 − −

cloudy, rainy, etc.) are selected to be transformed into
one-hot vector with 17 dimensions(V0∼16). Then the input
vector is obtained from combining the numerical features
and the categorical feature as described in (1).

Input = [Tcpt, Tmax, Tmin, V0, V1, V2, ..., V16] (1)

2.2 Design of stacking

Stacking is a technique whose purpose is to achieve a
generalization accuracy(as opposed to learning accuracy)
which is as high as possible. A set of base models are
constructed from bootstrap samples of a dataset, then
their outputs on a hold-out dataset are used as input to a
meta-model. For the two layers stacking process, the set of
base models are called first layer, and the meta-model are
called second layer, see H.Wolpert (1992). However, the
nonnegligible shortcoming of bootstrap samples, that is,
when the amount of data is small(especially for short-term
water demand forecast), it will repeatedly pick the same
samples, which makes it easy to over-fitting. Therefore,
this paper designs a better stacking models combined
with k-fold cross validation. K-fold cross validation divides
all samples into k sample subsets with equal size, then
traverse these k subsets in turn, taking the current subset
as the validation set, and the rest subsets as the training
set to train and evaluate the model. Thus, combined with
cross validation and model stacking, the model can obtain
as much effective information as possible from a limited
amount of data, and reduce the probability of overfitting
to some extent.

For the process of two layers stacking, supposing that
there are n models in the first layer and the amount of
training data and testing data are denoted as j and k. In
the training stage, stacking the output of k × n models
in the first layer as the training input(with the shape of
[j,n]) of the second layer model, then trains the models
in the second layer. In the testing stage, because each
model in the first layer makes k predictions, averaging the
k predictions of each model and stacking them as the pre-
diction input(with the shape of [k,n]) of the models in the
second layer. At last, the final predictions are output by
the second layer’s model. This hybrid model makes Linear
Regression(LR), see Quinlan (1986), which can effectively
capture linear features that affect water demand consump-
tions, Decision Tree Regression(DT), see Quinlan (1986),
which can choose features that are highly correlated with
water demand as impact factors, Random Forest(RF),
see Strobl et al. (2007), which can combine predictions
into a better one, and Support Vector Regression(SVR),
see Schölkopf (2003), which can find a properly hyperplane
in high-dimensional space to make resonnable predictions,
as the first layer models. The predictions made by first
layer’s models are stacked to create the training set to
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Fig. 1. Model Stacking procedure

train the second layer’s model XGBoost, see Chen and
Guestrin (2016). The whole Stacking procedure should be
seen in Fig. 1. To be more specific, every model at first
layer will be trained by five-fold cross validation, as shown
in Fig. ??.

2.3 Design of Multi-correction mechanisms

High temperature compensation correction Urban water
demand is very sensitive to temperature changes, espe-
cially for hot weather condition(From the historical data
of water demand, when the temperature is higher than
30 ◦C, there is obvious positive correlation between tem-
perature and water demand). Under this condition, even
1 ◦C changes of temperature can cause a serious change
in water demand. In order to capture the pattern between
hot weather and urban water demand, this paper designs a
high temperature compensation feature based on a logistic
function which is introduced as (2), where c denotes the
maximum progressive value of the curve, k denotes the
growth rate of curve and m denotes the median value of
curve, respectively. This function has a saturation charac-
teristic that fits the intrinsic mode, from the analysis of
historical data, the increment of urban water demand is
nearly saturated after the temperature exceeds a certain
threshold. Also, the squashing property(it takes any real
value and squashes it into the range between 0 and c)
allows one to interpret outputs as probabilities of high
temperature weather. Because the daily maximum tem-
perature and the daily minimum temperature can roughly
reflect the daily temperature, the high temperature comen-
sation feature Tcpt is obtained from the arithmatical av-
erage combination of L(Tmax) and L(Tmin) as described
in (3).

L(T ) = c/
(

1 + e−k(T−m)
)

(2)

Tcpt = 1/2× [L (Tmax) + L (Tmin)] (3)

Remark 1. In different regions, the intrinsic mode of high
temperature weather and water demand is slightly dif-
ferent, and the corresponding three parameters in the
function need to be adjusted appropriately according to
the actual situation.

Holiday-type correction Special time periods such as rare
weather, natural disasters, and national statutory holidays
have a significant impact on urban water demand. Due
to the randomness and unpredictability of the previous
two cases, this paper designs a holiday-type water demand
correction model based on interval division. In China, im-
portant national statutory holidays include National Day,
New Year’s Day, Spring Festival, Mid-Autumn Festival,
etc. According to the change rule of water demand during
holidays, this correction model divides the holiday into two
sub-intervals such that the demand for water in the first
interval is continuously decreasing, and the demand for wa-
ter in the second interval is gradually increasing. Obtained
from the historical data, the turning date(intersection of
two subintervals) of the National Day is on the third day,
which is October 3 of each year. For the other national
statutory holidays, the turning date is on the day of the
holiday. The division of interval of these holidays is shown
in table 2. THoliday is the date of the holiday. THoliday−n is
the first n days of the holiday and THoliday+n is the after
n days of the holiday.

In Decreasing/Increasing subinterval, the water demand
decreases/increases gradually till the end. Using (4), water
demand decrement of day t

(
δdecrement
t

)
is obtained by

the product of the average reduction ratio and the water
demand of dat t − 1. Water demand increment of day t(
δincrement
t

)
is obtained by the product of the average in-

crease ratio and the water demand of day t−1 by using (5).
The value of N determines how many years’ historical data
are coverd and L is the length of the decresing/increasing
subinterval. Wt−1 is the water demand of day t − 1 and
Wtd is the water demand of the day on turning date.

δdecrement
t =

Wt−1

N × L
×

N∑
i=1

(
W i

td−L −W i
td

)
(4)

δincrement
t =

Wt−1

N × L
×

N∑
i=1

(
W i

td −W i
td+L

)
(5)

Using (6), the final prediction
(
Ŵt

)
of day t is obtained

by combining the prediction
(
W̃t

)
of the stacked model

and the empirical forecast (Wt−1 + δt) of holiday-type
correction model. ε̄n is the average prediction accuracy
of the n days before day t. Thus, when the prediction
accuracy of the stacked model at a low level, the holiday-
type correction model will play a leading predictive role.
On the other hand, when the accuracy of the stacked model
at a high level, the correction model will play a reasonable
auxiliary part of predicting.

Ŵt = (1− ε̄n)× (Wt−1 + δt) + ε̄n × W̃t (6)

Water quantity fluctuation correction As time goes by,
the inherent laws of daily water demand will change, which
will lead to over-predicted or under-predicted. And due
to the unaviodable sporadic data anomalies, the model
predictions will also be severely affected. These problems
will further multiplies the difficulty of dispatching the
urban water supply system.

In addition to the closely related impact factors aforemen-
tioned, urban water demand is also related to historical
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Table 2. The division of interval of national statutory holidays

National Statutory Holidays Decreasing subinterval Increasing subinterval Turning date

Spring Festival [TSF−9, TSF−8, ..., TSF−1, TSF ] [TSF , TSF+1, ..., TSF+8, TSF+9] TSF

National Day [TND−4, TND−3, TND−2, ..., TND+2, TND+3] [TND+3, TND+4, ..., TND+9] TND

Tomb Sweeping Day [TTSD−3, TTSD−2, TTSD−1, TTSD] [TTSD, TTSD+1, TTSD+2, TTSD+3] TTSD

Dragon Boat Festival [TDBF−3, TDBF−2, TDBF−1, TDBF ] [TDBF , TDBF+1, TDBF+2, TDBF+3] TDBF

New Year’s Day [TNY D−2, TNY D−1, TNY D] [TNY D, TNY D+1, TNY D+2] TNY D

Labor Day [TLD−2, TLD−1, TLD] [TLD, TLD+1, TLD+2] TLD

Mid-Autumn Festival [TMAF−2, TMAF−1, TMAF ] [TMAF , TMAF+1, TMAF+2] TMAF

sequences because of the urban water supply system has
the characteristics of long-term circulation, and the ur-
ban water demand sequence has a strong autocorrelation,
which means that the difference of water demand between
the adjacent days are predictable. To avoid unresonable
predictions, Water quantity fluctuation correction model
is designed to predict difference sequence of water demand.
Then the predicted difference is used to correct the water
demand forecast, which not only solves the sporadic data
anomaly problem, but also further improves the stability of
the model prediction. The method of prediction is based on
Long-Short Term Memory(LSTM), see Gers et al. (2000).
The prediction of the difference

(
εt−1
t

)
between day t and

day t− 1 is obtained from feeding the Difference sequence
of day t − n to day t − 1 into correction model. The
difference sequence is described in (7). In LSTM model,
Tanh function is used as the hidden update activation
function. The hidden state of recurrent units at time t
is computed by using (8∼13).

xt =
[
εt−n−1
t−n , εt−n

t−n+1, ..., ε
t−2
t−1

]
(7)

it = σ
(
WT

xi · xt + WT
hi · ht−1 + bi

)
(8)

ft = σ
(
WT

xf · xt + WT
hf · ht−1 + bf

)
(9)

ot = σ
(
WT

xo · xt + WT
ho · ht−1 + bo

)
(10)

gt = tanh
(
WT

xg · xt + WT
hg · ht−1 + bg

)
(11)

ct = ft ⊗ ct−1 + it ⊗ gt (12)

yt = ht = ot ⊗ tanh (ct) (13)

⊗ is the element-wise product and σ is the sigmoid
function. Wxi,Wxf ,Wx0,Wxg are the weight matrices
of each of the four layers for their connection to the input
vector xt. Whi,Whf ,Wh0,Whg are the weight matrices
of each of the four layers for their connection to the
previous short-term state ht−1.bi,bf ,bo,bg are the bias
terms for each of the four layers.

Due to the nonlinear nature of the Recurrent component,
one of the main disadvantages of neural networks is that
the scale of the output is not sensitive to the scale of
the input. To overcome this drawback, the final difference
prediction is decomposed into non-linear part and linear
part, which are calculated by using (14) and (15). Autore-
gressive moving average(ARMA), see Brockwell and Davis
(1987), is adopted as the linear part. Denote vRt as the
output of non-linear part(LSTM) and vLt as the output of
linear part(ARMA). γ and θ are the coefficients of model
ARMA. µ is a constant and ξ is the errors. εt is the final
prediction of water quantity fluctuation correction model
calculated by using (16).

vRt = W · ht + b (14)

vLt = µ+

p∑
i=1

γiv
L
t−i + ξt +

q∑
i=1

θiξt−i (15)

εt = vRt + vLt (16)

3. MODEL EVALUATION

3.1 Evaluation Metrics

To evaluate the results of model prediction, two evaluation
indicators are selected. Using (17) and (18), mean absolute
percent error(MAPE) and mean squared error(RMSE) are
obtained. yi denotes the real data of water demand and ŷi
is the predicted value. The smaller the calculated values
of these two indicators are, the more stable the prediction
ability of the model is, and the better the prediction curve
can fit the real curve.

MAPE =

n∑
i=1

|yi − ŷi|
yi

100

n
(17)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (18)

3.2 Accuracy analysis of water demand forecasting with
high temperature compensation

To illustrate the effectiveness of the high temperature
compensation, the prediction accuracy of different models
before and after the introduction of high temperature
compensation is compared in table 3 and table 4. The two
data sets used for evaluation are taken from March 15,
2019 to April 15, 2019 and July 13, 2019 to August 13,
2019.

Remark 2. Since all the input features need to be stan-
dardized, the default value of parameter c could be set to 1
and based on the analysis of the historical data, parameter
k and m are set to be 0.6 and 30.

Table 3. Comparison of different models of
data set 1

Type without compensation with compensation

Indicators RMSE MAPE RMSE MAPE

LR 38.21 6.13% 35.82 5.70%
DT 47.61 7.84% 46.53 7.64%
RF 45.41 7.44% 43.89 7.16%
SVR 42.33 6.88% 40.13 6.48%

XGBoost 39.42 6.35% 37.64 6.03%
Stacked model 34.51 5.46% 33.17 5.21%

In tabel 3, the data set 1 was taken from the spring
of 2019(from March 15, 2019 to April 15, 2019), during
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which time the average daily temperature of this city
is lower than 25◦C. From the results above, it can be
seen that although the temperature is not high, the high
temperature compensation can still slightly enhance the
ability of the model prediction.

Table 4. Comparison of different models of
data set 2

Type without compensation with compensation

Indicators RMSE MAPE RMSE MAPE

LR 44.01 8.10% 37.00 6.76%
DT 49.92 9.18% 40.97 7.48%
RF 47.14 8.66% 38.80 7.09%
SVR 43.02 7.86% 39.98 7.30%

XGBoost 40.91 7.47% 33.76 6.17%
Stacked model 35.24 6.78% 31.16 5.34%

In table 4, the data set 2 was taken from the summer
of 2019(from July 13, 2019 to August 13, 2019), during
which time the average temperature is higher than 30◦C.
Compared with the results in table 3, it is obvious that,
without compensation, the prediction ability of each model
is worse under the condition of higher temperature, but
the introduction of high temperature compensation can
effectively make up for this disadvantage and reduce the
prediction bias.

3.3 Accuracy analysis of water demand forecasting with
holiday-type correction

Urban water demand has dramatically changes during
national statutory holidays, especially for those festivals
with longer holidays. It is difficult for traditional mod-
els to capture this special quantity change characteris-
tic because of the historical data of holidays are a tiny
part of training set, which probably leads to underfit.
Moreover, there is almost no difference in climatic con-
ditions between holidays and non-holidays, which makes
the model based on impact factors hardly to distinguish
holidays from non-holiday. Without correction model, the
accuracy of prediction during holidays is much lower than
the accuracy during non-holiday. Among these national
statutory holidays mentioned before, Spring Festival has
the longest holiday and Mid-Autumn Festival is one of the
shortest. Therefore, in table 5, 6, the accuracy results of
different models’ predictions during Spring Festival and
Mid-Autumn Festival are compared before and after the
adoption of holiday-type correction model.

Table 5. Comparison of different models of
data set 3 during Spring Festival

Type without correction with correction

Indicators RMSE MAPE RMSE MAPE

LR 81.80 17.64% 31.64 6.82%
DT 85.98 18.54% 34.72 7.49%
RF 81.57 17.59% 33.15 7.15%
SVR 87.88 18.97% 33.98 7.33%

XGBoost 82.78 17.84% 32.26 6.95%
Stacked model 77.21 16.65% 28.84 6.22%

In table 5, the data set 3 was taken from the real water de-
mand data of Spring Festival of 2019. According to table 2,
the range of decreasing subintervals is from January 27,
2019 to February 5, 2019 and the range of the increasing

subinterval is from February 5, 2019 to February 14, 2019.
After the correction, the forecasting ability of the model
during the Spring Festival is greatly improved.

Table 6. Comparison of different models of
data set 4 during Mid-Autumn Festival

Type without correction with correction

Indicators RMSE MAPE RMSE MAPE

LR 55.75 11.08% 29.08 5.78%
DT 66.62 13.35% 35.77 7.23%
RF 62.99 12.41% 31.45 6.26%
SVR 64.86 12.73% 32.64 6.49%

XGBoost 58.77 11.61% 26.87 5.31%
Stacked model 49.61 9.82% 23.80 4.74%

In table 6, the data set 4 was taken from the real water
consumption data of Mid-Autumn Festival of 2019, then
the range of decreasing subintervals is from September 11,
2019 to September 13, 2019 and the range of the increasing
subinterval is from September 13, 2019 to September 15,
2019. Compared with the results in table 5, before correct-
ing, it can be concluded that models are more capable of
predicting water demand for festival with shorter holidays
and weaker of predicting for those with longer holidays.
After correcting, the models’ ability of predicting for fes-
tival with shorter holidays also considerably improved.

3.4 Accuracy analysis of water demand forecasting with
water quantity fluctuation correction

By introducing the water demand fluctuation correction
model based on LSTM-ARMA, the difference sequence of
water demand is modeled for difference prediction. The
water quantity fluctuation correction model is the last
correction mechanism, without loss of generality, choose
the results corrected by aforementioned two correction
mechanisms in table 4 and table 5, the final prediction
results of different models are obtained and compared in
table 7 and table 8.

Remark 3. The length of the sequence is set to be 7, which
is to use the difference sequence of the first seven days to
predict the water demand difference, then the predicted
difference is used to correct the model predictions of water
demand.

Table 7. Comparison of different models
with/without quantity fluctuation correction

model of data set 2

Type without correction with correction

Indicators RMSE MAPE RMSE MAPE

LR 37.00 6.76% 13.93 2.09%
DT 40.97 7.48% 15.25 2.26%
RF 38.80 7.09% 14.60 2.15%
SVR 39.98 7.30% 15.24 2.25%

XGBoost 33.76 6.17% 14.05 2.10%
Stacked model 31.46 5.75% 12.77 1.91%

From the results above, the water quantity fluctuation
correction model significantly improves the generalization
performance of all models.

3.5 Comparison between traditional models and proposed
hybrid model

After combining stacking method and muti-correction
mechanisms, the prediction results of this hybrid model
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Table 8. Comparison of different models
with/without quantity fluctuation correction

model of data set 3 during Spring Festival

Type without correction with correction

Indicators RMSE MAPE RMSE MAPE

LR 31.64 6.82% 19.67 3.75%
DT 34.72 7.49% 20.42 4.09%
RF 33.15 7.15% 19.59 3.72%
SVR 33.98 7.33% 19.83 3.85%

XGBoost 32.26 6.95% 19.42 3.67%
Stacked model 28.84 6.22% 18.44 3.38%

Fig. 2. Comparison between traditional models and hybrid
model of four data sets

are compared with traditional models include GM, SVM,
and BP(NN). See Fig. 2. Each model is evaluated by the
four data sets mentioned previously.

From all the results in this section, it is evident that
the proposed hybrid model has the best generalization
performance, whether in a normal forecasting period or
in a special forecasting period(high temperature weather
period or during national statutory holidays).

4. CONCLUSION

In this paper, a better stacking model is proposed and
it is examined to have the lowest generalization errors
compared with other models. Moreover, multi-correction
mechanisms are designed to solve the prediction problems
that occur in different scenarios. The introduction of high
temperature compensation feature effectively improves the
prediction accuracy under high temperature condition.
The construction of holiday-type correction model which
combined prior knowledge and model predictions greatly
reduce the prediction error during national statutory hol-
idays. Finally, the LSTM-ARMA-based water demand
fluctuation correction model is designed to mitigate un-
resonable changes of forecasting results caused by model
itself and sporadic data anomaly. By combining these, the
hybrid model has been tested to better solve the practical
problems of urban water demand forecasting.
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