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Abstract: An algorithm of adaptive estimation of the magnetic flux for the non-salient perma-
nent magnet synchronous motor (PMSM) for the case when measurable electrical signals are
corrupted by a constant offset is presented. A new nonlinear parameterization of the electric
drive model based on dynamical regressor extension and mixing (DREM) procedure is proposed.
Due to this parameterization the problem of flux estimation is translated to the auxiliary task
of identification of unknown constant parameters related to measurement errors. It is proved
that when both current and voltage measurements are biased the proposed algorithm ensures
convergence of the flux observation error to a bounded set. At the same time the position error
converges to zero. The observer provides global exponential convergence if the corresponding
regression function satisfies the persistent excitation condition. If the regression function is
not square integrable the global asymptotic convergence is ensured. In comparison with known
analogues this paper gives a constructive way of the flux reconstruction for a nonsalient PMSM
with guaranteed performance (low oscillation, convergence rate regulation) and, from other
hand, a straightforwardly easy implementation of the proposed observer to embedded systems.

Keywords: Nonlinear control systems, robust observers, synchro motors, flux estimator, speed
estimator, sensorless approach, voltage offset.

1. INTRODUCTION

The problem of so-called “sensorless” control is very res-
onating and challenging today. The main difficulty is a
nonlinear model of the PMSM in which the magnetic
flux is unmeasurable variable. Very popular strategy in
literature is to reconstruct mechanical variables of the
drive using knowledge of the total flux. And usually the
magnetic flux observation is a key problem, which attracts
a lot of scientists from adaptive control and electric drive
societies, including L. Praly, R. Ortega, R. Marino, P.
Tomei, K. Nam, A. Stankovic, and many other famous
researchers.

Although a lot of different approaches are existed and even
already implemented as preset feature in distributed actu-
ators, however, the performance of such control strategy is
still an open “hot” problem. Existed, known for authors,
methods do not guarantee the convergence of regulation
error to zero in scenarios with measurement errors. Some
approaches give robust estimates that acceptable in prac-
tical applications. Estimators which ensure the asymptotic
convergence of estimates to observable states of electrical

? The work was written with the support of the Ministry of Science
and Higher Education of the Russian Federation, project unique
identifier RFMEFI57818X0271 “Adaptive Sensorless Control for
Synchronous Electric Drives in Intelligent Robotics and Transport
Systems”.

drives usually are not robust with respect to measurement
noise because were designed with strong assumptions re-
garding this issue.

The approaches Bobtsov et al. [2015] and Bazylev et al.
[2018] require only measurements of the voltage v and
the current i, however it was assumed that there is no
bias or noise in electrical signals. Experimental study on
the setup with noisy measurements demonstrate that both
observers ensure bounded errors in the low speed region.
Nevertheless, the robustness against noises is still need to
be guaranteed. In simulation results we present advantages
of the new method compared to the mentioned observers.

The paper Pyrkin et al. [2018] was devoted to the case
when the measured signals v and i contain uncertain
biases that are assumed to be constant. Two observers
were presented, robust version with reduced dimension and
adaptive one designed with a classical gradient approach.
In this paper we present a reduced order observer and show
its efficiency for a higher value of biases in comparison with
Pyrkin et al. [2018]. Also we apply the DREM procedure
Aranovskiy et al. [2016] to get performance enhancement.

In this brief paper we focus on the problem of observer
design of the flux in PMSM which is, from one hand,
is robust with respect to biases in measurements and
does not contain any open-loop integration schemes, and,
from other hand, provides convergence of all estimation
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errors to zero with such performance properties as low
oscillations of estimates and possibility of convergence
rate regulation. Also for the case when both current and
voltage measurements are biased the presented approach
ensures global convergence of the flux observation error to
a low bounded set which depends on stator resistance and
inductance and voltage offset.

2. PROBLEM FORMULATION

Consider the classical, two phaseαβ model of the unsat-
urated, non-salient, PMSM described by Krause [1986],
Nam [2010]

λ̇ = v −Ri,
jω̇ = −fω + τe − τL,
θ̇ = ω, (1)

where λ ∈ R2 is the total flux, i ∈ R2 are the currents,
v ∈ R2 are the voltages, R > 0 is the stator windings
resistance, j > 0 is the rotor inertia. θ ∈ S := [0, 2π] is
the rotor phase, ω is the mechanical angular velocity, f > 0
is the viscous friction coefficient, τL ∈ R is the – possibly
time-varying – load torque, τe is the torque of electrical
origin, given by

τe = npi
>Jλ

with np ∈ N the number of pole pairs and J ∈ R2×2 is the
rotation matrix

J =

(
0 −1
1 0

)
For surface-mounted PMSM’s the total flux verifies

λ = Li+ λmC(θ), (2)

where L > 0 is the stator inductance and

C(θ) :=

(
cos(npθ)
sin(npθ)

)
.

Assume the only signals available for measurements are
the current i and the voltage v, which are corrupted by
constant unknown bias terms δi ∈ R2 and δv ∈ R2,
respectively, that is

im = i+ δi, vm = v + δv, (3)

where im and vm are actually measured signals. The
resistance R and the inductance L are assumed to be
known.

The goal is to reconstruct asymptotically the total flux λ
with asymptotic convergence of estimation errors to 0.

3. MAIN RESULT

The adaptive flux observer for PMSM was proposed in
Bobtsov et al. [2015] and was based on the equation

|λ− Li|2 − λ2
m = 0, (4)

which follows from (2).

Expression (4) may be rewritten as

λ>λ− 2Lλ>im + L2i>mim + λ>η1 + i>mη2 + η3 = 0, (5)

where η1 = 2Lδi, η2 = −2L2δi, η3 = L2δ>i δi − λ2
m are

constants that are unknown.

The approach presented in Pyrkin et al. [2018] extends
the method firstly appeared in Bernard and Praly [2017].

The key feature of extension is the possibility to find a
linear regressor equation depending on uncertain flux λ,
set of unknown parameters and measurable signals. The
following proposition establishes this fact.

Proposition 1. Consider the model of PMSM (1) with
measurable signals (3) corrupted by uncertain offsets. The
following regression model holds

λ̇ = −Rim + vm + ηm,

y = Φ>(λ+
1

2
η1) + Ψ>η + εt, (6)

where the known functions y, Φ, Ψ are computed
from available signals, ηm := Rδi − δv and η :=(
ηm1 ηm2 η

>
mηm

)>
are unknown constant vectors and εt

is an exponentially decaying term.

Proof. The proof is based on [Pyrkin et al., 2018, Lemma
3.3] and may be easily repeated with the following steps.

Step 1. Differentiate (5).

Step 2. Apply the filter ν
p+ν , where p := d

dt is a differential
operator.

Step 3. Using the Swapping Lemma [Sastry and Bodson,
2011, Lemma 3.6.5]

ν

p+ ν

(
x>z

)
= z>

(
ν

p+ ν
x

)
− 1

p+ ν

(
ż>
(

ν

p+ ν
x

))
get the regressor equation where the flux λ and vector η
enter linearly only.

Step 4. Apply the filter p
p+ν .

Step 5. Rewrite obtained operator expression as ordinary
differential equations.

After 5 steps we introduce the following filters

ξ̇1 = −νξ1 + 2νym + 2ν2Lim,

ξ̇2 = −νξ2 + ξ1 + 2ym,

ξ̇3 = −νξ3 + y>mξ1 + ν2L2i>mim,

ξ̇4 = −νξ4 + νξ2 − ξ1,
ξ̇5 = −νξ5 + νξ3 − ν2L2i>mim + y>m(νξ2 − ξ1), (7)

that operate the known signal

ym = −Rim + vm.

The proof is completed by picking

y = ξ3 − νL2i>mim − ξ5,

Φ = 2ξ1 − 2νLim − νξ2,

Ψ =

 2ξ4

2ν−1

 .

Then we will use the basic result of the Proposition 1
in design the adaptive observer of the magnetic flux and
apply the DREM procedure Aranovskiy et al. [2016].

Directly, the DREM procedure is not applicable to the
model (6) since λ is a function of time. Neglecting the
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exponential term εt we apply one more filter with the
coefficient α > 0 to the second equation of (6):

α

p+ α
y =

α

p+ α
Φ>(λ+

1

2
η1) +

α

p+ α
Ψ>η

= (λ+
1

2
η1)>

α

p+ α
Φ− 1

p+ α

(
λ̇>

α

p+ α
Φ

)
+ η>

α

p+ α
Ψ

= (λ+
1

2
η1)>

α

p+ α
Φ− 1

p+ α

(
(vm−Rim+ηm)

> α

p+ α
Φ

)
+ η>

α

p+ α
Ψ = (λ+

1

2
η1)>

α

p+ α
Φ− 1

p+ α

(
y>m

α

p+ α
Φ

)
− η>m

α

(p+ α)2
Φ + η>m

α

p+ α
(2ξ4) + η>mηm

α

p+ α
(2ν−1)

(8)

and rewrite as

zα = Φ
>
α (λ+

1

2
η1) + Ψ

>
α η (9)

where

zα =
α

p+ α
y +

1

p+ α

(
y>m

α

p+ α
Φ

)
,

Φ =
α

p+ α
Φ,

Ψ =


α

p+ α
(2ξ4)− α

(p+ α)2
Φ

α

p+ α
(2ν−1)

 .

Following the concept of DREM we consider the set of
linear filters αk

p+αk
with different gains αk > 0, k =

1, N − 1, where N := dim (λ+ 1
2η1) + dim (η) = 5 and get

a system of N linear equations

zk(t) = Φ
>
k (t)(λ+

1

2
η1) + Ψ

>
k (t)η, (10)

where index k denotes the coefficient αk of the correspond-
ing filter. Combining 5 new regression models (10) with the
original one (6) we form extended regression

Z(t) = M(t)

(
λ(t) +

1

2
η1

η

)
,

where

Z(t) :=


y(t)

z1(t)
...

zN (t)

 , M(t) :=



Φ> Ψ>

Φ
>
1 Ψ

>
1

...
...

Φ
>
N Ψ

>
N


.

The next step is to obtain a set of scalar N equations as
follows.

adjM(t)Z(t) = adjM(t)M(t)

(
λ(t) +

1

2
η1

η

)

= det M(t)

(
λ(t) +

1

2
η1

η

)
or

Yλ(t) = ∆(t)(λ(t) +
1

2
η1), (11)

Yη(t) = ∆(t)η, (12)

where

Y (t) : =

(
Yλ(t)

Yη(t)

)
= adjM(t)Z(t),

∆(t) := det M(t).

Proposition 2. Consider the parameterized model of PMSM
(6). The update law

˙̂η = γη∆ (Yη −∆η̂) , (13)

provides exponential convergence of η̃ = η − η̂ to 0 for
γη > 0 if ∆(t) is persistently excited, ∆(t) ∈PE. If ∆(t)
is not square integrable, ∆(t) /∈ L2, then η̃ tends to 0
asymptotically.

Proof. Compute the derivative of error η̃

˙̃η(t) = −γη∆2(t)η̃.

Solving the latter equation we immediately see that

η̃(t) = e
−γη

∫ t
0

∆2(s)ds
η̃(0),

which completes the proof.

As seen from (11) the estimate of flux is affected by the
unknown parameter η1 which is proportional to the un-
known constant bias of currents δi. Therefore, we consider
the following three scenarios to construct the flux observer:

1) δi is known and δv is unknown;
2) δi is unknown and δv is known;
3) both δi and δv are unknown.

The assumption of known bias terms δi and δv is equal to
the case when the signals i and v are measured(calculated)
precisely.

The following Proposition establishes the main result of
the paper for the first scenario.

Proposition 3. Consider the parameterized model of PMSM
(6) and parameter estimator (13). Let δi to be known. The
update law

λ̂ = χ− Lδi,
χ̇ = −Rim + vm + η̂m + γλ∆ (Yλ −∆χ) (14)

ensures

lim
t→∞

λ̃(t) = 0, if ∆(t) /∈ L2,

|λ̃1,2(t)| ≤ ρe−σt|λ̃1,2(0)|, if ∆(t) ∈ PE,

for some γλ > 0 and ρ ≥ 1, σ > 0.

Proof. The flux error model takes the form
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˙̃
λ(t) =

˙̂
λ− λ̇ = χ̇− vm +Rim − ηm

= γλ∆ (Yλ −∆χ) + η̃m

= γλ∆

(
∆(λ+

1

2
η1)−∆(λ̂+ Lδi)

)
+ η̃m

= −γλ∆2(t)λ̃+ η̃m.

Convergence of η̃m depends on properties of ∆(t) and the
gain γη. If ∆(t) is persistently excited (PE), then η̃ con-
verges to 0 exponentially, which guarantees convergence of
λ̃ to 0 as proved in [Aranovskiy et al., 2015, Lemma 1]. If

there is a lack of excitation but ∆(t) /∈ L2 then λ̃ tends to

0 asymptotically. Otherwise λ̃ converges to a bounded set
about 0.

Propositions 4 and 5 correspond to the second and the
third scenarios, respectively.

Proposition 4. Consider the parameterized model of PMSM
(6) and parameter estimator (13). Let δv to be known. The
update law

λ̂ = χ− L

R
(η̂m + δv),

χ̇ = −Rim + vm + η̂m + γλ∆ (Yλ −∆χ) (15)

ensures

lim
t→∞

λ̃(t) = 0, if ∆(t) /∈ L2,

|λ̃1,2(t)| ≤ ρe−σt|λ̃1,2(0)|, if ∆(t) ∈ PE,

for some γλ > 0 and ρ ≥ 1, σ > 0.

Proof. First, we notice that the error dynamics and
convergence properties of η̃ are the same as in the proof of
Proposition 2. Secondly, since δv is known we get

η̃m = η̂m − ηm = Rδ̂i −Rδi = Rδ̃i.

Then calculation of the error model of λ̃ yields

˙̃
λ(t) =

˙̂
λ− λ̇ = γλ∆ (Yλ −∆χ) + η̃m −

L

R
˙̂ηm

= γλ∆2

(
λ+

1

2
η1 − λ̂−

L

R
(η̂m + δv)

)
+ η̃m −

L

R
˙̃ηm

= −γλ∆2(t)λ̃− γλ∆2(t)η̃m + η̃m − γλ
L

R
∆2(t)η̃m,

The proof is completed using [Aranovskiy et al., 2015,
Lemma 1] invoking that L

R > 0.

Proposition 5. Consider the parameterized model of PMSM
(6) and parameter estimator (13). Let δi and δv are un-
known. The update law

λ̂ = χ− L

R
η̂m,

χ̇ = −Rim + vm + η̂m + γλ∆ (Yλ −∆χ) (16)

ensures exponential convergence of λ̃ to L
Rδv if ∆(t) ∈ PE.

If ∆(t) /∈ L2 then λ̃ converges to provides asymptotic

convergence of η̃ = η − η̂ to 0 for γη > 0 and λ̃ = λ− λ̂ to

a bounded set L
Rδv for γλ > 0.

Proof. Compute the derivative of the flux error

˙̃
λ(t) =

˙̂
λ− λ̇ = γλ∆ (Yλ −∆χ) + η̃m −

L

R
˙̃ηm

= γλ∆2

(
λ+

1

2
η1 − λ̂−

L

R
η̂m

)
+ η̃m −

L

R
˙̃ηm

= γλ∆2

(
−λ̃+

L

R
(ηm + δv)−

L

R
η̂m

)
+ η̃m −

L

R
˙̃ηm

= γλ∆2(t)(−λ̃+
L

R
δv)− γλ∆2(t)η̃m

− γλ
L

R
∆2(t)η̃m + η̃m,

where L
Rδv is a vector of unknown constant parameters.

Assuming zero η̃m we get

˙̃
λ(t) = γλ∆2(t)(−λ̃+

L

R
δv).

Introducing the following new denotations

x := λ̃, g((t) := γλ∆2(t), a :=
L

R
δv, (17)

we rewrite differential equation (17) as

dx

dt
= g(t)(−x+ a),

which is a linear differential equation with separable vari-
ables.

Making a replacement w = x− a, dw = dx we obtain

1

w
dw = −g(t)dt,

with a solution w(t) = w(0)e

∫ t
0
−g(t)(s)ds

.

Performing the reverse replacement yields

λ̃(t) = (λ̃(0)− L

R
δv)e

−γλ
∫ t
0

∆2(s)ds
+
L

R
δv,

which completes the proof.

The unknown position is reconstructed by the following.
Replacing (3) in (2) we obtain

λ = Lim − Lδi + λmC(θ). (18)

Since η1 = 2Lδi the latter can be rewritten in the form

λmC(θ) = λ+
1

2
η1 − Lim. (19)

As seen from (14), (15) and (16) the estimate of the signal
(λ+ 1

2η1) is generated by the signal χ the convergence of
which depends on properties of ∆(t) and the gains γη and
γλ. Consequently, the unknown position is reconstructed
by

θ̂(t) =
1

np
arctan

(
χ2 − Lim2

χ1 − Lim1

)
. (20)

Notice, that in contrast to the flux observer, the position
error is not affected by the unknown current and voltage
biases and converges to zero asymptotically if ∆ is PE.

The rotor speed can be estimated from the observed

position θ̂ using a PLL estimator [Nam, 2010]

ς̇1 = Kp(θ̂ − ς1) +Kiς2, ς̇2 = θ̂ − ς1
ω̂ = Kp(θ̂ − ς1) +Kiς2,

where Kp > 0 and Ki > 0 are proportional and integral
gains, respectively.
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4. NUMERICAL EXAMPLE

In this section we consider the motor as in Bobtsov et al.
[2017], which parameters are listed in Table 1. The motor
is controlled by classical field-oriented controller described
by Nam [2010]. The desired motor speed increases linearly
from zero to 523 rad/sec during the time interval t ∈
(0; 0.2) sec and then remains constant. The external
load torque applied to the motor is zero at the start and
τL = 1 N·m after 0.3 sec.

Parameter (units) Motor

Inductance L (mH) 40.03
Resistance R (Ω) 8.875
Drive inertia j (kgm2) 60× 10−6

Pairs of poles np (–) 5
Magnetic flux λm (Wb) 0.2086

Table 1. Parameters of the first motor BMP0701F

The initial motor parameters λ>(0) = [0.2086 0], θ(0) = 0
with zero initial currents and speed.

The initial parameters for the estimation algorithms (13),
(14), (15), (16) are the following: η̂>(0) = [0 0 0] and
χ>(0) = [0 0]. The design parameters ν = 1400, α1 =
80, α2 = 200, α3 = 360, α4 = 520, γη = γλ = 1, Kp = 2 ·
103, Ki = 104. The constant biases in currents and
voltages δ>i = [0.4 − 0.3] and δ>v = [0.2 − 0.1].

In Figs. 1a and 1b the transient processes for the estimates
η̂> = [η̂1 η̂2 η̂3] = [η̂m1 η̂m2 η̂>mη̂m] are shown. As seen,
the parameter estimates converge to their true values fast.
The estimates η̂1 and η̂2 perform very low oscillations. The
estimate η̂3 exhibits an overshoot at the beginning, then
shows small fluctuations and goes to the true value.

Figs. 1c illustrate the transients of the absolute value of
the flux observation error for the algorithms (14), (15)
and (16), respectively. As seen from simulation results,
observers (14) and (15) perform fast convergence of the
flux error to zero. The transient behavior of the observer
(16) is similar to the observers (14) and (15). However,
there is a low stationary error in the steady state after
t = 0.035 sec λ̃s ≈ [9.02 4.51] · 10−4 which coincides with
analytically calculated bounded set L

Rδv.

In Figs. 2 and 3 the proposed observer (13), (16) and (20)
is compared with the observers of Bobtsov et al. [2015] (I)
and Bazylev et al. [2018] (II). The initial motor parameters
are the same and the initial parameters of the observers
are set to zero.

The design parameters for the observer I: α = 100 and
γ = 1. The design parameters for the observer II: α =
100, β = 800 and γ1 = γ2 = 1.

Fig. 2 demonstrates the transients of the position estima-
tion error for the three mentioned observers. In Fig. 2a
the observer I shows oscillations of the error near zero.
The observer II performs faster convergence with higher
steady oscillations in Fig.2b. It should be mentioned that
using lower value of α results in higher oscillations for both
I and II observers. At the same time, the proposed solution
performs fast convergence of the position error to zero after
t = 0.04 sec.

The transients of the speed estimation error is illustrated
in Fig. 3. Fig. 3a shows relatively high steady oscillations
of the speed error for the observer I. The behavior of the
observer II is similar in Fig. 3b.

As seen from Fig. 3c the designed observer ensures steady
state speed error that goes to zero value. The first over-
shoot is reasoned by the transients of position estimation.
The next two are caused by the change of the speed
reference and the load torque applied to the motor.

5. CONCLUSION

In this paper we propose the new adaptive observer design
algorithm which allows to parametrize the model of dis-
turbed PMSM as a linear regressor equation with respect
to observable flux shifted by the term which depends on
current bias and some constants depending on measure-
ment errors (biases or offset). Using DREM procedure the
vector regressor equation may be splitted to a set of scalar
regressor equations with a common measurable regressor
and unknown variables or parameters. Such decomposition
allows to guarantee convergence of estimation errors to
zero for the case when currents are measured properly
and voltage measures are biased and vice versa. Also pro-
posed solution allows to regulate the convergence rate via
adaptation gains. As proven, for the challenging case when
measured currents and voltages are both noised the flux
observer perform low stationary error in the steady state.
Proposed method ensures global asymptotic convergence
of position error to zero. Our future work will be devoted
to a full state observer design in conditions of parametric
uncertainty of the motor.
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Fig. 2. Transients of the position estimation error for observers with δ>i = [0.4 − 0.3] and δ>v = [0.2 − 0.1]
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