Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Capability comparison of quantum sensors of single
or two qubits for a spin chain system *

Qi Yu *** Daoyi Dong * Yuanlong Wang **** Ian R. Petersen **

*School of Engineering and Information Technology, University of New
South Wales, Canberra, ACT 2600, Australia (e-mail:
vickivicky.qi.yu@ gmail.com; daoyidong @ gmail.com)

** Research School of Electrical, Energy and Materials Engineering,
Australian National University, Canberra, ACT 2601, Australia (e-mail:
i.r.petersen @ gmail.com)

*** Centre for Quantum Dynamics, Griffith University, Brisbane, QLD 4111,
Australia (e-mail: yuanlong.wang.qc@ gmail.com)

Abstract: Quantum sensing, utilizing quantum techniques to extract key information of a quantum (or
classical) system, is a fundamental area in quantum science and technology. For quantum sensors, a
basic capability is to uniquely infer unknown parameters in a system based on measurement data from
the sensors. In this paper, we investigate the capability of a class of quantum sensors for a spin—% chain
system with unknown parameters. The sensors are composed of qubits which are coupled to the object
system and can be initialized and measured. We consider the capability of the single- and two-qubit
sensors and show that the capability of single-qubit quantum sensors can be enhanced by adding an
extra qubit into the sensor under a certain initialization and measurement setting.
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1. INTRODUCTION

Quantum sensing is a newly emerging area which refers to the
use of quantum apparatus to measure a physical quantity (quan-
tum or classical) (Degen et al., 2017). With high sensitivity and
precision, many elementary quantum systems, such as atomic
spin systems, NV center ensembles and trapped irons, serve as
good quantum sensors and are widely used to detect physical
quantities such as magnetic fields, electric fields, temperature,
etc. (Bonato and Berry, 2017). Potential applications of quan-
tum sensors include: precision metrology (Giovannetti et al.,
2011), quantum control (Dong and Petersen, 2010; Dong et al.,
2019; Guo et al., 2019; Shu et al., 2020; Wiseman and Milburn,
2014), quantum experimental design, quantum system identifi-
cation (Burgarth and Maruyama, 2009; Wang et al., 2019; Yu
et al., 2019b; Gao et al., 2016), etc. Research efforts have been
devoted to the design of new quantum sensors to enhance their
sensibility and precision or to carry out tasks that are impossible
using classical methods (Degen ef al., 2017; Bonato and Berry,
2017).

This paper analyses the capabilities of a class of quantum
sensors (qubit sensors), where qubit systems are employed for
sensing tasks. Qubit systems are relatively easy to be con-
trolled and measured, which makes them useful quantum sen-
sors (Nakamura et al., 2017; Shi et al., 2013; Campbell and
Hamilton, 2017; Qi et al., 2017). The object system of interest
is a quantum spin—% chain system whose Hamiltonian is par-

* This work was supported by the Australian Research Council’s Discovery
Projects funding scheme under Projects DP190101566 and DP180101805, the
U.S. Office of Naval Research Global under Grant N62909-19-1-2129, the
Air Force Office of Scientific Research and the Office of Naval Research
Grants under agreement number FA2386-16-1-4065, and the ALexander von
Humboldt Foundation Germany.

Copyright lies with the authors 273

tially given but with unknown parameters (Cappellaro et al.,
2007; Jurcevic et al., 2014). The estimation of these unknown
parameters is a significant problem and many efforts have been
devoted to this area (Bonnabel e al., 2009; Burgarth et al.,
2009; Burgarth and Maruyama, 2009; Wang et al., 2018; Zhang
and Sarovar, 2014; Wang et al., 2018, 2019). The sensing qubits
are coupled to the object system in a specified pattern. As
illustrated in examples, the sensors are also chosen to be spin—%
systems.

In this paper, we define the capability of a sensor to be de-
termined by whether the data obtained by the sensor can be
used to estimate all of the unknown parameters in the system
Hamiltonian, without ambiguity. We first consider and analyse
a single-qubit sensor where only one spin is coupled to the
object system and is then probed using a specified measurement
scheme (Nakazato et al., 2003; Kato and Yamamoto, 2014).
We show that the initial setting and the measurement should
match, otherwise the sensor fails to uniquely determine all
of the unknown parameters. For the initial settings where the
single-qubit sensor fails, we propose to employ a two-qubit
sensor and design a scheme to successfully carry out the sensing
task.

The remainder of this paper proceeds as follows. In Section 2,
we introduce the dynamical modeling of qubit sensors for spin
chain systems. Initialization and measurement constraints are
specified and the concept of sensing capability is introduced. In
Section 3, we analyse the performance of single-qubit sensors
and concentrate on a case in which single-qubit sensors fail to
uniquely determine all of the unknown parameters. Then a two-
qubit sensing scheme is proposed in Section 4 and its sensing
capability is confirmed. Conclusions are presented in Section 5.
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2. DYNAMICAL MODELING AND BASIC SETTINGS
2.1 Qubit sensor

Qubit systems may serve as excellent sensors for information
detection (Sone and Cappellaro, 2017; Wang et al., 2018; Pog-
giali et al., 2018). A qubit system can be a spin—% system, a two-
level atom or a particle in a double-well potential. In this paper,
a number of spin-% systems are employed as the qubit sensor.
The angular momentum of a spin-% system can only take values

of :l:% when measured in any direction, which makes it a two-
state system (Griffiths and Schroeter, 1995). Specifically, we
study a class of qubit sensors where several selected qubits are
coupled to the object system and their dynamics may contain
information about the system. The information of interest for
the object system can be acquired by probing (i.e., measuring)
the sensor.

A two dimensional complex valued vector can describe the
state of a spin-% system, which can be further expressed as the
following linear combination

lv) =al1)+Bl ). (1
Here, o and 3 are complex numbers satisfying the relationship
o + B =1, 2

and | 1) represents the state of ‘spin up’ and | }) represents the
state of ‘spin down’. We may denote

|T>m, “M' 3)

The following Pauli matrices

GX:l:(l)(l):l’ Gy:|:? Bi]7 GZ:|:(1) 01:|7 “4)

together with the identity matrix /, form a complete bases for
the observable space of a qubit system. Later on we also write
X =0,Y=0yand Z = o,.

Note that Pauli operators are non-commuting which means
Pauli measurements are not compatible with each other. The
eigenstates of the Pauli matrices, corresponding to their eigen-
values =+1, are as follows

Wey) = \% H ; W) = \% [_11} G
wo-— [l wma-5[h @
) = H , ) = m - @

2.2 Qubit sensor for a spin—% chain system

Identifying the unknown coupling strengths in a spin system is
one of the basic tasks to study and control a range of quantum
phenomena (Jurcevic et al., 2014). The chain system is usually
regarded as a gray box, which means it can not be initialized,
manipulated or measured (see the right part of the box in Figure
1), even if some limited prior knowledge on the structure of the
object system can be obtained. Therefore, the initial state of the
object system is assumed to be in the maximally mixed state.
The spins in the object chain system only interact with their
adjacent spins. Hence, usually the only practical way to have
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Two-qubit sensor Spin chain system

Fig. 1. Schematic of a two-qubit sensor interacted with a
spin chain system. The object system has N spins and is
assumed to be in a maximally mixed state.

access to the chain system is through a quantum sensor, which
can be both initialized and measured.

To determine the sensing capability of a quantum sensor, a
dynamic model of the whole system including both the sensor
and the object spin chain system is required. The method
employed varies according to the dynamical modeling and
a good dynamic model can benefit the process of capability
determination. For the single-qubit case, we employ the state
space model proposed in (Zhang and Sarovar, 2014). For the
two-qubit sensor, we employ the state space model obtained for
a theoretical analysis and the Grobner basis method in (Sone
and Cappellaro, 2017) to demonstrate the numerical analysis.
In this section, we briefly introduce the dynamical modeling of
spin chain systems with a qubit sensor.

We consider a spin—% chain system consisting of N qubits with

the Hamiltonian
N—1

H= Z I Hy, 3
m=1
where the H,, are known Hermitian operators and the #,, are
unknown coupling constants (strengths) to be estimated (Zhang
and Sarovar, 2014). Considering that the magnitude of those
unknown parameters is of most interest, the objective is to
estimate the magnitudes {|h,,|} of these coupling strengths.

In this paper, we further specify the system to be the exchange
model without transverse field (Franco et al., 2008; Christandl
et al., 2005) whose Hamiltonian is

h
Hy = = (XiXiot + YY), ©)

where the subscript k indicates the k-th spin. To write the
operators in a compact form, we omit the tensor product symbol
and the identity operator unless otherwise specified.

Given the system Hamiltonian H, the time evolution of an
arbitrary system observable O(¢) in the Heisenberg picture is
do(r)

= iH,00),

where i = \/—1 is the imaginary unit and [A,B] = AB — BA.

(10)

Let M be the measurement operator. Note that here we adopt
a time trace measurement approach which involves taking
average of measurements of a quantum system at a certain
time for several runs under the same initial state. The average
measurement value is then used as the expectation (Zhang and
Sarovar, 2014).

The system operators that are coupled to M, together with M,
form the accessible set G = {0 O, O3 --- }. See (Yu et al.,
2019) for a detailed procedure of generating the accessible set.
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Define the system state x as the vector of all the expectations of
the operators in the accessible set G then we have

x=[0, 0y - 0; ---]" (1)

where O0; = Tr(O;p) is the expectation value of observable O; €
G. Intuitively, the elements in G are those which are influenced
by the measurement operator during the time evolution.

The linear equations describing the dynamics of the system can
be written as
X = Ax,
{ y =Cx.

Given the system state x defined in (11), the derivative of x can
be obtained using (10), based on which the A matrix can then be
calculated. Using the initial state of the system, the matrix Xg is
then determined. The matrix C is obtained from the decomposi-
tion coefficients of the measurement matrix onto the operators
in the state x. In (Zhang and Sarovar, 2014), the authors pointed
out that a necessary condition for reconstructing the system is
that all of the unknown parameters in {/;} appear in the matrix
A.

x(0) = xo, (12)

The relationship between a transfer function and state space
functions in (12) is

G(s) = C(sT—A) " 'xo, (13)
where s € C is the Laplace variable. Note that the relationship
between the transfer function and the state space equations is
not bijective, even up to a similarity transformation. There is
a unique transfer function for a given state space matrix while
there are many different state space realizations for a known
transfer function.

The way that the sensor couples with the object system should
be appropriately designed to effectively detect the information
of interest. In this paper, we couple the sensor to the object
system in the form of a string (See Figure 1) (Sone and
Cappellaro, 2017; Wang et al., 2018).

2.3 Constraints on settings and the sensing capability

In practical situations, it can be difficult to initialize a qubit
system to an arbitrary state or to measure the system using an
arbitrary operator (e.g., in a solid-state qubit system). Special
constraints may be applied for individual experiments. Here, we
consider the case where the initial state can only be prepared in
eigenstates of an X operator (e.g., |Wy+)). In this paper, those
constraints apply to both single- and two-qubit sensors.

The measurement capability of sensing qubits is essential. For
example, we may be able to implement the measurement of o,
or o, but not the measurement of c,. The measurement for a
single-qubit sensor can be either o, or o;; the measurement
on a two-qubit sensor can be / ® oy, I ® 0;, 0y ® Gy, Oy R O,
0; ® Oy or 0; ® 0. The readout of the sensor provides us with
information about the object system. These assumptions and
constraints may come from practical engineering applications
of qubit sensors. For example, the manufacturer may calibrate
the initial state of a qubit sensor in a specific state that can be
reset and allow users to make specific measurements. However,
our analysis is also applicable to other cases with different
assumptions.

The sensing capability of a quantum sensor is defined in terms
of whether the sensor can uniquely identify all of the unknown
parameters {/;} in (9). If there is a bijective mapping between
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the unknown parameters and the data obtained from the sensor,
then the sensor is capable of identifying all of the unknown cou-
pling strengths. Thus, we consider the problem of determining
if the mapping between the data and {/;} is bijective or not. In
doing this, we do not consider any noise or uncertainty in the
data.

For cases where the system is of an arbitrary dimension, the
capability of the sensor can be analytically determined if we
are given the state space model (Wang et al., 2018). Otherwise,
given a fixed system dimension, we apply an approach involv-
ing transforming the state space model into its corresponding
transfer function and then employing numerical methods to
determine the unknown parameters (e,.g. using the Grobner
basis method).

The capability of a sensor relates to the following aspects: the
structure of the sensor and the object system, the measurement
scheme and the initial settings. A good sensing scheme should
ensure that all of the unknown parameters appear in the matrix
A with a proper structure and all of the parameters can be
estimated given the measurement data. Here, we consider the
capability of different sensing schemes for both a single-qubit
sensor and a two-qubit sensor.

3. SINGLE-QUBIT SENSOR FOR SPIN CHAIN SYSTEMS

For a single-qubit sensor, an extra qubit is coupled to the
object spin chain system which contains N qubits. We label
the sensing qubit with 3 and the object qubits with natural
numbers. Thus the total number of qubits in the system is N+ 1.
For a single-qubit sensor applied to the system of (9), we have
h B N-1 hk
H= 7(X3X1 +Y1)+ Y 3(ka,€+1 +Y Y1), (14
k=1

where %ﬁ (XpX1 +YgYy) is the interaction Hamiltonian indicat-
ing how the sensor and the chain system are coupled.

The initial state is

Pini = Pg; (15)
where pE = ”%‘X is the eigenstate of Xpg. The superscript x
indicates the state is an eigenstate of the X operator.

The two measurement schemes are Yg and Zg. The correspond-
ing accessible sets are listed below:

1 M =Yg,
G' = {Yp, ZpXi, ZgZ1Ya, ZpZi 2oX3, -+ },
2) M? =Zg,

G~2 = {Zﬁ, YﬁX], XﬁY}, YﬁZIXZa XBZIY27 }

Note that we restrict the initial state to be prepared as eigen-
states of the Xﬁ operator. However, XB belongs to neither the

accessible set G' nor G?, which means the only available initial
state pg is orthogonal to all of the operators in their correspond-

ing accessible sets. To put it differently, the operator X is not

coupled to any operators in the above accessible sets G! and
G2. In this situation, the expectations of the measurements Y
and Z on the sensing spins are always zero which means that for
both cases we have xg = 0. From (12), we always have x =0
which results in the measurement y = 0 for both measurement
schemes M! and M?. Hence, no information can be extracted
in these cases and the single-qubit sensor fails to identify the
system Hamiltonian.
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4. TWO-QUBIT SENSOR FOR SPIN CHAIN SYSTEMS

Since a single-qubit sensor is incapable of uniquely determin-
ing the unknown parameters of the spin chain system under the
settings provided in Section 2.3, a new sensor is needed for
this case. Our solution is to increase the number of qubits in
the sensor and a measurement scheme for the two-qubit sensor
is provided in this section which can perform the sensing task
under the given settings.

4.1 Dynamical modeling

For a two-qubit sensor, two extra qubits are coupled to the ob-
ject spin chain system in the form of a string. The Hamiltonian
of the whole system is

ha hﬁ
:j(XaXﬁ +YaYﬁ)+7(XﬁX1+YﬁY1)
NIy, (16)
+ ) E(Xka-&-l +YYiy),
=1

where hT“(XaXﬁ +YyYg) is the internal Hamiltonian of the

two spins of the qubit sensor while %B (XpX1 + YgYy) is the
interaction Hamiltonian of the sensor and the chain system. The
subscripts o and B indicate the first and second spins of the
sensor, respectively. sy can be fabricated and we assume that it
is known to us while 44 could be either unknown or known. The
sensor is employed to identify all of the unknown parameters in

{1}
The initial state of the two-qubit sensor is chosen as % ® pg.
We assume the measurement operator to be Yy Zg. That means

we measure Y on the first sensing qubit and Z on the second
sensing qubit. The accessible set for Yy Zg is

G ={YaZg, X, ZgV1, YoXp¥1, Xa¥pY1, YoZy, --- }. (17)
Ideally, we expect to obtain a generation pattern shared by cases
where the number N of spins in the object system is different.
We observe that the generation of the accessible set does have a
pattern that works when there are an arbitrary number of spins
in the object system. It is shown in (Yu et al., 2020) that the
generation of the accessible sets has a shared pattern although
giving a simplified uniform description for the general pattern is
usually difficult. For a detailed generation process, please refer
to (Yu et al., 2019, 2020).

Given the accessible set G in (17), we choose the order of
element operators in the state vector x according to (Yu et al.,
2019, 2020), the system state X is defined as

X:(EZ\[S )?/3 Z/ﬁE Yﬁ(ﬁ\)ﬁ YaZi Yﬁﬁ\ﬁ Xﬁﬁ\yl

o — (18)

ZaY1 ZoXpZy,---)'.
Given the state vector in (18), the initial state as Xg and the
measurement as Yo Zg, the coefficient matrices of the state space
model are as follows

F0 —hg 0 —hg O hg 0 0 0 -
he O hg 0 0 0 0 0 0 -
0 s 6 hg 0 0 hy 0 O -
hg O hg 0 —hg O 0 —hg O -
0 0 0 hg 0 —hg O 0 —hg-
A=|-hg 0 0 hg 00 0 0 0 -, (19)
000 ~hg 0 0 0 0 0 hy -
0 0 0°hy 0 0 —hg O —hg--
0 0 0 0 hg O 0 hg 0 -
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X0=[01000---]T (20)
and

C=[10000---]. 2n
Note that the matrix A is a sparse matrix and has a special
repetition pattern. For higher dimensional cases, we assume
that one may employ a similar method to obtain the matrix A,
although this task is usually complicated.

4.2 Capability test when measuring Yo Zg

Numerical results show that for an arbitrary N, the state space
model given in (19), (20) and (21) may not be minimal. The
mapping between the measurement data and a non-minimal
state space model is not bijective. Thus a minimal realization
is required. However, the dimension of the state space model
in this case increases rapidly at the scale of 0(N3) while the
corresponding minimal system has a much lower dimension.
Thus the structure of the state space model is dramatically
changed when obtaining its minimal system. As a result, there
is not a clear repetition pattern in the structure of the minimal
state space model, although the original non-minimal model
has a good repetition structure with increasing N. The unclear
structure of the minimal state space model makes it difficult
to have an analytic result which applies for any spin number
N. Here, we leave the sensing capability testifying problem
for an arbitrary N as an open problem and provide readers
with a numerical method, the Grobner basis method (Sone and
Cappellaro, 2017).

The main idea of Grobner basis method is that: for a given state
space model, one can obtain the system transfer function G(s)
with unknown parameters using (13). On the other hand, one
can also reconstruct a system transfer function G(s) from the
measurement data using the ERA method (Zhang and Sarovar,
2014). Since the two transfer functions describe the same input-
output behavior, we have

G(s) = G(s). (22)
By equating the coefficients in (22), a polynomial set F' with
respect to unknown parameters in {|#;|} can be obtained. The
unknown parameters {|/;|} can then be inferred by solving the
polynomial set F. The sensing capability is then related to the
number of the solutions of F. If the solution of F is unique, the
parameters are identifiable.

The Grobner basis method is a widely used algorithmic solu-
tion for a set of multivariate polynomials (Buchberger, 2001).
Details of the algorithm to test identifiability is given in (Sone
and Cappellaro, 2017). As an example, we illustrate the use of
the Grobner basis method for testing the capability of a two-
qubit quantum sensor when N = 2.

The Hamiltonian for the system (16) when N =2 is

I I
H =% (XoXg + Yo Yp) + jﬁ(xﬁxl +YgY1)

2 (23)
+ %(XIXZ +Y112).

The corresponding matrices for the state space model are given
in (19), (20) and (21). We have
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G(s) = C(sl —A) " 'xg
has'® + (10h + Thahy + 11hgh)s® + -

s'2+ 11(hg +hg +hi)s'0 + -
We sort the numerator and the denominator of the transfer
function by the order of s and only present items of the highest
and second highest order. The residual terms of lower order are
omitted since the first two terms are sufficient for determining
the sensor capability. Moreover, we assume that the transfer
function obtained by the measurement data is

vis!O4vps® 4 -
s12 4 pasl0q o
where vy, vy, v3, --- are real values obtained from the ERA

method (Zhang and Sarovar, 2014). From (22), we have the
following equation

has'® + (10k, + Thahy + 11hghi)s® + -

slz—l-ll(h%x—i-hé—i-h%)slo-i-

(24)

G(s) = (25)

(26)
v1510+vzs8 + .-

We substitute the variables by 6; = hq, 6 = hf}, 65 = h? since
we are only concerned with the amplitudes {|h;|}. Equating the
coefficients in (25) and (26), we have 0, = v, 10613 +76,6, +
116,65 = v, 11(67 + 6+ 63) = v3. The Grébner basis of these
polynomials takes the following form:

g:{el—ah 92—612, 63—613} (27)

where a1 =vy; ap = (—v? +vivs—v2)/(4v1); az = (—33v? —
Tvivs + 11v2)/(44v). It can be seen that there is only one
solution for the magnitudes of all of the parameters. Therefore,
the sensor is capable of identifying these parameters.

We conclude that the two-qubit sensor is capable of identifying
all of the unknown parameter amplitudes {|A;|} in the system
(9) when N = 2. Moreover, for any given N, the capability
can also be confirmed by the Grobner basis method (Yu et al.,
2020).

5. CONCLUSION

We have investigated the capability of a class of qubit sensors.
The object system is a spin chain system whose Hamiltonian
is given with unknown coupling parameters. Qubit sensors are
coupled to the object system in order to achieve parameter
identification. By initializing and probing the qubit sensor, our
aim is to estimate all of the unknown parameters. The objective
of this paper is to determine whether certain proposed sensing
schemes can successfully achieve the sensing task. We compare
the sensing capability of single- and two-qubit sensors subject
to restricted initial settings and measurement schemes. We find
that a single-qubit sensor is not capable of fully performing
the estimation task under the specified settings. To solve this
problem, we propose the use of two-qubit sensors and provide
a case where a two-qubit sensor can estimate all of the unknown
parameters, which reveals an effective way to improve the
capability of quantum sensors through increasing the number
of qubits in the sensor.
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