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Abstract: The present paper aims to study the time-optimal path planning problem for a
wheeled mobile robot in an obstacle-free environment with given initial and final configuration
and considering constraints on maximal permissible velocity, acceleration, and jerk. The
path consists of analytically derived constant acceleration and constant deceleration (CACD)
motion primitives, which at the junctions also ensure smooth transitions of curvature, vehicle’s
acceleration, and jerk. Smooth path planning is chosen to prevent instant changes of acceleration
that improves the driving comfort, the tracking performance and lowers wear of actuators.
Conducted experiments confirm that the proposed motion primitives form a feasible, time-
optimal path under given dynamical constraints.

Keywords: path planning, motion primitives, minimal time, driving constraints, C∞ curve.

1. INTRODUCTION

Many studies have been published on shortest path plan-
ning, initiated by the works by Dubins (1957) and Reeds
and Shepp (1990) for curvature constrained vehicles.
Soueres and Laumond (1996) described an optimal control
law for a robot to manoeuvre towards the goal based
on the shortest distance between the current and final
position and Salaris et al. (2010) reported a shortest path
study for wheeled robots with field of view constraints. In
recent years, there has been a growing interest in design
of minimal energy paths (Fallah et al., 2013; Yang et al.,
2016). An important area of research is also minimal-time
path planning that often applies various smooth motion
primitives, such as circular arcs, higher order polynomi-
als (Sencer et al., 2015), Bezier curves (Choi and Huh-
tala, 2016), and clothoids (Brezak and Petrović, 2014).
Minimal-time trajectory generation with bounded veloc-
ities of the mobile robot is described by Balkcom and
Mason (2002) and with bounded acceleration by Renaud
and Fourquet (1997). Reister and Pin (1994) proved that
according to Pontryagin’s maximum principle bang-bang
trajectories are time optimal candidates. Instant changes
of acceleration, however, worsen the tracking performance
and increase wear of the actuators in industrial robots
and contribute to uncomfortable trajectories of self-driving
cars and wheelchairs. It is known that the acceleration
applied to the body is sensed as an external force acting
on the body which has to be balanced. If the acceleration
is constant in time (the jerk is zero), the balancing force is
constant. If, on the other hand, the acceleration changes
with time (the jerk is not zero), the balancing force also has
to adapt which causes problems with humans or objects
experiencing this force (Graaf and Weperen, 1997; Eager
et al., 2016). Therefore, Park and Kuipers (2011) and
Ghazaei et al. (2015) proposed motion control approaches
with limited jerk and Piazzi and Visioli (2000) and Free-
man (2012) comfort path planning with jerk minimization.

This paper outlines a new approach of optimal trajec-
tory planning for a wheeled vehicle in an unobstructed
environment with prescribed initial and final position,
orientation and velocity. The solution in its basic form
considers trapezoidal velocity profile with bounded veloc-
ity and acceleration and smooth curvature. The calculated
trajectory is a parametric function of time with constant
acceleration section, a constant velocity section and a
constant deceleration section. An essential contribution of
the proposed paper is an extension of the basic solution
that also considers jerk limitation by appropriately adding
sections of smooth acceleration transitions.

2. DRIVING CONSTRAINTS

In a process of designing trajectories with minimal or
close to minimal time for some wheeled robot with the
kinematics

ẋ(t) = v(t) cos(θ(t))
ẏ(t) = v(t) sin(θ(t))

θ̇(t) = ω(t)
(1)

the velocity, acceleration and rate of change of acceleration
(jerk) need to be constrained. This constraints are not
related only to the vehicle capabilities but also to the
requirements for safe (slip-free) motion. The vehicles max-
imal driving velocity (vMAX) is always limited in practice.
The slip-free motion of a vehicle is obtained if its tangential
acceleration at = dv

dt and radial acceleration ( ar = vω) are
inside the ellipse defined by a maximal tangential accel-
eration aMAXt and a maximal radial acceleration aMAXr
so that resulting forces on the wheel-ground contact are
always lower than the longitudinal or lateral friction force.

a2
t

a2
MAXt

+
a2
r

a2
MAXr

≤ 1 (2)

Furthermore, in performance demanding path planning
applications also constraints on a rate of change of ac-
celeration should be imposed. It is important to note that
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throughout the paper we use the term ’jerk’ (denoted as
jt = dat

dt , jt ≤ JMAX) to refer to the most influential part
of the overall jerk (Graaf and Weperen, 1997). Its conti-
nuity lowers the premature wear of actuators and prevents
increase of vibrations in the robot structure (Freeman,
2012).

3. OPTIMAL CONSTANT ACCELERATION CURVES

The idea is to extend our previous work (Klančar and
Blažič, 2019) on optimal constant acceleration and con-
stant deceleration (CACD) curve planning to obtain
smooth acceleration and jerk curves with consideration
of the jerk constraints. In previous work we derived the
parametric equations for the optimal-time trajectory ana-
lytically and then solve them to compute the required two
parameters which are maximal accelerations. A summary
of the approach is as follows.

Maximal constant acceleration (at1, ar1) is a point on the
ellipse border (2) with at1 > 0 and constant deceleration
is defined by another point (at2, ar2) with at2 < 0. Let
the initial vehicle’s location be in the origin (xsp = ysp =
0, θsp = 0) and its starting velocity vsp. The required
vehicles end pose and velocity are xep, yep, θep, and vep,
respectively.

The acceleration part of the curve is obtained by inte-
grating the kinematics (1) with defined tangential velocity
v1(t) = vsp + at1t and angular velocity ω1(t) = ar1

vsp+at1t

θ1(t) =
ar1
at1

ln
v1(t)

vsp
(3)

x1(t) =
v2

1(t) (2at1 cos θ1(t) + ar1 sin θ1(t))− 2at1v
2
sp

4a2
t1 + a2

r1

(4)

y1(t) =
v2

1(t) (2at1 sin θ1(t)− ar1 cos θ1(t)) + 2ar1v
2
sp

4a2
t1 + a2

r1

(5)

where t ∈ [0, t1], t1 =
v̂−vsp
at1

, and v̂ = v1(t1) is maximal
velocity reached at the end of acceleration (t = t1) .
Similarly the deceleration curve is presented as reverse
acceleration motion from the origin with initial velocity
vep, and accelerations a∗t2 = −at2, a∗r2 = −ar2.

θ∗2(t∗) =
a∗r2
a∗t2

ln
v∗2(t∗)

vep
(6)

x∗2(t∗) =
v∗2

2(t∗) (2a∗t2 cos θ∗2(t∗) + a∗r2 sin θ∗2(t∗))− 2a∗t2v
2
ep

4a∗t2
2 + a∗r2

2

(7)

y∗2(t∗) =
v∗2

2(t∗) (2a∗t2 sin θ∗2(t∗)− a∗r2 cos θ∗2(t∗)) + 2a∗r2v
2
ep

4a∗t2
2 + a∗r2

2

(8)
where t∗ ∈ [0, t∗2] and t∗2 =

v̂−vep
a∗t2

to achieve desired velocity
v̂ at t∗ = t∗2 where

v̂ = vspe

∆θ−
a∗
r2
a∗
t2

ln
vep
vsp

ar1
at1

−
a∗
r2
a∗
t2 (9)

The final solution of decelerated motion from x1(t1),
y1(t1), θ1(t1) towards the end pose is obtained by rotating
the trajectory (6)-(8) for an angle θep − π and translating

for a shift (xep, yep), and finally reversing the notion of
time.

The obtained final curve also considers maximal feasible
velocity vMAX and assures continuous curvature in the
junction. An example of obtained curve is given in Fig. 1
that does not provide smooth acceleration, this being the
novelty of this work and is presented in Section 4.
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Fig. 1. An example of continuous curvature shortest time
paths planning using constant accelerations consid-
ering constrained velocity. Shown: path, orientation,
curvature and velocity profile for different radial ac-
celeration combinations. Due to the periodic nature
of orientation the magenta curve ends at 1.75π which
is the same as −0.25π. Notice that the path is non-
smooth regarding velocity and its further derivatives
(accleration and jerk).

4. SMOOTH CACD CURVE GENERATION

The solution proposed in Klančar and Blažič (2019) results
in a continuous curvature (see example in Fig. 1) and
a trapezoid velocity profile. It is computationally simple
since it only includes optimization in the compact convex
space of two parameters (at1, at2), and most importantly
does not include any numerical integration because the
trajectory is computed analytically. The minimal time
solution of the CACD curve are constant acceleration and
deceleration (at1, at2) computed from (3)-(8) so that the
acceleration and declaration curve meet (x1(t) = x∗2(t∗),
y1(t) = y∗2(t∗), θ1(t) = θ∗2(t∗) + π). This solution is found
by optimisation.

Due to constant tangential acceleration and deceleration
with discontinuous jumps (see the upper graph in Fig.
2), the jerk exhibits infinite values which affects actuator
performance and may be a potential problem in appli-
cations where precise positioning without overshoots is
desired. This could be improved (as illustrated in Fig. 2)
by inserting template jerk transitions such as limited am-
plitude rectangular pulses (trapezoid acceleration), trape-
zoid, smooth trigonometric functions (Haschke et al., 2008;
Nguyen et al., 2008) or exponential functions (Rymansaib
et al., 2013). Most of the existing limited jerk solutions ap-
ply to 1-DOF motor-actuated drives such as linear motors
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or separate joints in a several-DOF manipulators. To the
best of our knowledge there are no analytical solutions for
minimal-time paths with smooth acceleration for (multiple
DOF) wheeled robots although some control approaches
with limited jerk can be found (Park and Kuipers, 2011;
Ghazaei et al., 2015). Also some minimal-jerk planners
were proposed to maximize comfort (Piazzi and Visioli,
2000; Freeman, 2012).

In the following the extension of the basic CACD solution
given in Klančar and Blažič (2019)) to the optimal path
planning with smooth accelerations is illustrated. Note
that only tangential acceleration has discontinuous jumps
while the radial acceleration is already continuous due
to ar = κv2 (see Fig. 1). For this purpose tangential
acceleration needs to change smoothly thorough defined
trigonometric jerk function similarly as in Nguyen et al.
(2008)

jt(t) =
dat(t)

dt
=
JMAX

2

(
1− cos

(
2πt

tJ

))
(10)

where JMAX is maximal allowed jerk (positive to increase
and negative to lower the acceleration), t ∈ [0, tJ ] and tJ
is the time span of the jerk function. This section is used
to obtain smooth transition of discontinuous acceleration
changes. Acceleration and velocity during the interval of
the jerk defined by (10) are obtained by integration as
follows

at(t) =
tJMAX

2
−
JMAXtJ sin

(
2πt
tJ

)
4π

+ at(0) (11)

v(t) =
t2JMAX

4
−
JMAXt

2
J sin2

(
πt
tJ

)
4π2

+at(0)t+v(0) (12)

The designed trajectory therefore requires 7 path sections
(as in Nguyen et al. (2008)) which increases the number
of optimization parameters and makes the search of the
time optimal solution as well as the resulting solution more
complex. To the existing constant acceleration section,
the constant velocity section and constant deceleration
sections, four smooth acceleration transitions are added.
Namely, at the beginning to accelerate from 0 to at1,
then to decelerate from at1 to 0 before arriving to the
middle constant velocity section, then accelerating from 0
to at2, and finally decelerating from at2 to 0. Illustration of
obtained jerk, acceleration and velocity profiles is shown
in Fig. 2.

Because the trajectory is now composed of more sections it
needs to be described by more parameters, the selection of
which and their number influence the degree of freedom of
the path planning for different start and goal conditions.
Four free parameters at1, at2, arSP and arEP (starting and
ending radial acceleration) were chosen to fully describe
the trajectory. The trajectory needs to fulfill constraints
on maximal driving velocity vL ≤ vMAX , maximal ac-
celerations aMAXt, aMAXr and maximal jerk jMAX . The
duration of the two jerks (the positive and the negative)
in acceleration part is obtained from at1 =

∫ tJ1

0
j(t)dt

(assuming at(0) = 0) by tJ1 = T1 = T3 − T2 = 2at1
JMAX

.
Similarly for the jerk functions in deceleration part: tJ2 =
T5 − T4 = T7 − T6 = 2at2

JMAX
.
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Fig. 2. Discontinuous tangential acceleration (the upper
graph) of trapezoidal velocity profile computed in
section 3. And illustration of smooth jerk, acceleration
and velocity profile of the trajectory composed of
seven sections resulting in smoothed acceleration and
smooth velocity profile.

The duration of the constant acceleration and deceleration
parts of the trajectory is defined by ∆t1 = T2 − T1 =
v(T2)−v(T1)

at1
and ∆t2 = T6 − T5 = v(T6)−v(T5)

at2
, respectively,

where the corresponding bounding velocities of the jerk
sections are as follows:

v(T1) = vsp + ∆vJ1 = vsp +
JMAXt

2
J1

4

v(T2) = vL −∆vJ1 = vL −
JMAXt

2
J1

4

v(T5) = vL −∆vJ2 = vL −
JMAXt

2
J2

4

v(T6) = vep + ∆vJ2 = vep +
JMAXt

2
J2

4

and ∆vJ1 =
∫∫ tJ1

0
j(t)dt2 and ∆vJ2 =

∫∫ tJ2

0
j(t)dt2 are the

velocity increments of the first and the second jerk sections
and velocity increments of the third and the fourth jerk
sections, respectively.

The jerk function therefore has the following profile:

jt(t) =



JMAX
2

(
1− cos

(
2πt
tJ1

))
0 ≤ t < T1

0 T1 ≤ t < T2

−JMAX2

(
1− cos

(
2π(t−T2)

tJ1

))
T2 ≤ t < T3

0 T3 ≤ t < T4

−JMAX2

(
1− cos

(
2π(t−T4)

tJ2

))
T4 ≤ t < T5

0 T5 ≤ t < T6

JMAX
2

(
1− cos

(
2π(t−T6)

tJ2

))
T6 ≤ t < T7

(13)

Tangential acceleration of the trajectory reads
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at(t) =

tJMAX
2 −

JMAXtJ sin
(

2πt
T1

)
4π 0 ≤ t < T1

at1 T1 ≤ t < T2

at1 − (t−T2)JMAX
2 +

JMAXtJ sin
(

2π(t−T2)

T3−T2

)
4π T2 ≤ t < T3

0 T3 ≤ t < T4

− (t−T4)JMAX
2 +

JMAXtJ sin
(

2π(t−T4)

T5−T4

)
4π T4 ≤ t < T5

at2 T5 ≤ t < T6

at2 + (t−T6)JMAX
2 −

JMAXtJ sin
(

2π(t−T6)

T7−T6

)
4π T6 ≤ t < T7

(14)

Radial acceleration profile is defined by the bounding
radial accelerations arSP and arEP , the constant radial
acceleration and deceleration (ar1 and ar2) and smooth
transitions as follows

ar(t) =

arSP + ar1−arSP
2

(
1− cos

(
πt
T1

))
0 ≤ t < T1

ar1 T1 ≤ t < T3

ar1 + ar2−ar1
2

(
1− cos

(
π(t−T3)
T4−T3

))
T3 ≤ t < T4

ar2 T4 ≤ t < T6

ar2 + arEP−ar2
2

(
1− cos

(
π(t−T6)
T7−T6

))
T6 ≤ t < T7

(15)

The duration of the connecting curve ∆t = T4 − T3 in the
middle of the trajectory is computed from the required
orientation increment ∆θ3 = θ(T4) − θ(T3) which needs
to join the acceleration part and the deceleration part
similarly as in Section 3. The orientation at the end of
the acceleration part θ(T3) (0 ≤ t ≤ T3) and at the
beginning of the deceleration part θ(T4) (T4 ≤ t ≤ T7)
are computed using θ(T3) =

∫ 2tJ1+∆t1
0

ar(t)
v(t) dt + θSP and

θ(T4) = θEP −
∫ 2tJ2+∆t2
T4

ar(t)
v(t) dt, respectively. Note that

θ(T4) is computed using reversed accelerated motion from
the end pose similarly as done in the proposed basic CACD
approach. Considering the relation for ar(t), T3 ≤ t <
T4 in (15), the orientation increment can be expressed
as ∆θ3 =

∫∆t

0
ar(t)
vL

dt = ∆t(ar1+ar2)
2vL

from which ∆t is
computed

∆t =
2vL∆θ3

ar1 + ar2
(16)

Note that Eq. (16) is singular when ar1 = −ar2. In
this case ∆t can be computed numerically so that the
acceleration, the middle and the deceleration parts of the
trajectory join.

Optimal solution of the example from Fig. 1 with smooth
acceleration profile is given in Fig. 3. It considers vMAX =
1 ms−1, aMAXt = 2 ms−2, aMAXr = 4 ms−2 and jMAX =
10 ms−3. The optimal solution of 1.63 s is obtained using
at1 = 0.89 ms−2, at2 = −1.51 ms−2, arSP = 1.79 ms−2,
arEP = 2.57 ms−2, ar1 > 0, and ar2 < 0. The obtained
solution has smooth jerk and acceleration profile. It is
computationally more intense as it searches the space of
four parameters during optimization and uses numeric
integration to compute the trajectory (1) during each
iteration of optimization.
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Fig. 3. Shortest time trajectory with smooth accelera-
tion considering constrained velocity, acceleration and
jerk. Shown are path, normalized orientation, curva-
ture, velocity, acceleration and jerk profiles for dif-
ferent radial acceleration combinations. The optimal
solution is obtained by ar1 > 0 ∧ ar2 < 0 with the
shortest time 1.63 s.

5. EXAMPLES AND EXPERIMENTS

The obtained CACD trajectory is guaranteed to be time
optimal (taking into consideration the given restrictions)
as this follows from the problem definition. It gives the
feasible path and at the same time its velocity profile
on this path is already time optimal. It is therefore
not possible to drive faster on the obtained path if the
constraints (on accelerations and maximal velocity) are
considered.

Fig. 4 shows the comparison of the trajectories obtained
by the basic CACD planner presented in Klančar and
Blažič (2019) (green curves) and the proposed smooth
CACD planner (blue curves). The basic CACD planner has
non-smooth accelerations and jerk components as well as
short pulses of very high translational jerk that can not be
performed by a vehicle. While the proposed planner with
smooth acceleration and jerk produces feasible trajectory
for a vehicle where the amplitude of the tangential jerk
is limited to jMAX = 20 ms−3. The results show smooth
course of both accelerations and jerks while all the other
limitations are still considered. The final time is obviously
slightly longer than in the case of the basic CACD but the
driving comfort increase is huge.

Performance of the proposed trajectory planners is checked
also by experiments done on a wheeled mobile robot.
It is a small cube shape robot with a 7.5 cm side and
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Fig. 4. Comparison of the basic (non-smooth) CACD
trajectory (green) and the proposed smooth CACD
trajectory (blue) for initial parameters (xsp = ysp =
0, θsp = 0, vsp = 0.3 ms−1, xep = yep = 1 m, θep =
−10◦, vep = 0.5 ms−1, vL = 1.2 ms−1, aMAXt = 2
ms−2, aMAXr = 4 s−2) and jMAX = 20 ms−3.

weighs 0.5 kg. Its pose is estimated with an image sensor
and a computer-vision algorithm running at the sampling
frequency of 30 Hz. The robot is controlled by commanding
its translational velocity (v(t)) and its angular velocity
(ω(t)) which present the reference for implemented low-
level control in the robot.

The experiments on real robot are shown in Fig. 5.
Again the algorithms compared in this experiment are the
basic (non-smooth accleration and jerk) CACD trajectory
planning algorithm presented in Klančar and Blažič (2019)
and the proposed CACD trajectory planning algorithm
with smooth acceleration and jerk transitions (Section
4). Both planning approaches result in minimal time
path under given design constraints (maximal velocity,
accelerations and jerk). Figure 5 contains the following
plots. The first two plots show the x, y plot together with
their references, next two plots show the actual velocities
and the commanded velocities while the last plot shows
the position error between planned trajectory (x(t), y(t))

and robot trajectory (xrob(t), yrob(t)) defined as: derr(t) =√
(x(t)− xrob(t))2 + (y(t)− yrob(t))2. The basic CACD

results in an reference acceleration with two discontinuities
and an reference angular velocity with a discontinuity
(due to discontinuous curvature) which are not present
in the smooth CACD planner. These sudden jumps may
influence the final tracking performance. This effect can be
observed if the maximal accelerations are chosen so that
robot can follow the trajectory in majority of time accept
at the disturbances due to the discontinuities where it
need some more time to recover the tracking error. The
effect of discontinuities therefore becomes noticeable at
acceleration jumps in the basic CACD (approximately at
1 s and 2.8 s).
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Fig. 5. Comparison of smooth acceleration CACD (S-
CACD) and basic CACD tracking results. Trajecto-
ries parameters are: xsp = ysp = 0, θsp = 0, vsp = 0.1
ms−1, xep = 1.3 m yep = 1.2 m, θep = −10◦,
vep = 0.2 ms−1, vL = 0.5 ms−1, aMAXt = 0.5 ms−2,
aMAXr = 0.5 s−2, jMAX = 5 ms−3.

6. CONCLUSION

This paper has investigated time-optimal trajectory gen-
eration for wheeled mobile robots and presented a solu-
tion for given initial and final configurations, considering
kinematic restrictions on maximal velocity, acceleration
and jerk. The fundamental solution that guarantees time-
optimality, is derived analytically and consists of constant
acceleration and constant deceleration (CACD) motion
sections. However, in order to determine a feasible trajec-
tory for a wheeled mobile robot without sudden changes
of acceleration, the trigonometric jerk function template
is used in the additional transition sections to obtain the
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final time-optimal trajectory that has smooth transitions
of curvature, acceleration and jerk.

We have demonstrated the proposed method on several
path-planning examples and showed the distinction be-
tween the results obtained from the basic CACD trajectory
generating algorithm that produces non-smooth trajectory
and the results from the upgraded algorithm that gener-
ates trajectory with smooth transitions of acceleration.

Our trajectory generator can be primarily used to plan
smooth and comfortable time-optimal trajectories in an
obstacle-free environment and with arbitrary initial and
final conditions. Additionally the proposed solutions can
also be applied in environments with obstacles by building
a lattice graph with the CACD primitives for optimal path
searching algorithms. Our method can also be applied to
robot paths, either to smooth the discontinuous transitions
of orientation or to estimate cost-to-goal heuristics in
state-transition graph-based planners.
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