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Abstract: Maneuvering an articulated vehicle on narrow road stretches is often a challenging
task for a human driver. Unless the vehicle is accurately steered, parts of the vehicle’s bodies
may exceed its assigned drive lane, resulting in an increased risk of collision with surrounding
traffic. In this work, an optimization-based path-planning algorithm is proposed targeting on-
road driving scenarios for articulated vehicles composed of a tractor and a trailer. To this end, we
model the tractor-trailer vehicle in a road-aligned coordinate frame suited for on-road planning.
Based on driving heuristics, a set of different optimization objectives is proposed, with the
overall goal of designing a path planner that computes paths which minimize the off-track of the
vehicle bodies swept area, while remaining on the road and avoiding collision with obstacles. The
proposed optimization-based path-planning algorithm, together with the different optimization
objectives, is evaluated and analyzed in simulations on a set of complicated and practically
relevant on-road planning scenarios using the most challenging tractor-trailer dimensions.

Keywords: On-road path planning, articulated vehicles, tractor-trailer vehicles

1. INTRODUCTION

Autonomous driving technologies are expected to revolu-
tionize the transportation industry by increasing the effi-
ciency and safety of vehicles. A significant part of vehicles
in today’s traffic is articulated, such as the tractor-trailer
combination shown in Fig. 1, and are responsible for 9.2%
of all distance driven in roads nowadays (Bureau of Trans-
portation Statistics, 2019). Despite playing an essential
role in the society, the trucking industry is currently facing
a shortage of drivers (American Transportation Research
Institute, 2016). Together, these factors motivate the de-
velopment of self-driving technologies targeting tractor-
trailer vehicles.

A tractor-trailer vehicle is characterized by two bodies of
large dimensions, making it very difficult to successfully
maneuver such vehicles on narrow road stretches, such
as roundabouts or city streets. One difficulty arises from
the so-called off-tracking effect that forces the trailer to
take a short cut when the leading tractor performs a
sharp turn (Jujnovich and Cebon, 2013; Altafini, 2003).
As a consequence, the problem of computing optimized
paths that take the off-tracking effect into account, while
avoiding collision with surrounding obstacles, is both prac-
tically relevant and an important subject which requires
the development of specialized solutions.

? This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

Fig. 1. A tractor-trailer vehicle whose dimensions are used
in this work. A tractor-trailer combination is an exam-
ple of an articulated vehicle. This work considers such
vehicle combinations, which also include articulated
buses. (courtesy of Scania CV AB)

In the literature, off-track reduction of articulated vehicles
has so far mainly been treated as a path-following con-
trol problem (Altafini, 2002; Jujnovich and Cebon, 2013;
Altafini, 2003; Liu and Cebon, 2018; Micha lek, 2015). Even
though these control solutions reduce the off-tracking ef-
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fect, they disregard obstacle-avoidance constraints, as well
as the dimensions of the vehicle bodies. In this work, we
treat the off-track reduction problem as a path-planning
problem in order to guarantee collision avoidance of all
vehicle bodies as well as minimizing a general optimization
objective.

Path planning deals with the problem of computing paths
that an autonomous vehicle can follow. These paths must
be collision-free and comply with the nonholonomic con-
straints imposed on the vehicle. Additionally, they should
also be optimized based on multiple criteria, such as
comfort, safety, and efficiency. Path planning is a widely
studied subject with applications ranging from robotic
manipulators to self-driving vehicles (LaValle, 2006).

The research on path planning for tractor-trailer vehicles
has mainly been focusing on off-road scenarios (Ljungqvist
et al., 2019; Lamiraux et al., 1999; Evestedt et al., 2016; Li
et al., 2019), semi-structured scenarios (Lamiraux et al.,
2005; Beyersdorfer and Wagner, 2013), or low curvature
roads (van Duijkeren et al., 2015). Even though on-road
path planning for passenger cars has received much atten-
tion (Katrakazas et al., 2015; Paden et al., 2016), only a
limited amount of work considers this critical problem for
articulated vehicles, which requires tailored solutions to
comply with the large vehicle dimensions.

In this work, we consider the path-planning problem for
tractor-trailer vehicles during on-road driving scenarios,
characterized by narrow passages with sharp turns. To
this end, the tractor-trailer vehicle is modeled in a so-
called road-aligned coordinate frame, as is commonly
used for on-road driving scenarios (Katrakazas et al.,
2015; Paden et al., 2016). The path planning problem is
then formulated as a nonlinear optimization problem and
solved using a Sequential Quadratic Programming (SQP)
approach based on previous work in Oliveira et al. (2019).
We present a set of novel optimization objectives to use
within the optimization-based path planning algorithm.
These objectives are tailored to minimize the off-tracking
effect of the swept area by the bodies of the tractor-trailer.
We evaluate the impact of the proposed objectives on the
planned paths in a set of simulations, concerning metrics
such as maximum off-track, road-centering alignment of
the total swept area by the tractor-trailer vehicle, and
computation time. In summary, the contributions of this
work are:

• proposal and evaluation of different optimization cri-
teria suitable for on-road path planning of articulated
vehicles;
• implementation of a sequential quadratic program-

ming (SQP) solver, which ensures smooth driving
while guaranteeing precise obstacle avoidance;
• a sequential method for computing the off-tracking,

as well as approximate partial derivatives, of each
point of the vehicle bodies suitable for numerical
optimization approaches;
• simulation results showing the proposed path plan-

ner’s ability to solve complicated on-road planning
scenarios while considering the most challenging
tractor-trailer dimensions.

The remainder of the paper is organized as follows. The
proposed road-aligned model of the tractor-trailer vehicle
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Fig. 2. An illustration of the tractor-trailer vehicle in
the road-aligned frame and definitions of relevant
geometric lengths and vehicle states.

is presented in Section 2. In Section 3, the optimization-
based path planner is presented, as well as a set of
optimization objectives tailored for on-road driving for
tractor-trailer vehicles. Simulation results are presented
in Section 4 and the paper is concluded in Section 5 by
summarizing the conclusions and contributions, as well as
discussing directions for future work.

2. VEHICLE MODELING

This section presents the model of the tractor-trailer
vehicle in the road-aligned frame. Additionally, it derives
linear approximations of the position of the trailer axle
that are suited for usage in numerical optimization.

2.1 Road-aligned tractor-trailer model

The tractor-trailer vehicle considered in this work is com-
posed of a car-like tractor and an interconnected trailer.
The system is illustrated in Fig. 2. The length L1 cor-
responds to the tractor’s wheelbase, length L2 represents
the distance between the center of the trailer’s axle and
the off-axle hitch connection at the tractor, and M1 is the

signed hitch offset (negative in Fig. 2). Lengths Lf1 , Lr1,
and Lr2 correspond to the overhangs of the vehicle, and W
denotes the width of the tractor and trailer.

In the road-aligned frame, the tractor-trailer vehicle is
described in terms of deviation from a geometric reference
path γ, as schematically illustrated in Fig. 2. Define s
as the distance traveled by the position of the tractor’s
rear axle onto its projection to the reference path γ,
and let κγ(s) be the curvature of the reference path.
In this work, the reference path γ corresponds to the
center of the road lane, but could also correspond to the
output solution of a global path planner. The tractor-
trailer vehicle can be described by configuration vector
q = [s, ey, eψ, β1]T , where ey and eψ represent the tractor’s
lateral and orientation error, respectively, with respect
to the reference path. β1 = θveh − θtra is the joint
angle, defined as the difference between the orientation
of the tractor θveh and the trailer θtra. The evolution
of the tractor states (s, ey, eψ) is equivalent to that of
the road-aligned vehicle model used in Gao et al. (2012),
whereas the model of the joint angle β1 can be found in,
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e.g., Ljungqvist et al. (2019). The model of the tractor-
trailer vehicle in the road-aligned coordinate frame is given
by

ṡ = v
cos(eψ)

1− eyκγ(s)
,

ėy = v sin(eψ),

ėψ = v

(
κ− κγ(s) cos(eψ)

1− eyκγ(s)

)
,

β̇1 = v

(
κ− sin(β1)

L2
+
M1

L2
cos(β1)κ

)
,

(1)

where q̇ = dq/dt and κ = tan(φ)/L1 is the tractor’s curvature.
The curvature of the tractor κ is the control input,
which is directly related to its steering angle φ. Since
only forward motion is considered v > 0, time-scaling
can be applied to remove the time-dependency presented
in (1) and transform the model into an equivalent spatial
model (Gao et al., 2012). Using the chain rule, it holds that
dq/ds = dq/dt1/ṡ, and the resulting spatial model becomes

e′y = (1− eyκγ) tan(eψ),

e′ψ =
1− eyκγ
cos(eψ)

κ− κγ ,

β′1 =
1− eyκγ
cos(eψ)

(
κ− sin(β1)

L2
+
M1

L2
cos(β1)κ

)
,

(2)

where (·)′ = d(·)/ds and s′ = 1. Therefore, the state vector
is defined as z = [ey, eψ, β1]T . The spatial model in (2)
is discretized and linearized as done in Oliveira et al.
(2019). First, the reference path γ is discretized along its
length resulting in {si}Ni=0, with si = i∆s, where ∆s is
the path sampling distance. A linearization is then done
around the reference states s̄ = {s̄i}Ni=0, ēy = {ēy,i}Ni=0,
ēψ = {ēψ,i}Ni=0, β̄1 = {β̄1,i}Ni=0 and κ̄ = {κ̄i}Ni=0, using a
first-order Taylor approximation. Thus, a linear discrete-
time model in the form zi+1 = Aizi+Biκi+Gi is obtained,
where zi = [ey,i, eψ,i, β1,i]

T .

2.2 Trailer-axle states

The model in (2) describes behavior of the tractor’s states
as well as the joint-angle between the tractor and the
trailer. However, it does not contain direct information
about the position and orientation of the trailer’s axle.
For on-road planning purposes, it is of interest to also
have equivalent trailer state variables (stra, ey,tra, eψ,tra).
These state variables can then be used to define planning
objectives, such as minimizing the lateral error of the
trailer axle ey,tra, as seen later in Section 3.2.

Unfortunately, the road-aligned model does not allow for
an analytical expression that relates the evolution of the
trailer states (stra, ey,tra, eψ,tra) as a function of the mod-
eled ones x and the tractor’s curvature input κ. This
is due to the distortions introduced in the road-aligned
frame (discussed in detail in Oliveira et al. (2019); Altafini
(2002)). The solution is to compute an approximate rela-
tionship of (ŝtra, êy,tra, êψ,tra), which depends linearly on
the tractor-trailer states in (2).

Assuming a reference vehicle state x̄ = [s̄, ēy, ēψ, β̄1]T , we
compute the corresponding position and orientation of the
trailer’s axle (s̄tra, ēy,tra, ēψ,tra) as:

(s̄tra, ēy,tra, ēψ,tra) = f(s̄, ēy, ēψ, β̄1, γ).

Function f first computes the equivalent Cartesian state
of x̄, it then computes the Cartesian position of the rear
axle of trailer for that given state, and finally converts
that position into the road aligned state (s̄tra, ēy,tra, ēψ,tra),
by projecting it onto the reference path γ. We note that
function f is not analytical due to the last step requiring
the projection of a Cartesian position onto an arbitrary
path γ with varying curvature κγ . However, in the special
case of a straight reference path, f can be described by a
closed-form expression (Altafini, 2002).

To compute the approximation of (ŝtra, êy,tra, êψ,tra) we
then need to understand how (s̄tra, ēy,tra, ēψ,tra) changes
with respect to states (ey, eψ, β1). This can be done by
approximating the partial derivatives ∂ey,tra/∂ey, ∂ey,tra/∂eψ,
∂ey,tra/∂β1, ∂eψ,tra/∂ey, ∂eψ,tra/∂eψ, and ∂eψ,tra/∂β1, e.g., using
finite differences. The linear approximation of the trailer
states can then be defined as follows:

êy,tra = ēy,tra +
∂ey,tra
∂ey

(ey − ēy) +

∂ey,tra
∂eψ

(eψ − ēψ) +
∂ey,tra
∂β1

(β1 − β̄1),

êψ,tra = ēψ,tra +
∂ey,tra
∂ey

(ey − ēy) +

∂ey,tra
∂eψ

(eψ − ēψ) +
∂ey,tra
∂β1

(β1 − β̄1).

(3)

This model is a linear approximation of the lateral and
orientation error of the trailer axle with respect to the
reference path γ at a fixed path length s̄.

3. PLANNING APPROACH

In this section, the on-road path planning problem is
formulated as an Optimal Control Problem (OCP) and
an SQP approach to solve it is presented. Moreover, a set
of different optimization objectives is presented targeting
tractor-trailer on-road driving based on principles from
human-like driving goals.

3.1 Optimal control problem

The on-road path planning problem for the tractor-trailer
vehicle is formulated as the following OCP:

minimize
κ

Jke (ey, ey,tra) + Jκ(κ) (4a)

subject to zi+1 = f(zi, κi), i ∈ {0, ..., N − 1}, (4b)

z0 = zstart, κ0 = κstart, (4c)

pobs,iey ≤ g(zi), i ∈ {1, ..., N}, (4d)

|κi| ≤ κmax, i ∈ {1, ..., N − 1}, (4e)

|κi − κi−1| ≤ κ′max, i ∈ {1, ..., N − 1}, (4f)

where ey = [ey,1 . . . ey,N ]T ∈ RN , ey,tra = [ey,tra,1
. . . ey,tra,N ]T ∈ RN , and κ = [κ0 κ1 . . . κN−1]T ∈
RN . The optimization objective (4a) is composed of two
terms, the first term Jke penalizes quantities related to
the vehicle states, and the second term Jκ that penalizes
control inputs. Different types of Jke terms are discussed
later in Section 3.2. In this work, the term Jκ(κ) =∑N-1
i=1 (κi − κi−1)

2
to enforce a smooth curvature profile

which is directly related to a comfortable driving behavior.
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The constraint in (4b) corresponds to the vehicle model,
whereas (4c) defines the initial constraints on the vehicle
states and control input. Obstacle avoidance is ensured
through constraint in (4d), which forces the vehicle’s
bodies to not collide with any obstacle nor exiting the
road. For a more detailed definition of the constraints,
the reader is referred to Oliveira et al. (2019). The last
constraints in (4e) and (4f) define the tractor’s curvature
limitations including saturation κmax and rate limit κ′max.

To solve the OCP in (4), an SQP approach is used that is
based on the work in Oliveira et al. (2019). Between each
SQP iteration, the vehicle model (4b) is linearized around
the solution of the previous iteration. Here, a first-order
Taylor series approximation of the vehicle model (2) is used
to obtain a linear prediction model of the tractor states ey

and eψ as well as the joint-angle state β1. Furthermore,
the trailer states ey,tra and eψ,tra are obtained using the
approximation given by (3).

3.2 Optimization objectives

In this section, we introduce a set of different candidate
optimization objectives Jke to be used in (4).

Optimization objective 1 - Tractor centering In ordinary
conditions, a vehicle is driving as much as possible in
the center of its lane. In this work, we assume that the
reference path γ of the road-aligned frame corresponds to
the center of the lane. Given such an assumption, centering
the tractor is achieved by minimizing |ey| (note that if the
tractor is driving precisely on the center, then ey = 0). The
first optimization objective J1

e is then defined to be the
square of the euclidean norm of the lateral displacement
of the tractor along the planned path:

J1
e = ‖ey‖22 .

Optimization objective 2 - Trailer centering In the case
of articulated vehicles centering the tractor on the road
might not suffice. One should take into account the pres-
ence of the trailer, which might severely deviate from the
center of the road, even when the tractor is centered.
This is notably true in turns, where the off-tracking effect
is more critical, causing the trailer to significantly cut
through the inside of the curve. Thus, optimization objec-
tive J2

e is defined so as to minimize trailer displacement:

J2
e = ‖ey,tra‖22 .

Optimization objective 3 - Tractor and trailer centering
The third objective tries to center both the tractor and
the trailer at the same time. Instead of focusing either
on the tractor or the trailer, we focus on minimizing the
lateral error of both. This is achieved by defining the third
optimization objective as:

J3
e = ‖(1−K)ey +Key,tra‖22 ,

where K ∈ [0, 1] is a design parameter. The value of K
specifies the important trade-off between centering the
tractor or the trailer around the road center. A method
for determining a suitable K will later be presented
in Section 4.2.

Optimization objective 4 - Tractor and trailer maximum
deviation minimization The fourth candidate, unlike the

reference path γ

lL1
lR1

lL2
lR2

lLM−1
lRM−1

lLM
lRM

Fig. 3. Illustration of the auxiliary variables
lL1 , . . . , l

L
M , l

R
1 , . . . , l

R
M that are sampled uniformly

across the vehicle length and used to measure the
lateral displacement of the vehicle sides. These
variables provide an estimate of how much the
vehicle sides deviate from the center of the road.

previous ones, uses the L∞-norm. By using an L∞-norm,
we minimize the worst lateral deviation of the vehicle
states. Intuitively, we expect this to result in planned
paths that minimize the maximum lateral deviation of the
vehicle axles from the road center. The fourth optimization
objective is then defined as:

J4
e = ‖(ey, ey,tra)‖∞.

Optimization objective 5 - Swept area minimization
The last objective focuses on minimizing the distance
of the vehicle sides to the center of the road. To do
so, we define the vector of auxiliary variables q =
[lL1 , l

L
2 , . . . , l

L
M , l

R
1 , l

R
2 , . . . , l

R
M ]T , as shown in Fig. 3. The su-

perscripts L and R correspond to the left (L) and right (R)
sides of the vehicle. Vector q measures the displacement
of the vehicle’s sides to the center of the road. A vector
qi is computed for each vehicle state (ey,i, eψ,i, β1,i). In
the ideal case, one would like to keep the vector qi as
small as possible, resulting in the tractor-trailer vehicle
body driving as close as possible to the center of the road.
Thus, the optimization objective J5

e is defined as:

J5
e = ||(q1,q2, . . . ,qN )||∞.

With this optimization objective, we expect the path plan-
ner to find a solution that minimizes the most significant
displacement of the vehicle sides to the center of the road.

Note that this objective directly uses the positional infor-
mation of the vehicle sides in its formulation, and therefore
takes into account the vehicle’s dimensions. This is unlike
the previous candidate objectives that only make use of
the axle positions to center the tractor-trailer vehicle.

4. SIMULATION RESULTS

In this section, the performance of the proposed on-road
path planner with the different optimization objectives
is evaluated using a set of relevant performance metrics.
Furthermore, simulation results for two realistic urban
driving scenarios are presented to highlight the capabil-
ities of the proposed path planner. We use the vehicle
parameters and dimensions for the tractor-trailer vehicle
shown in Fig. 1 which are summarized in Table 1. Note
that the total length of the tractor-trailer vehicle sums up
to 24 meters, which corresponds to the maximum length
legally allowed in Sweden, and therefore one of the most
challenging tractor-trailer dimensions that are allowed to
drive on public roads in Sweden. The simulations have
been performed on a laptop computer with an Intel Core
i7-6820 HQ@2.7GHz CPU. The path planner has been
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Table 1. Vehicle parameters of the tractor-trailer vehicle.

Vehicle parameter Value

Tractor’s wheelbase L1 3.78 m
Tractor’s rear overhang Lr

1 1.64 m

Tractor’s front overhang Lf
1 1.46 m

Length of off-hitch M1 −0.30 m
Width of tractor and trailer W 2.54 m
Length of trailer L2 13.97 m
Trailer’s rear overhang Lr

2 4.50 m
Tractor’s maximum curvature κmax 0.1 m−1

Tractor’s curvature-rate limit κ′max 0.1∆s

implemented in MATLAB where CVX is used as convex
solver (Grant and Boyd, 2014) in each SQP iteration.

4.1 Performance metrics

To understand the performance of the different optimiza-
tion objectives proposed in Section 3.2, a set of perfor-
mance metrics are introduced. First, we would like to mea-
sure the maximum amount the vehicle bodies sweep on the
road. Performance metrics max left and max right measure
the maximum offset from any point on the vehicle body
to the center of the road. max left measures the maximum
amount to the left of the road center, whereas max right
measures the amount to the right of the road center. An
illustration of these metrics can be seen in Fig. 5.

The second metric aL−aR measures the difference between
the areas swept by the vehicle bodies to the left and to the
right of the road center. In the case of a straight road, and
if the vehicle drives exactly on the center, the value of this
metric would be zero. Large values of this metric indicate a
preference for the vehicle to be off-centered, with a positive
value indicating a tendency to drive on the left of the road
center, and a negative value indicating a tendency to drive
on the right. The closer this metric is to zero, the more
centered the tractor-trailer drives.

The final metric CPU time measures the amount of
time required to solve the OCP in (4a) using different
optimization objectives. This metric is used to compare
the computational effort that the different optimization
objectives require from a computing unit.

4.2 Comparison of different optimization objectives

Here, we compare the results of using the different opti-
mization objectives introduced in Section 3.2. Fig. 4 shows
the envelopes of the areas swept by the vehicle when per-
forming a U-turn, and using different objectives. Table 2
presents in detail performance measurements of each of
the objectives for a selected U-turn with a curvature of
0.065 m−1 (turning radius of 15.38 m). The optimization
has a planning horizon of 134.2 m, and a discretization of
the path of 0.1 m. An individual study of each optimization
objective and its performance follows.

The first objective, J1
e , results in the largest positive (left)

sweep, corresponding to the trailer taking the turn on the
inside up to 8.34 m. Furthermore, the vehicle has a swept
area, defined as the difference between the area swept to
the left and right of the lane center, of 312 m2, indicating
that it tends to the inside of the turn. This is a direct
result of the objective formulation, which tries to keep the
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Fig. 4. Comparison of the maximum offset and swept area
by the articulated vehicle using different optimiza-
tion objectives. Table 2 provides detailed information
about the swept areas and maximum offsets.

tractor on the road center while disregarding the trailer.
Thus, the trailer cuts too much on the inside of curves,
making this optimization objective unsuitable.

Likewise, the second objective J2
e results in the largest

negative (right) sweep, corresponding to the tractor taking
the turn on the outside up to 7.83 m from the road
center. The swept area is −302 m2, indicating a clear
preference for driving on the outside of the turn. This is not
surprising, as the formulation only attempts to keep the
trailer rear axle centered on the road. In order to keep the
trailer on the road center, the tractor drives excessively on
the outside, making this optimization objective unsuitable.

Before evaluating objective function J3
e , we first need to

find the best value K. To do so, we perform a discrete
search over the interval K ∈ [0, 1], and measure the
performance of the resulting planned path with respect
to the area difference metric aL − aR. We run the path
planner with different values of K for several U-turn
roads of different curvatures and obtain that K = 0.45 is
consistently performing the best for all roads. Therefore,
we select K = 0.45 in optimization objective J3

e . Using
the K in optimization objective J3

e , results in a balanced
trade-off between the cut-in of the trailer and the cut-out
of the tractor, as well as a small swept area of −5 m2.

Optimization objective J4
e achieves a better trade-off be-

tween the cut-in and cut-out than J1
e and J2

e , however
it is significantly worse than J3

e . Furthermore, since this
objective uses the infinity norm, the vehicle does not have
any incentive to come back to the center of the road after
the turn finishes, as shown in Fig. 4. This happens because
the infinity norm in J4

e only penalizes the vehicle state that
leaves the road center the most, resulting in an excessively
large swept area of −406 m2.

Finally, optimization objective J5
e shows the a quite good

trade-off between cutting in and out of the road, resulting
in a good balance between maximum cut-in and maximum
cut-out. We note that this trade-off is slightly worse than
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Fig. 5. Path performed by the tractor-trailer when using
optimization objective J3

e . The planned solution fairly
balances the maximum cut-out of the tractor to the
right of the road center, and the maximum cut-in of
trailer to the left of the road center. max left and max
right measure the maximum amount of sweep of the
vehicle body to the left and right of the road center.

the one achieved by J3
e , however it does not rely on the

tuning of parameter K as is the case with J3
e . Similarly to

J4
e , objective J5

e also suffers from the problems associated
with the infinity norm. We can see in Fig. 4 that the vehicle
does not converge to the center of the road at the final
section of the path. Moreover, we note that objective J5

e
makes the optimization problem very expensive to solve,
as a CPU time of 770.71 s is required to solve the OCP.
This optimization objective is therefore not suitable for
implementation on a real system with online planning
requirements.

We conclude that optimization objective J3
e is the most

suited for our purposes. Firstly, it achieves a low swept
area, as well as a balanced trade-off between maximum
cut-in and cut-out. Secondly, since it penalizes all states
along the planned path, it takes the vehicle to the center of
the road in both turning and straight segments. Thirdly,
its CPU time of 22.03 s makes it promising for usage in
online planning for autonomous vehicles.

Remark 1. The previous analysis focuses on a specific U-
turn defined by a curvature of 0.065 m−1. The same
analysis was also made for several other U-turns with
different curvatures, as well with curvatures with different
sign (turning clockwise, as opposed to counterclockwise).
The comparisons and conclusions made previously are
also observed in the majority of distinct U-turns we have
tested.

Remark 2. The CPU times were measured in a MATLAB
implementation running on a personal laptop, and the op-
timization problem was solved for the whole length of the
road. We expect that a real implementation could greatly
speed up the computation times, due to: 1) implementa-
tion in a low-level language, such as C++; 2) reformulation

Table 2. Performance indexes of the different optimiza-
tion objectives. The measures max left and max right
correspond to the maximum amount swept by the vehicle
body to the left and right of the road center, respectively.
aL − aR is the difference between the area swept to the
left (L) and to the right (R) of the road center. CPU
time corresponds to the time required to solve the OCP

in (4) using the different optimization objectives.

Objective max left max right aL − aR CPU time

J1
e 8.34 m 2.06 m 312 m2 7.92 s

J2
e 1.79 m 7.83 m −302 m2 17.93 s

J3
e 4.79 m −4.82 m −5 m2 22.03 s

J4
e 4.25 m −4.82 m −406 m2 13.53 s

J5
e 4.70 m 4.78 m 4 m2 770.71 s
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Fig. 6. The tractor-trailer vehicle performing a 450-degree
turn in a roundabout. The planned path successfully
balances the tractor and trailer cut-out and cut-in
towards the right and left sides of the road center.
The roundabout and vehicle dimensions are based on
the work in Jujnovich and Cebon (2013).

of the QP problem and use of a tailored solver; 3) execu-
tion in a receding horizon fashion, which will significantly
reduce the length of the road considered for planning (and
therefore the number of vehicle states to be optimized),
and provide initial guesses to the optimization problem
allowing for efficient warm-starts.

The planned path for the tractor-trailer vehicle using
optimization objective J3

e is shown in Fig. 5. We observe
that the optimal solution achieves a balanced trade-off
between the cut-in of the trailer body and the cut-out of
the tractor body.

4.3 Driving on a roundabout

In this section, the performance of the proposed path plan-
ner using optimization objective J3

e is evaluated on a 450-
degree turn performed in a roundabout that is illustrated
in Fig. 6. The roundabout scenario is equivalent to the one
presented Jujnovich and Cebon (2013), where it is used to
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Table 3. Vehicle parameters for the tractor-trailer vehicle
used in the roundabout scenario. Values partially based

on Jujnovich and Cebon (2013).

Vehicle parameter Value

Tractor’s wheelbase L1 3.47 m
Tractor’s rear overhang Lr

1 1.34 m

Tractor’s front overhang Lf
1 1.16 m

Length of off-hitch M1 −0.30 m
Width of tractor and trailer W 2.54 m
Length of trailer L2 9.40 m
Trailer’s rear overhang Lr

2 3.03 m
Tractor’s maximum curvature κmax 0.1 m−1

Tractor’s curvature-rate limit κ′max 0.1∆s

test for compliance with UK requirements for roundabout
maneuvers. The curvature of the roundabout is 0.056 m−1

(turning radius of 17.88 m), the planning horizon of the op-
timization problem is 245.8 m and the sampling distance is
0.2 m. Moreover, the work in Jujnovich and Cebon (2013)
considers a smaller tractor-trailer combination, which we
mimic by setting the tractor-trailer vehicle dimensions to
the ones listed in Table 3.

We note that since we are considering a vehicle with signif-
icantly different dimensions, we need to adjust parameter
K of optimization objective J3

e . To do so, we run the path
planner with different values of K in several U-turn roads,
and select K = 0.40 as it is the parameter that performs
best for all roads.

The simulation results are presented in Fig. 6. The optimal
solution takes 11.88 s to compute and as can be seen, the
planned path properly balances the cut-out and cut-in of
the tractor and trailer as it drives along the roundabout.
The vehicle smoothly enters and exits the roundabout,
while keeping its swept width reasonably small at all times.

4.4 Collision avoidance

We set up a challenging scenario to illustrate the collision
avoidance capabilities, enforced via constraints in (4d).
We again consider a vehicle with the maximum allowed
dimensions, as reported in Table 1. In this scenario, the
vehicle drives along a sharp U-turn, with a curvature of
0.040 m−1 (turning radius of 25 m). Two obstacles are
placed on the road, resulting in the planned solution shown
in Fig. 7. We see the vehicle initially turning towards
the outside of the turn to avoid a collision with the first
obstacle. The obstacle avoidance constraints of the trailer
body dictate this maneuver, guiding the tractor towards
the outside so that the trailer safely avoids the obstacle.

Later on, the second obstacle forces the vehicle to the
inside of the turn. This maneuver occurs due to the
obstacle avoidance constraints of the tractor body, that
force the vehicle to avoid the obstacle. The trailer follows
safely, as it is dragged along through the inside of the turn.

In this scenario, the curvature of the U-turn is 0.065 m−1

(turning radius of 15.38 m), the planning horizon of the
optimization problem is 134.2 m with a sampling distance
of 0.2 m, and the measured computation time is 108.41 s.
We comment that such a high computation time is due
to the complexity of the maneuver, requiring the SQP
solver to perform several iterations until converging to a
feasible solution. The dimensions of the vehicle severely
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Fig. 7. The tractor-trailer vehicle avoiding obstacles lo-
cated in a U-turn. The first maneuver swerves the
vehicle so that the trailer avoids the obstacle on the
inside of the turn. The second maneuver takes the
tractor to the inside of the turn, avoiding a collision
with the second obstacle. Both tractor and trailer
converge to the road center after the turn.

impact computation times, as noticed by the fact that the
same scenario solved for a vehicle with the dimensions used
in Jujnovich and Cebon (2013) results in a computation
time of 29.89 s, significantly lower than the time required
for the case of the larger vehicle.

4.5 Model fidelity

The road-aligned tractor-trailer model bases itself on the
well studied kinematic bicycle model. The work in Kong
et al. (2015) shows that this model is suitable for describing
vehicle movement at low lateral forces, which corresponds
to the use case of the articulated vehicles studied in this
work.

The linearization and discretization of the vehicle model
introduce errors in the vehicle model. However the usage
of an SQP strategy helps to address these issues. By
sequentially linearizing the problem and solving until
convergence, the SQP ensures that the planned solution
path is arbitrarily close to the linearization reference. This
convergence ensures that the planned path follows the
nonlinear kinematic model.

Moreover, in practical applications, the proposed planner
would be implemented in a receding horizon fashion. In
this way, the optimal planned solution computed is only
used during the following planning interval. At the next
planning interval, the planner computes a new path based
on the current vehicle state and environment observations
over the shifted horizon. Thus, the planner works in
a closed-loop, alleviating possible modeling errors that
might arise.
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5. CONCLUSION

We have proposed an optimization-based on-road path
planner for tractor-trailer combinations, as well as articu-
lated buses, driving in urban environments. The planner
solves an optimal control problem using a tractor-trailer
road-aligned vehicle model and an iterative method for
computing the off-tracking, as well as approximate partial
derivatives of each point of the vehicle bodies. Further-
more, we propose and study in detail a set of candidate
optimization objectives for the optimal control problem,
showing that standard passenger vehicle objectives are not
suitable for tractor-trailer vehicles. We then select the op-
timization objective that renders in optimized paths which
result in less intrusive driving caused by the swept path of
the tractor-trailer vehicle’s bodies. Finally, we present two
challenging urban scenarios, a U-turn with obstacles, and
a 450-degree roundabout. In both scenarios, the proposed
method plans a human-like path while ensuring collision
avoidance and centering of the tractor and trailer bodies.
Computation times show that the proposed planner has
promising capabilities of being further developed into an
algorithm to be implemented in real vehicles.

As future work, we plan to make the solution suitable for
implementation in real vehicle hardware. Thus, it becomes
necessary to reduce computation times, which we expect
to achieve by using a low-level programming language, a
receding-horizon approach to the optimal control problem,
and a tailored QP solver. Besides, we would also like
to consider more complicated combinations of articulated
vehicles, which can either be composed of more vehicle
bodies, or actively-steered trailer wheels.
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