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Abstract: In this paper, a new control scheme for sampled-data nonlinear model predictive
control is proposed making use of a multi-rate based trajectory planning for designing admissible
references over the prediction horizon. The proposed controller is compared with existing
reference generators for model predictive control through simulations over a benchmark example.
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1. INTRODUCTION

Several control problems involve the cancellation of the so
called zero-dynamics. This issue is even more evident in
the nonlinear context when solving input-output feedback
linearization or tracking problems (see Isidori (2013)).
The problem becomes more delicate under sampling and,
in particular, when direct digital control approaches are
employed to design the controller. In that case in fact,
the minimum-phase property of the system can even be
lost for small sampling periods, due to the appearance
of the unstable so-called sampling zeros (Åström et al.
(1984); Monaco and Normand-Cyrot (1988) for linear and
nonlinear cases).
The idea of making use of a piecewise constant control over
sub-intervals of the sampling interval, that is multi-rate
control, has been properly introduced in the nonlinear con-
text to overcome the aforementioned pathologies (Monaco
and Normand-Cyrot (1992)). The possibility of varying
the control several times in the sampling interval confers
more degrees of freedom to the control action (Monaco
and Normand-Cyrot (1991, 2001)).
A major limitation in the use of multi-rate control stands
in its intrinsic dependence on the model so implying lack of
robustness. Moreover, since the input signal changes over
sub-intervals of the sampling period, the control works in
open loop at all those sub-intervals since the corresponding
measures of the states are not available.
On the other hand, model predictive control (MPC) repre-
sents a powerful and effective design technique that relies
upon the solution of a constrained optimization problem
subject to the system dynamics plus possible additional
requirements over a finite time horizon. Indeed, it has
now become the mainstay for regulation and tracking
in the industry for constrained multi-input/multi-output
(MIMO) systems (see Camacho and Alba (2013); Garćıa
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et al. (1989)). Additionally, under suitable assumptions, it
has been proved that the feedback generated by a nominal
nonlinear model predictive problem is inherently robust
with respect to different perturbing actions and model
uncertainties (e.g., Picasso et al. (2010); Grimm et al.
(2004); Magni et al. (2009)). Still, as the intuition suggests,
some difficulties may arise when discrete-time models are
used by the MPC designer to ensure a prefixed reference
profile for the output. As sampling induces unstable zero-
dynamics, a naive implementation of MPC feedback might
yield unboundedness of the internal trajectories and thus
of the feedback. To overcome this issue, standard MPC
implementations introduce further penalizing weights on
the objective function and/or constraints (typically LMI)
over the optimization problem (e.g., Bemporad and Morari
(1999); Byun (1988)). As a drawback, such a stratagem is
not based on the understanding of the source of unstability
so that ad-hoc tuning is needed.
Motivated by these reasons, in Elobaid et al. (2019a) a
first attempt to handle those aspects has been proposed by
directly designing MPC utilizing multi-rate inputs and the
equivalent multi-rate sampled-data model for prediction.
Under small penalties on the input, this approach has
been shown to be effective as no further modifications
of the optimization problem are required for preserving
boundedness of the closed loop; however it requires huger
capabilities of the sample and hold devices.
In this respect, this work is aimed to weaken this demand
by leaving the holding and sampling devices (i.e., actua-
tors and sensors) synchronous. The new proposed control
scheme combines a classical single-rate MPC controller
with a multi-rate planner that computes, starting from
samples of the desired output profile, a suitable admissible
reference trajectory to be fed to the MPC. The inner MPC
controller working on the fast sampling rate will now guar-
antee the prefixed boundedness of the internal behaviour
of the overall system with no need of introducing further
constraints. Roughly speaking, in the proposed control
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scheme, MPC is used to robustify multi-rate design, and
multi-rate planning is used to improve MPC.
This work is organized as follows. In Section 2 recalls
on single and multi-rate sampling and model predictive
control are given. In Section 3 the main ideas and mo-
tivations behind multi-rate planning for MPC control are
introduced. Section 4 is devoted to the proposed MPC-MR
control scheme which is applied to the simplified model
of a planar vertical take-off and landing in Section 5.
Concluding remarks end the paper.

Notations: All functions and vector fields defining the
dynamics are assumed smooth and complete over the
respective definition spaces. In the paper T will be the
length of the sampling period, and any suitable sub-
interval will be denoted by δ. MU denotes the space of
measurable and locally bounded functions u : R→ U with
U ⊆ R. Us ⊆ MU denotes the set of piecewise constant
functions over time intervals of fixed length s ∈]0, T ∗[
and T ∗ small enough; i.e. Us = {u ∈ MU s.t. u(t) =
uk,∀t ∈ [ks, (k + 1)s[; k ≥ 0}. Given a vector field f , Lf
denotes the Lie derivative operator, Lf =

∑n
i=1 fi(·)

∂
∂xi

.

The Lie exponential operator is denoted as eLf and defined

as eLf := I +
∑
i≥1

Li
f

i! with I being the identity operator.

Finally, ‖x‖P = x>Px denotes the seminorm of x ∈ Rn for
some P ≥ 0. A function β(·) : [0,∞)→ [0,∞) that is zero
in zero and strictly increasing and unbounded is said to
be of class κ∞. A function R(x, δ) = O(δp) is said to be of
order δp, p ≥ 1 if, whenever it is defined, it can be written
as R(x, δ) = δp−1R̃(x, δ) and there exists a function

β(δ) ∈ κ∞ and δ? > 0 s.t. ∀δ ≤ δ?, |R̃(x, δ)| ≤ β(δ)

2. PRELIMINARIES AND RECALLS

2.1 Sampled-data systems

Single-rate (SR) and multi-rate (MR) sampled-data (SD)
equivalent models of a continuous-time process are recalled
in the sequel (Monaco and Normand-Cyrot (2001)). Con-
sider a nonlinear continuous-time input-affine system

ẋ = f(x) + g(x)u, y = h(x) (1)

and let u(t) ∈ UT and y(t) = yk for t ∈ [kT, (k + 1)T [
(with T ≥ 0 being the sampling period). Then, denoting
xk := x(kT ), yk := y(kT ), uk := u(kT ) for k ≥ 0, the
evolutions of (1) at the sampling instants t = kT with
T ≥ 0, are described by its single-rate (SR) sampled-data
equivalent model

xk+1 = FT (xk, uk), yk =h(xk) (2)

where the mapping FT (·, ·) : Rn × R → Rn admits the
following series expansion in powers of T

FT (xk, uk) =eT (Lf+ukLg)x
∣∣
xk

= xk +
∑
i>0

T i

i!
(Lf + ukLg)

i
∣∣
xk
.

(3)

Since a closed-form expression for the state and output
evolutions of (1) does not exist in general, only approxi-
mated expansions in power of T can be computed. In this
respect, if the series expansion (3) is characterized by a
finite number of terms, then system (1) is said to be finitely
discretizable (Monaco and Normand-Cyrot (2001)).
It is a matter of computations to verify that if (1) has well

defined relative degree, say r ≤ n, the relative degree of
the sampled-data equivalent model always falls to rd = 1;
namely, one has

yk+1 =h(xk) +

r∑
i=1

T i

i!
Lifh(x)

∣∣
xk

+
T r

r!
ukLgL

r−1
f

h(x)
∣∣
xk

+O(T r+1)

so that ∂yk+1

∂uk
6= 0. As a consequence, whenever r > 1,

the sampling process induces a further zero-dynamics of
dimension r−1 (the sampling zero-dynamics, Monaco and
Normand-Cyrot (1988)) that is in general unstable for
r > 1. In that case inversion-like techniques via single-rate
sampling cannot be achieved while guaranteeing stability
of the internal dynamics.
To overcome this pathology multi-rate (MR) sampling,
corresponding to sample the state and output at lower
frequency with respect to changes of the piecewise constant
control, has been introduced in Monaco and Normand-
Cyrot (1991). Accordingly, denoting by uik(t), xik(t) and
yik(t) the input, state and output variables at any t = kT+
(i − 1)δ for i = 1, . . . ,m (with uk = u1k, xk = x1k and
yk = y1k), the multi-rate equivalent model of order m of
(1) gets the form

xk+1 =FTm(xk, u
1
k, . . . , u

m
k ) (4)

with T = mδ, u(t) ∈ Uδ and

FTm(xk, u
1
k, . . . , u

m
k ) =eδ(Lf+u

1
kLg) . . . eδ(Lf+u

m
k Lg)x

∣∣
xk

=

F δ(·, umk ) ◦ · · · ◦ F δ(xk, u1k).

It has been proved by the authors that, with m = r,
the MR sampled-data model has vector relative degree
rδ = (1, . . . , 1) under the choice of a suitable output vector
specified by the output itself and its first (r−1) derivatives.
Accordingly, the corresponding zero-dynamics inherits the
zero-dynamics stability properties of (1) (see Monaco and
Normand-Cyrot (1988)). In addition in Mattioni et al.
(2017), it has been shown that the minimum-phase condi-
tion can be relaxed by increasing the MR order.
This MR-SD equivalent model can then be used to de-
sign tracking controllers over the sampling interval T as
developed in Section 3.

2.2 Sampled-data unconstrained MPC

The problem of tracking a reference v(t) at the sampling
instants is typically addressed within the framework of
nonlinear model predictive control. Roughly speaking,
the feedback is computed to minimize a quadratic cost
function of the form

J =

np∑
i=1

(
‖ek+i‖Q + ‖uk+i−1‖R

)
(5)

with ek(yk, vk) a suitable tracking error, Q > 0, R ≥ 0
being appropriate penalizing weights and np, nc the pre-
diction and control horizons respectively. The functional
cost (5) is repeatedly optimized at each sampling instant
t = kδ over a finite horizon while the feedback is applied
via a receding horizon implementation.
As well know, tracking control implicitly requires zero-
dynamics cancellation. In this respect, as the above prob-
lem is formulated in the sampled-data context, instability
of the closed loop system unavoidably arises due to the
sampling zero-dynamics. To overcome this, the uncon-
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strained MPC problem is typically enriched by redefining
the cost function as

J =

np−1∑
i=1

(
‖ek+i‖Q + ‖uk+i−1‖R

)
+ Vnp

s.t. xk+1 = FT (xk, uk), xnp
∈ Xf

with Vnp and Xf being the terminal cost and constraints
set suitably constructed for keeping the state bounded
(Camacho and Alba, 2013). This new formulation gives
rise to possible feasibility issues so that solution might not
exist for a given set of initial conditions.
On the other hand, reformulation of the tracking MPC
problem under multi-rate sampling allows to overcome
those unstability and feasibility issues while avoiding un-
necessary complications. Indeed, it was proved in Elobaid
et al. (2019a) that, given (1) with well-defined relative
degree and the MPC problem over (5) subject to the
MR-SD model (4), the optimal SD feedback always exists
and is uniquely defined as a formal series in powers of
δ for all np = nc ≥ 1. Thus using MR control at the
implementation level of MPC allows to handle the issues
arising due to sampling, without resorting to penalizing
terminal costs and constraints. However, it places a greater
burden on the sampling and hold devices, assumes a cheap
control, and does not address the issue of working in open
loop over intervals of length T ; this motivates the proposed
control scheme.

3. MULTI-RATE PLANNING FOR MPC CONTROL

For system (1), it is required to design a single rate
piecewise constant state feedback (with sampling period
δ) that tracks samples of suitable reference v(·) at prefixed
sampling instants (that is vk = v(kT ), T = mδ) by
minimizing the cost functional (5) at all t = kδ, k ≥ 0
and ensuring boundedness of the closed loop trajectories.
In the nominal multi-rate scenario and when R = 0 and
Q = I, this can be achieved by considering (4) with
m ≥ 1 and solving in (u1k, u

2
k, .., u

m
k ) the following system

of nonlinear algebraic equations

H(FTm(xk, u
1
k, . . . , u

m
k )) = Vk+1 (6)

where H : Rn → Rm and the vector V are respectively
suitable augmented output and reference vectors so as to
guarantee that, by invoking the implicit function theorem,
the solution exists.
As already commented, major limits of this stand in its
lack of robustness with respect to model uncertainties
and sampling approximations and to the fact it works
in open loop over time intervals of length T . How to
improve its effectiveness? We propose to design a sampled-
data single-rate control law, acting at all t = kδ and
based on the corresponding sampled measures of the state,
through a sampled-data MPC procedure that makes use of
the intermediate reference output values yik resulting from
the application of the nominal control sequence computed
from (6) to the MR-SD model (4). This reference is said
to be admissible in the sense of the definition below.

Definition 3.1. A sampled-data reference sequence {vk, k ≥
0} is said to be admissible for (1) from x0 ∈ Rn if, for
a suitable integer m ≤ n, equality (6) has a solution
{uik, i = 1, . . . ,m} which remains bounded. It will be said
SR or MR admissible if m = 1 or m > 1, respectively.

Note that, from Definition 3.1 a MR admissible sequence
can be suitably enriched to be SR admissible, as suggested
by the following result.

Theorem 3.1. Consider the system (1) and let v(t) be a
reference signal to be tracked at t = kT for k → ∞.
Denote by {vk = v(kT ), k ≥ 0} the sequence of samples of
the reference that is assumed to be MR admissible for a
suitable m > 1 under the input sequence {ûik, k ≥ 0, i =
1, . . . ,m} solution to (6) for all k ≥ 0. Let {ŷik, k ≥
0, i = 1, . . . ,m} be the augmented reference generated
by ŷ1k = vk, and for, i = 2, . . . ,m, ŷik = h(x̂ik) with

x̂1k = x(kT ) x̂ik = F δ(x̂i−1k , ûi−1k ). Then, the unconstrained
MPC problem defined via the cost (5) with ek+i = ŷik−yik
subject to the SR-SD model (2) admits a solution which
is bounded for np = nc ≥ m and R = 0.

Proof: Whenever {vk, k ≥ 0} is admissible, then there
exists a solution sequence {ûik, k ≥ 0, i = 1, . . . ,m}
such that (6) is solved and s.t yk+1 = vk+1, k ≥ 0. Then
applying the solution to (2), one gets x̂ik = F δ(x̂i−1k , ûi−1k )
and correspondingly the intermediate output values ŷik =

h(x̂ik). Setting δ = T
m this sequence is SR admissible by

construction, and by Definition 3.1 there exists a sequence
of controls such that y(kT ) = v̂k, so implying feasibility.
To show that the MPC optimization problem recovers this
solution, one sets np = nc and the proof proceeds along
the lines of (Elobaid et al., 2019a, Th.2, Prop.7). /

Note that the statement above does not assume that the
reference can be tracked in continuous time, but merely
that it is MR admissible. Given a reference v(t) that
system (1) can exactly track (in the sense of Isidori
(2013)[Chapter 4]), then a fast sampling of this reference
vk is MR admissible, namely one can define H(x) =
(h(x), Lfh(x), . . . , Lr−1f h(x))>,V = (v, v̇, . . . ,v(r−1))> as

in (Monaco and Normand-Cyrot, 1991) corresponding to
which which (6) admits a solution. The following result
can be hence given.

Corollary 3.1. Suppose system (1) is minimum-phase and
has a well defined relative degree r ≤ n, then equality (6)
always admits a solution with a multi-rate of order m ≥ r.

Proof: Since (1) has a well defined relative degree, then the
input-output feedback linearization problem is solvable so
that, under feedback and change of coordinates, (1) reads

ż = Az +Bv, η̇ = q(z, η) + p(z, η)v

with A,B, q(·), p(·) as in Isidori (2013)[Chapter 4]. Accord-
ingly, the MR equivalent model of order m ≥ r is given
by

zk+1 = ATmzk +BTmvk, ηk+1 = F̃Tm(zk, ηk, vk) (7)

with ATm = (eAδ)m, BTm =
[
Am−1sr Bsr . . . Bsr

]
and

Asr = eAδ, Bsr =
∫ δ
0
eAδu(τ)dτ and F̃Tm(zk, ηk, vk) =

eδ(Lq+v
1
kLp) . . . eδ(Lq+v

m
k Lp)x

∣∣
(zk,ηk)

. In this setting, zk cor-

responds to H so that (6) reduces to a linear map on the
multi-rate inputs vk. Because Bδm is full rank by construc-
tion and because the relative degree is invariant under
feedback, one gets the solution v̂k = (BTm)−1(Vk+1 −
Aδmzk). Moreover, by the fact that η̇ = q(z, η) + p(z, η)v is
stable, and combined with Theorem 3.1 and the arguments
in Monaco and Normand-Cyrot (1988), one gets that the
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planned trajectories are admissible for the overall dynam-
ics over the small interval δ = T

m . /

Theorem 3.1 applies to finitely discritizable systems.

4. PLANNING AND CONTROL ALGORITHM

In this section, and referring to the discussion above,
we present in a detailed manner the control scheme for
designing a sampled-data feedback uk = u(xk) ensuring
tracking of a given output profile at the sampling instants
t = kT for all k ≥ 0 by exploiting a planned admissible
trajectory generated via the MR model (4).
We assume that the dynamics (1) is finitely descritizable
with FTm(·, û1k, . . . , ûrk) denoting the corresponding multi-
rate finite model of order m (possibily computed under
coordinate change and preliminary feedback).
The following algorithm is proposed by using the admis-
sible sequence {ŷik, i = 1, . . . ,m, k ≥ 0} defined in
Theorem 3.1 as a reference trajectory for the MPC with
np = m. Such a trajectory is computed and updated at all
t = kT based on the nominal multi-rate solution defined
through (4). Thus, for all t ∈ {kT, kT + δ, . . . , kT + (m−
1)δ} the planned reference sequence is fed to the MPC for
computing the optimizing controller which is guaranteed
to exist for R ≥ 0 small enough by virtue of Theorem 3.1.
Specifically, the algorithm works over the steps depicted
in Algorithm 1.

Algorithm 1 Planning and control algorithm

1: Initialization:

Va ← (vk+1, vk+2)>

xk ← x(kT ), Q← Q,R← R,m← m

2: while t ≥ 0 do
3: if t = (k + j)T, j ∈ Z≥0 then
4: k ← k + j
5: (ŷk, ŷ) = Planning(xk)
6: uk = Control(m,Q,R)
7: else
8: for t = kT + iδ, i = 1, . . . ,m− 1 do
9: uik = Control(m,Q,R)

10: procedure (ŷk, ŷk+1) = Planning(xk,Va)
11: x̂1k ← xk

û1
k
...

ûmk
...

ûmk+1

 =

(
(h ◦ FTm)−1(x̂k, vk+1)

(h ◦ FTm)−1(·, vk+2) ◦ (FTm)−1(x̂k, vk+1)

)
(8)

12: for j = 0 : 1 do
13: for i = 1 : m do

x̂i+1
k+j = F δ(x̂ik+j , û

i
k+j), ŷik+j =h(x̂ik+j).

14: procedure u?k = Control(m,Q,R, ŷ1k, . . . , ŷ
np

k )
15: np ← m
16:

uk = argminuk

np∑
i=1

(
‖ŷik − yik‖Q + ‖ui−1k ‖R

)
17: u?k = u1k

Remark 4.1. From the previous arguments, we only ex-
ploit the samples of the reference over two big steps (that is
vk+1, vk+2 and correspondingly setting in the MR planner
(6) an augmented output vector Ha(x) = (yk, yk+1)>).
This is due to the fact that in the implementation of a
receding horizon algorithm, we will need explicitly the
values of the desired reference sequence over np = m
steps, and writing the second iteration of the MPC (i.e.,
at time t = kT + δ), one notes the explicit dependence
of the (optimal) control on values of the desired output
trajectories at ŷm+1

k = ŷ1k+1.

Remark 4.2. The design the planner can be worked out
on a simplified sampled-data model so to reduce the com-
putational burden related to solve equality (8). When the
conditions of Corollary 3.1 are met, the computations asso-
ciated with the planner are simply the inversion of a matrix
BTm which is full rank by construction. Consequently, as
shown in the case study, one in principle uses a simplified
finite model for the planner, while a more exhaustive one
is employed by MPC for prediction.

Remark 4.3. The proposed control scheme inherits the
nominal robustness properties of MPC (e.g. Grimm et al.
(2007); Picasso et al. (2010); Grimm et al. (2004)). This
will be further demonstrated in the following case study.

5. THE PVTOL AS A CASE STUDY

Let the model of the PVTOL (planar vertical take-off and
landing) aircraft take the form:

ẍ = −sin(θ)v1 + εcos(θ)v2
z̈ = cos(θ)v1 − 1 + εsin(θ)v2

θ̈ = v2

(9)

with output y = h(x, ẋ, z, ż, θ, θ̇) = (x, z)>.

5.1 Construction of the simplified MR planner model

To use our control scheme, we first define the multi-rate
sampled-data model of the PVTOL. To this end, it is
known (e.g. Di Giamberardino and Djemai (1994)) that
(9) is feedback equivalent to a finitely discretizable system,
by setting

v =

( 1

cosθ
+ εθ̇2

−2θ̇2 tan θ

)
+

(
1

cosθ
0

0 cos2 θ

)
u

together with the coordinates change

ζ = ϕ(x, ẋ, z, ż, θ, θ̇) = εϕ1(·) + ϕ2(·)
with ϕ1(·) =

(
cos θ −θ̇ sin θ 0 − sin θ 0 −θ̇ cos θ

)>
, ϕ2(·) =(

z ż tan θ x
θ̇

cos2 θ
ẋ

)>
, thus obtaining

ζ̇ = f̃(ζ) + g̃1(ζ)u1 + g̃2(ζ)u2

f̃(ζ) = (ζ2 0 ζ5 ζ6 0 −ζ3)
>
, g̃1(ζ) = (0 1 0 0 0 −ζ3)

>

g̃2(ζ) = (0 0 0 0 1 0)
>

A multi-rate of order 2 on u1 and 4 on u2 can be employed
to ensure the invertibility of the sampled-data dynamics.
Explicitly writing

u1(t) = uj1(k), t ∈ [(k +
j − 1

2
)T, (k +

j

2
)T [, j = 1, 2

u2(t) = uj2(k), t ∈ [(k +
j − 1

4
)T, (k +

j

4
)T [, j = 1, 2, 3, 4.
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and developing the calculations and rearranging the terms,
we obtain the MR SD equivalent model of the PVTOL as:

ζk+1 = (Aδ +Bδ1(u21))2(Aδ +Bδ1(u11))2ζk (10)

+ (Aδ +Bδ1(u21))2(I +Bδ1(u11))Bδ0(u11, u
1
2)

+ (Aδ +Bδ1(u21))2Bδ0(u11, u
2
2)

+ (I +Bδ1(u11))Bδ0(u21, u
3
2) +Bδ0(u21, u

4
2)

with ζk = ϕ(xk, ẋk, zk, żk, θk, θ̇k) for all k ≥ 0 with

Aδ =


1 δ 0 0 0 0

0 1 0 0 0 0

0 0 1 0 δ 0

0 0 −
δ2

2
1 −

δ3

6
δ

0 0 0 0 1 0

0 0 −δ 0 −
δ2

2
1

 , Bδ0(v, w) =


δ2v

2
δv

δ2w

2
−δ4(1 + v)w

24
δw

−δ3(1 + v)w

6



Bδ1(v) =


03×6

−
δ2

2
v 0 −

δ3

6
v 0

03×2 0 0 0 0

−δv 0 −
δ2

2
v 0


with δ ≥ 0 being the sampling period and T = 4δ.
The model (10) will be used for planning the admissible
reference trajectories.

5.2 Planning and control

For all t = kT , planning of the intermediate output ref-
erences is made on the basis of the simplified equivalent
model (10). Hence one gets for all t = kT +(i−1)δ, an ad-

missible sequence (x̂ik+j ,
˙̂xik+j , ẑ

i
k+j ,

˙̂zik+j , θ̂
i
k+j ,

˙̂
θik+j)

> =

ϕ−1(ζ̂ik), and thus the intermediate reference output values
{(x̂ik+j , ẑik+j), i = 1, 2, 3, 4 and j = 0, 1} for system (9).

Consequently, for all t = kT +(i−1)δ, the MPC computes
the feedback uik (for i = 1, . . . , 4) with the sampled-
data SR model of the PVTOL (in the form (2)) used for
prediction. This feedback is then applied to the simulation
model of system (9) while recomputing the reference for
all t = kT .

5.3 Simulations

In the following we will compare the proposed control
algorithm (denoted MR-MPC) to the stand-alone MPC
with the trajectory planner proposed by Luigi Biagiotti
(2019) (denoted FIR-MPC). Figure 1 depicts the nomi-
nal scenario (with no external perturbations nor model
uncertainties), while in Figure 2 actuator disturbances as
well as uncertainties on the parameter ε are considered.
In all simulations δ = 1 seconds while np = nc = 4
seconds and Q = I. Both schemes will utilize a sequential
quadratic programming SQP based optimization solver.
Time varying references are fixed on both the lateral and
vertical displacements (that is x, z respectively) as a ramp
signal (shown in black) with velocity v0 = 1 m/s to be
tracked at t = kT, T = 4δ.
It results that the proposed control algorithm favourably
compares to the FIR-MPC.
In the nominal case (Figure 1), we set R = 0. Contrarily to
the MR-MPC scheme, the FIR-MPC is unable to follow
the reference over the sampling steps δ and an off-set is
evident. While the number of iterations in each instant to
compute the minimizer is slightly more in the MR-MPC

case, the minimum obtained is lower, namely it is Vnp
= 0

compared to 0.5 obtained by the FIR-MPC.
In Figure 2, R > 0 and a white noise is added on the
actuation signal. In addition the parameter ε = 0.5 in the
simulation model, while the nominal value ε = 0.8 is used
to construct the planner and the prediction model for the
MPC. In this case as well, the proposed algorithm is able
to track the reference over the big intervals T , despite the
effect of uncertainties being evident (although acceptable
i.e. |θ| ≤ 0.1 rads) in the internal dynamics. Note also
that while the number of iterations required to obtain the
minimum is comparable between the two algorithms, the
value function was still lower Vnp = 0.08 for MR-MPC
compared to 0.1 for FIR-MPC. Further simulations are
reported in Elobaid et al. (2019b) comparing the MR-MPC
with FIR-MPC and stand-alone MR control in different
situations.

6. CONCLUSIONS

We establish an intuitive implementation of sampled-data
tracking control through multi-rate planning utilizing dis-
crete time nonlinear single-rate MPC for reference track-
ing. This is done by highlighting the role played by ensur-
ing the availability of good and admissible references to the
MPC controller so to improve the effectiveness of the two
stand-alone design methodologies. Future works concern
the study of the effect of incorporating constraints on the
control, on the benefits incurred by the proposed scheme.

REFERENCES
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