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Abstract: In this paper a method for fault detection and identification of affine input nonlinear systems
is presented, which is based on derivative estimation with orthonormal Jacobi polynomials. A systematic
approach is presented to derive a residual and a differential algebraic expression of the fault from
the system description, which solely depends on measurable input and output signals as well as on
their time derivatives. For this, a systematic algorithm is provided, which can be directly implemented
in computer algebra packages. Furthermore, arbitrary disturbances are taken into account, by making
use of a disturbance decoupling. Fault detection and identification is then achieved by polynomial
approximation of the determined fault or residual expression. The results are illustrated for a faulty
point-mass satellite model.

Keywords: Fault detection and identification, nonlinear systems, disturbance decoupling, algebraic
derivative estimation.

1. INTRODUCTION

Safety in technical processes is becoming increasingly impor-
tant for plants and systems, especially in industrial applications.
As the latter become more and more complex the vulnerabil-
ity to faults is increasing. In order to guarantee the safety of
processes, fault detection and identification methods gain more
importance. The literature provides many approaches for linear
and nonlinear systems. A broad overview of these methods can
be found in Chen and Patton (1999) or especially for linear sys-
tems in Ding (2008). The solutions for fault detection and diag-
nosis are are mainly divided into model-free (see e.g. Frank and
Köppen-Seliger (1997), Heo and Lee (2018)) and model-based
approaches (see e.g. Ding (2008)). Model-free approaches can
be especially problematic if the available data is not sufficient to
detect occurring faults and thus a potential safety risk can arise,
which is why the focus here is on model-based approaches.
Model-based approaches are mainly implemented with the use
of observers. However, this can cause considerable problems
for the implementation, especially with nonlinear systems. In
addition, fault detection and identification is made even more
difficult in the case of additional disturbances affecting the
system, which is why the approaches in this case can become
very complex (see, e.g., De Persis and Isidori (2001)). A pos-
sible solution to avoid the challenging design of nonlinear fault
detection observers is to determine a fault expression in terms
of the known signals and their time derivatives. This expression
can be obtained from observability tests for the faulty nonlinear
system. However, this is a challenging problem, since in addi-
tion disturbances must be taken into account and the individual
derivative estimators have to be parameterized accordingly to
evaluate the residual.

In this paper, an algebraic method for model-based fault de-
tection and identification is presented, which can be used for
affine input nonlinear MIMO systems in the presence of dis-
turbances. For this, the residual is determined directly by using
the observability map and the observability normal form. This
allows to express the residual and the fault in terms of the
known inputs and measurements as well as the time derivatives
thereof. In order to take disturbances into account, the expres-
sions are decoupled from them by annihilating the disturbance
input matrix. It is demonstrated that the explicit expression for
the residual and the fault allows a systematic implementation in
standard computer algebra packages. A particular benefit of the
presented approach is that it can be easily implemented for real
world applications, since the proposed algebraic derivative es-
timation can be realized in real-time by evaluation of weighted
sums (see Lomakin and Deutscher (2019)).

This paper is organized as follows: In the next section a for-
mulation of the considered fault detection problem is set up.
Afterwards the requirements, which the system must fulfill are
defined and a method of general fault detection and identifica-
tion is presented. In Section 4 the polynomial approximation,
which was presented in Lomakin and Deutscher (2019), is
briefly reviewed and the application on the obtained residual
and fault estimate signal is provided. The proposed method
is finally demonstrated by a simulation of a faulty point-mass
satellite.

2. PROBLEM FORMULATION

In this paper the nonlinear affine input system
ẋ = a(x) +B(x)u+G(x)d+ E(x)f (1a)
y = c(x) (1b)
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is considered, in which the state x is defined on an open set
X ⊆ Rn with the initial state x(0) = x0 ∈ X . In (1a)
u ∈ Rnu is the input, f ∈ Rnf and d ∈ Rnd are the unknown
fault and disturbance. The output y ∈ Rny of (1) is assumed
to be available for measurement. All elements of the matrices
B(x), E(x), G(x) are assumed to be known and sufficiently
smooth, i.e. Ck(X ), and the vector fields a(x) ∈ Rn and
c(x) ∈ Rny are assumed to be a sufficiently smooth, i.e.
are in (Ck(X ))n and (Ck(X ))ny . It is furthermore assumed
that G(x) and E(x) have full column rank, i.e. rankG(x) =
nd ,∀x ∈ X and rankE(x) = nf ,∀x ∈ X with nd, nf ≤ ny .

The fault detection and identification problems addressed in this
paper are characterized as follows:

For a given system (1), find a residual signal r

r = Φ(y, ẏ, ..., y(k1), u, u̇, ..., u(k2)) ∈ Rnr , (2)

with k1, k2 ∈ N such that the conditions

(I) lim
t→∞
‖r‖ = 0, ∀ f = 0

(II) r 6= 0, ∀ f 6= 0

are satisfied for any input u, any disturbance d and any initial
state x0. Then, the fault f can be detected by the residual signal
r. If additionally to (I) and (II) for any two particular faults
fi and fj , with fi, fj ∈ Rnf and fj 6= fi, the corresponding
residual signals ri and rj can be distinguished within any
finite time interval It, the fault f can also be isolated by
the residual signal r. If furthermore an estimation for fi and
fj can be derived from r for any finite time interval It, the
fault is assumed to be identifiable. Henceforth, the addressed
problem will be regarded as the residual generation problem for
fault detection (RGP-FD) and fault identification (RGP-FDI),
respectively.
Remark 1. It should be noted that if further restrictions are
made or additional information is available, unambiguous de-
tection and/or identification is also possible if nd, nf ≥ ny . 2

3. RESIDUAL GENERATION FOR FAULTDETECTION

In order to solve the presented fault detection and identification
problem, it is necessary to determine a residual signal r, which
can be calculated from the measurable quantities u and y, as
well as their time derivatives only. For this purpose, the state
x is successively replaced by these signals with aid of a local
diffeomorphism and dynamic extension. Then, a differential
algebraic expression is obtained to determine the fault f or
the residual r according to (2). Subsequently, it is shown how
the time derivatives of y and u in r are reconstructed by an
algebraic derivative estimation and how fault detection and
identification can be performed solely on the basis of y and u
in the presence of unknown disturbances.

The aforementioned problem, of course, is linked to observabil-
ity properties of the system (1). For this, the observability of the
drift system

ẋ = a(x), x(0) = x0 ∈ X (3a)
y = c(x), (3b)

resulting from (1) by omitting the input signals is recalled.
Definition 2. (Drift observability, see, e.g., Mora et al. (2000))
If there exist ny constants s̄1, ...., s̄ny such that

∑ny

i=1 s̄i = n
and the observability map Φo : Rn 7→ Rn given by



y1...
y

(s̄1−1)
1 ...
yny...

y
(s̄ny−1)
ny


= Φo(x) =



c1(x)
...

Ls̄1−1
a c1(x)

...
cny (x)

...
L
s̄ny−1
a cny (x)


(4)

is a local diffeomorphism on a neighborhood U(x0) of x0, then
the system (1) is drift observable on U(x0). /

According to the implicit function theorem, (4) is locally dif-
feomorphic in a neighborhood of x0, if and only if the corre-
sponding Jacobian dΦo satisfies

det dΦo(x
0) 6= 0. (5)

Remark 3. The selection of the parameters s̄i may provide a
degree of freedom, which can be used to reduce the derivative
orders s̄i of the outputs to avoid noisy measured values for fault
diagnosis. 2

In addition to the drift observability, the system (1) has to
remain observable in the presence of the known inputs u for
f = 0 and d = 0.

To this end, the coordinates ξ are defined according to

ξ =



ξ1
1...
ξ1
s̄1...
ξ
ny

1...
ξ
ny

s̄ny


=



c1(x)
...

Ls̄1−1
a c1(x)

...
cny

(x)
...

L
s̄ny−1
a cny

(x)


. (6)

Definition 4. (Complete uniform observability, see Gauthier
and Bornard (1981)) Consider a system (1), which is drift
observable on U(x0) so that the local diffeomorphism ξ =
Φo(x) exists. If it is possible to find a permutation matrix P ∈
Rn×n such that by applying the diffeomorphism ξ̃ = PΦo(x),
with inverse x = Φ−1

o (P>ξ̃), the system (1) can be mapped to
the cascaded form, i.e. the observability normal form

˙̃
ξ1 = ξ̃2 +

nu∑
i=1

b̃1,i(ξ̃1)ui

˙̃
ξ2 = ξ̃3 +

nu∑
i=1

b̃2,i(ξ̃1, ξ̃2)ui

... (7)
˙̃
ξn−1 = ξ̃n +

nu∑
i=1

b̃n−1,i(ξ̃1, ..., ξ̃n−1)ui

ξ̃1 = y,

then the system (1) is complete uniform observable on U(x0)./

Obviously, (7) can be directly solved for ξi, i = 1, ..., n,
yielding the explicit differential algebraic expression

ξ = Ψ(ȳ, ū) (8)

with ȳ = col
(
y1, ..., y

(s̄1−1)
1 , ..., yny , ..., y

(s̄ny−1)
ny

)
, ū =

col
(
u1, ..., u

(k1)
1 , ..., unu

, ..., u
(knu )
nu

)
and the constants k1 ≤
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n − 1, ..., knu
≤ n − 1. Additionally, ξ̇ follows directly by

differentiation of (8) resulting in

ξ̇ =
d

dt
Ψ(ȳ, ū) =

∂

∂ȳ
Ψ(ȳ, ū) ˙̄y +

∂

∂ū
Ψ(ȳ, ū) ˙̄u = Ψ̃(ȳ, ˙̄y, ū, ˙̄u).

(9)

Remark 5. The property of describing ξ and ξ̇ as an expression
of ȳ and ū is analogous to the definition of differential algebraic
observability (see, e.g., Martinez-Guerra et al. (2013)). 2

In order to avoid time derivatives of the fault and the distur-
bance in the expression for the residual, it has to be assumed
that for all k = 1, ..., ny the two conditions

LgiL
j−1
a ck(x) = 0, i = 1, ..., nd, j = 1, ..., s̄k − 1 (10a)

and
LeiL

j−1
a ck(x) = 0, i = 1, ..., nf , j = 1, ..., s̄k − 1 (10b)

are fulfilled for all x ∈ U(x0). This means that the relative
degree of the output yk, k = 1, ..., ny , w.r.t. disturbances and
faults is greater than s̄k, which is determined by (4).
Remark 6. Although the requirements (10) seem to be restric-
tive, they are met for many systems such as fully actuated rigid
robots, even if elastic couplings in the joints are considered. 2

For complete uniform observable systems (1) with (10) satis-
fied, the vector ξs̄ = col

(
ξ1
s̄1 , ..., ξ

ny

s̄ny

)
∈ Rny can be obtained

by premultiplication of ξ with a selection matrix S ∈ Rny×n,
i.e.

ξs̄ = Sξ. (11)
The time derivative of ξs̄ thus satisfies

ξ̇s̄ = γ(ξ) + Λu(ξ)u+ Λd(ξ)d+ Λf (ξ)f (12)

on U(x0) with γ(ξ) ∈ Rny ,Λu(ξ) ∈ Rny×nu ,Λd(ξ) ∈
Rny×nd and Λf (ξ) ∈ Rny×nf given by

γ(ξ) =

 Ls̄1a c1
...

L
s̄ny
a cny

 ◦ Φ−1
o (ξ) (13a)

Λu(ξ) =

 Lb1Ls̄1−1
a c1 · · · Lbnu

Ls̄1−1
a c1

...
. . .

...
Lb1L

s̄ny−1
a cny · · · Lbnu

L
s̄ny−1
a cny

 ◦ Φ−1
o (ξ)

(13b)

Λd(ξ) =

 Lg1Ls̄1−1
a c1 · · · Lgnd

Ls̄1−1
a c1

...
. . .

...
Lg1L

s̄ny−1
a cny · · · Lgnd

L
s̄ny−1
a cny

 ◦ Φ−1
o (ξ)

(13c)

Λf (ξ) =


Le1Ls̄1−1

a c1 · · · Lenf
Ls̄1−1
a c1

...
. . .

...
Le1L

s̄ny−1
a cny · · · Lenf

L
s̄ny−1
a cny

 ◦ Φ−1
o (ξ).

(13d)

Subsequently, it is always assumed that a transformation ξ̃ =
PΦo(x) into the representation (12) exists, since it is used for
the further analysis of fault detection and identification. For
notational convenience, the dependencies of ξ in the vector γ(ξ)
and the matrices Λu(ξ),Λd(ξ) and Λf (ξ) are not displayed in
the subsequent section.

Remark 7. Since is not trivial to obtain the representation (12)
and also to test, whether the transformation ξ̃ = PΦo(x)
exists, the Algorithm 1 is provided in the appendix. This
algorithm generates such a representation, if it exists, and can
be implemented with computer algebra software such as the
symbolic math toolbox of Matlab or Mathematica. 2

By rearranging (12) the quantity
rd = ξ̇s̄ − γ − Λuu = Λdd+ Λff (14)

can be defined such that condition (I) is fulfilled if d is ne-
glected. However, in order to fulfill condition (II) obviously
rankΛf (ξ) = nf has to hold for all ξ ∈ U(ξ0), with
ξ0 = Φo(x

0). If unknown disturbances d affect the system,
it is necessary to decouple them from the residual. For this
purpose, the left-sided annihilator Λ⊥d ∈ Rny×ny of Λd, i.e.
Λ⊥d Λd = 0, ∀ξ ∈ U(ξ0), and

Λ⊥d = I − ΛdΛ
†
d (15)

is introduced, in which
Λ†d = (Λ>d Λd)

−1Λ>d ∈ Rnd×n (16)
is the Moore-Penrose generalized inverse (see, e.g., Penrose
(1955)). Note that (16) always exists, because rankG = nd
(cf. Sec.2) and (10a) imply rankΛd = nd on U(ξ0). By
premultiplication of (14) with the annihilator Λ⊥d , the influence
of the disturbance d on rd is eliminated yielding the desired
residual

r = Λ⊥d

(
ξ̇s̄ − γ − Λuu

)
= Λ⊥d Λff, ∀f ∈ Rnf (17)

according to (2). It is unequal to the zero vector if any fault f is
present, as long as

rankΛ⊥d Λf (ξ) = nf , ξ ∈ U(ξ0), (18)
which is a sufficient condition for fault detectability. Then, r
solves the RGP-FD and can be used for fault detection. In view
of (18) also fault identification is achievable. For this, (17) is
solved for f to obtain

f = (Λ⊥d Λf )†Λ⊥d

(
ξ̇s̄ − γ − Λuu

)
. (19)

Therein, (Λ⊥d Λf )† is the Moore-Penrose generalized inverse
of Λ⊥d Λf . Since (17) is satisfied for any vector f ∈ Rnf

the solution (19) exists uniquely. If rank(Λ⊥d Λf ) = ñf <
nf then the solution of (17) is no longer unique and thus f
cannot be determined unambiguously. However, it is possible
to realize fault identification at least partially (see (Lomakin
and Deutscher, 2019, Section. III D)).

The remaining problem is that the determined residual and fault
estimate depend on ξ and ξ̇ and therefore cannot be evaluated
directly. In (17) and (19) the unknown variables ξ and ξ̇ can be
replaced according to the differential algebraic formulation in
(8) and (9), whereby the expressions are only dependent on y
and u, as well as on their time derivatives. Hence, analogous
to the description in (2) the residual r and the fault f can be
written as

r = Φr(ȳ, ˙̄y, ū, ˙̄u) ∈ Rnr (20)
and

f = Φf (ȳ, ˙̄y, ū, ˙̄u) ∈ Rnf . (21)

4. ALGEBRAIC FAULT DETECTION AND
IDENTIFICATION

In order to implement (20), (21) the time derivatives have to
be computed on the basis of u and y. For this, the methods of
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algebraic derivative estimation are introduced. The derivative
estimation, already shown in Kiltz et al. (2012) and Kiltz and
Rudolph (2013), is adapted in this paper to determine the poly-
nomial approximation of any function by an integral transfor-
mation. This method is briefly reviewed in this section to show
how the procedure can be used to substitute time derivatives
successively. For a detailed explanation of the procedure, the
reader is referred to the paper Lomakin and Deutscher (2019).

For the consideration of algebraic approximation approaches,
first a signal x(t) is defined, which is quadratically Lebesgue
integrable within any finite time interval It,T = [t− T, t] , T >

0, and furthermore the k-th derivative x(k) exists, i.e. x ∈
L2(t − T, t) ∩ Ck−1 [t− T, t] and x(k) ∃. By defining the
bijective transformation φT : Ĩ = [−1, 1] 7→ It,T and the
corresponding inverse mapping φ−1

T , the transformed function
x̄ = x ◦ φT can be defined on a Hilbert space H = L2(−1, 1)
with the inner product

〈ϕi, ϕj〉 =

∫ 1

−1

ϕi(τ)ϕj(τ)w(α,β)(τ)dτ, ∀ϕi, ϕj ∈ H, (22)

and the induced norm
‖ϕ‖ =

√
〈ϕ,ϕ〉, ∀ϕ ∈ H. (23)

The weight function w(α,β), which allows to consider Jacobi
polynomials as an orthonormal basis forH, is given by

w(α,β)(τ) =

{
(1− τ)α(1 + τ)β , τ ∈ [−1, 1]

0, τ /∈ [−1, 1] ,
(24)

with real exponential coefficients α, β > −1 as a degree of
freedom. Then, it is possible to introduce an orthonormal basis
P

(α,β)
i , i ∈ N0 for H by the normalized Jacobi polynomials
P

(α,β)
i (see (Szegö, 1959, Sec. 4.3)). Then, according to the

projection theorem (see, e.g. Luenberger (1997)) the best fitting
(in the least squares sense) approximation of N -th order x̂ ∈ H
of x̄ always exists unambiguously, and can be calculated by

x̂(τ) =

N∑
i=0

〈x̄, P (α,β)
i 〉P (α,β)

i (τ), τ ∈ [−1, 1] . (25)

The approximation (25) can be evaluated at any time t′ ∈ It,T .
In order to reduce the approximation error by 1 (see Mboup
et al. (2009)) a delay td ≥ 0 is added, which is selected
as zero p

(α,β)
N+1 of the Jacobi polynomial P (α,β)

N+1 . The delayed
polynomial approximation of x based on (25) can thus be
written as

x̂(t− td) = 〈x ◦ φT , R(α,β)
N,td
〉 (26)

with

R
(α,β)
N,td

(τ) =

N∑
i=0

P
(α,β)
i (τ) (P

(α,β)
i ◦ φ−1

T (t− td)). (27)

The definition of the inner product (22) and also the substitution
τ̄ = t−φT (τ) can be used to represent x̂(t− td) by the integral

x̂(t− td) =

∫ T

0

x(t− τ̄)gN,td(τ̄)dτ̄ =: PN,td{x}(t), (28)

within the original time window It,T and with the kernel

gN,td(τ̄) =
2

T
(R

(α,β)
N,td

w(α,β)) ◦ φ−1
T (t− τ̄) , (29)

which is independent of t, since φ−1
T (t − τ̄) = 1 − 2

T τ̄ .
Because the kernel (29) and its k−1 derivatives have a compact
support due to (24) in [0, T ] for α, β ≥ k, the polynomial

approximation x(k) can be calculated by successive application
of integration by parts yielding

PN,td{x(k)}(t) =

∫ T

0

x(k)(t− τ)gN,td(τ)dτ

=

∫ T

0

x(t− τ)g
(k)
N,td

(τ)dτ =: P(k)
N,td
{x}(t)

(30)
with the derivative of the kernel given by

g
(k)
N,td

(τ) = (−1)k
2

T
(R

(α,β)
N,td

w(α,β))(k) ◦ φ−1
T (t− τ). (31)

The polynomial approximation of x(k) can thus be calcu-
lated by applying of the differentiation approximation operator
P(k)
N,td
{·} to x, i.e., only evaluating integrals.

Furthermore, the polynomial approximation operator PN,td{·}
is linear and the other properties defined in Lomakin and
Deutscher (2019) apply accordingly.

The polynomial approximation can now be applied to the pre-
viously defined residual and fault estimate. In order to evaluate
(20) and (21), all polynomial approximations of y and u, as well
as their time derivatives, must be calculated and then substituted
into (20) and (21) such that
r̂ ≈ Φr(PN,td{ȳ},PN,td{ ˙̄y},PN,td{ū},PN,td{ ˙̄u}), (32)

and
f̂ ≈ Φf (PN,td{ȳ},PN,td{ ˙̄y},PN,td{ū},PN,td{ ˙̄u}) (33)

result. Thus, (I) and (II) of the RGP-FDI can be fulfilled and
fault detection and identification can be performed solely from
the measurable variables u and y.

The application of the polynomial approximation however does
not affect the properties of the residual w.r.t. the decoupling
of the input u and the disturbance d and can be determined
sufficiently well according to the choice of the polynomial
degree N . By applying the operator PN,td{·} to (17), using its
linearity and by substitution of ξ and ξ̇s̄ according to (8), (9)
and (11), the polynomial approximation of r follows from

r̂ = PN,td{r} = PN,td{Λ⊥d
(
ξ̇s̄ − γ − Λuu

)
}

= PN,td{(Λ⊥d ◦Ψ(ȳ, ū))SΨ̃(ȳ, ˙̄y, ū, ˙̄u)} (34)

− PN,td{(Λ⊥d γ) ◦Ψ(ȳ, ū)}− PN,td{(Λ⊥d Λu) ◦Ψ(ȳ, ū)u}
Then, every single element in ȳ, ˙̄y, ū and ˙̄u can be determined
individually with the aid the differentiation approximation op-
erator (see Lomakin and Deutscher (2019)). Similarly, the op-
erator can be applied to (19) to obtain the reconstructed fault f̂
yielding

f̂ = PN,td{f} = PN,td{(Λ⊥d Λf )†Λ⊥d

(
ξ̇s̄ − γ − Λuu

)
}

= PN,td{((Λ⊥d Λf )†Λ⊥d ) ◦Ψ(ȳ, ū)SΨ̃(ȳ, ˙̄y, ū, ˙̄u)} (35)

− PN,td{((Λ⊥d Λf )†Λ⊥d γ) ◦Ψ(ȳ, ū)}
− PN,td{((Λ⊥d Λf )†Λ⊥d Λu) ◦Ψ(ȳ, ū)u}.

Remark 8. According to the calculation rules of the polynomial
approximation operator described in Lomakin and Deutscher
(2019), e.g., the partial approximation, it may be advisable to
apply them to the polynomial approximation of the residual
(34) or the reconstructed fault (35), instead of substituting the
derivatives in ȳ, ˙̄y, ū and ˙̄u, to further decompose the terms and
make the approximation more accurate. 2
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5. EXAMPLE

In this section, the presented method is applied to a nonlinear
example taken from the literature in order to highlight the
advantages of the new fault diagnosis approach in comparison.

As example the faulty satellite from De Persis and Isidori
(2001) is considered, which was slightly adapted by a changed,
angle-dependent effect of the disturbance and is given byẋ1

ẋ2

ẋ3

ẋ4

 =


x2

x1x
2
4 − θ1

x2
1

x4

− 2x2x4

x1

+


0 0
θ2 0
0 0
0 θ2

x1

[u1

u2

]
+


0

2 + cosx3

0
θ2
x1

 d
+
[
0 0 0 θ2

x1

]>
f, x1 6= 0 (36a)

y = [x1 x3 x4]
>
, (36b)

wherein the position (ρ, φ) = (x1, x3) is given in polar co-
ordinates and the radial and angular velocities v and ω are
represented by x2 and x4, respectively. The inputs u1 and u2 are
the radial and tangential thrust, where the fault f is an actuator
fault for u2 and d is the disturbance. The parameters θ1 and θ2

are assumed to be known and nonzero. Though it can be shown
that the algorithm of De Persis and Isidori (2001) is applicable
to (36), its evaluation becomes very tedious. For the presented
method, however, the expressions for the reconstruction of the
fault and the residual can be directly determined with the pre-
sented algebraic methods.

In order to check drift observability for (36), it is verified that
the observability map (4) is a local diffeomorphism for s̄1 =
2, s̄2 = 1 and s̄3 = 1. Then, by application of the Algorithm
1, which was implemented in Matlab with the Symbolic Math
Toolbox, to the system (36) the representation according to (12)
yieldsξ̇1

2

ξ̇2
1

ξ̇3
1

 =

ξ
1
1(ξ3

1)2 − θ1
(ξ11)2

ξ3
1

− 2ξ12ξ
3
1

ξ11


︸ ︷︷ ︸
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+

θ2 0
0 0
0 θ2

ξ11
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Λu(ξ)

[
u1

u2

]

+

2 + cos ξ2
1

0
θ2
ξ11


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Λd(ξ)

d+

 0
0
θ2
ξ11


︸ ︷︷ ︸
Λf (ξ)

f, ξ1
1 6= 0. (37)

Then, the annihilator Λ⊥d results in

Λ⊥d (ξ) =

(
θ2

2

(ξ1
1)

2 +
(
cos ξ2

1 + 2
)2)

·


θ22

(ξ11)2
0

−θ2 (cos ξ21+2)
ξ11

0
θ22+(ξ11)

2(cos ξ21+2)
2

(ξ11)2
0

−θ2 (cos ξ21+2)
ξ11

0
(
cos ξ2

1 + 2
)2


(38)

and correspondingly

(Λ⊥d Λf )†(ξ) =
[
− 1

cos ξ21+2
0
ξ11
θ2

]
. (39)

Since rankΛ⊥d Λf (ξ) = 1 is valid for all {ξ ∈ Rn|ξ1
1 6= 0},

the condition (18) is fulfilled in any neighborhood U(ξ0) of ξ0
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Fig. 1. Simulation results for the measured values as well as the
corresponding input signals, the applied disturbance d and
the obtained fault f with its estimate f̂ , in the presence of
measurement and process noise of the point-mass satellite.

with ξ1
1 6= 0 and thus fault identification is possible. Therefore,

the fault can be identified according to (19) and is given by

f =
y1ẏ3

θ2
− u2 +

2 ẏ1 y3

θ2
+
θ2u1 − ÿ1 + y1 y

2
3 − θ1

y21

cos y2 + 2
. (40)

To eliminate the remaining time derivatives of y in (40), the
polynomial approximation operatorPN,td{·} is applied accord-
ing to (35) with the aid of the partial approximation (see Lo-
makin and Deutscher (2019)) and yields to

f̂ =
1

θ2

N∗∑
i=0

PN,0,i{y1}P̃(1)
N,td,i

{y3}+ PN,td{
y1y

2
3 − θ1

y21

2 + cos y2
}

+ PN,td{
θ2u1

2 + cos y2
− u2}+

2

θ2
P(1)
N,td
{y1}PN,td{y3}

−
N∗∑
i=0

PN,0,i{
1

2 + cos y2
}P̃(2)

N,td,i
{y1}. (41)

The parameters θ1 and θ2 in (36) are chosen to be θ1 =
θ2 = 1. For the polynomial approximation the parameters are
α = β = 3 and N = 1, i.e., first order Jacobi polynomials
are imployed. Furthermore, for the partial approximation (see
Lomakin and Deutscher (2019)) the parameter N∗ is set to 2,
i.e., second order Jacobi polynomials are considered therein.
In order to improve the approximation accuracy, the delay td
was selected as the zero of the Jacobi polynomial of second
order at td = (LTs)/3 = 0.033s and correspondingly for
discrete-time implementation of the simulation the sampling
time of Ts = 0.005s and L = 20 were set according to the
discretization in (Lomakin and Deutscher, 2019, Sec. III B).

The following Fig. 1 depicts the simulation results for sinu-
soidal input signals and disturbances with jumps and frequen-
cies 0.5s−1 and 5s−1. Furthermore, an additive gaussian dis-
tributed measurement noise ω̄y, Nω̄y (0, 10−10) and a process
noise ω̄u,Nω̄u

(0, 10−10) for the variables y and u, respectively,
were added for the simulation to verify the robustness of the
method against noise. The steplike fault f jumps to the value
f∞ = 1 at the time tf = 2.5s.

The simulation results show that the obtained value f̂ of the
fault f is independent of the corresponding input u and the
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disturbance d, as well as their characteristics. Although both
inputs u and d cannot be represented polynomially within an
interval It,T due to jumping signals, the obtained signal of f̂ is
not affected. The reconstruction of the fault thus depends solely
on the parameters N and td of the polynomial approximation.
The simulations verify that the fault is reconstructed with a
delay of 0.033s, which corresponds to the set delay td of the
polynomial approximation. The reconstruction of the fault can
thus be realized independently of all inputs and the RGP-FDI is
thus solved.

6. CONCLUDING REMARKS

As illustrated in this paper, faults acting on nonlinear affine
input MIMO systems can be detected and identified indepen-
dently of each other by the introduced derivative estimation
using a polynomial approximation and decoupled from the dis-
turbance d. It should also be noted that the presented method
can be extended to a more general class of nonlinear systems
such as not complete uniform observable systems, which will
be presented in further research work.
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Appendix A. TRANSFORMATION INTO
OBSERVABILITY NORMAL FORM

For a given drift observable system (1), one has to determine the
ny constants s̄1, ..., s̄ny

such that
∑ny

i=1 s̄i = n and ξ = Φo(x)

is a local diffeomorphism in U(x0). For this, the Algorithm 1,
which is depicted in Fig. A.1 can be applied. If it succeeds, then
it is possible to express ξ and ξ̇s̄ by ȳ, ˙̄y, ū and ˙̄u according to (8)
and (9) and to define the equation (12) for (1). If Algorithm 1
fails, either the differential degree regarding the disturbance and
fault is insufficient (see line 11 in Algorithm 1), or the system
is not complete uniformly observable according to Definition
3 (see line 21 in Algorithm 1). In both cases, however, the
presented method of fault detection and identification is not
applicable.
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