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Abstract: This paper presents an original NMPC (Nonlinear Model Predictive Control) design
with guaranteed stability for the attitude set-point angle tracking of multicopters. The design
is an extension of our previous work on stabilizing the NMPC scheme for “computed-torque
like” systems by using terminal invariant set constructed under the CTC (Computed-Torque
Control) controller. The novelty resides in the complexity reduction for the design process which
is done by reducing the dependence of the required elements (e.g., the terminal region’s radius,
the Lipschitz constant) on the desired angle set-points which change fast and are not known in
advance. The contributions are validated in simulation over a quadcopter model.
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1. INTRODUCTION

Multicopters (also referred as multirotors) are already
impacting our society: from assessing damage, locating
victims in case of natural disasters to delivering pizzas, and
more (Mogili and Deepak, 2018). Among various research
directions related to the multicopters, the attitude control
problem has raised much interest in both the research and
the aerospace industrial communities (Nascimento and
Saska, 2019) since stabilizing the attitude plays an es-
sential role in controlling the vehicles. While conceptually
simple, there are interesting intricacies due to the strongly
nonlinear rotation dynamics, the singularities occurring
at some specific configurations (e.g., upright position) as
well as constraints on states and inputs. Various attitude
control applications in the literature only assume that
the controlled system will operate in the admissible range
without any necessary enforcement (Freddi et al., 2011;
Nguyen et al., 2017), which probably leads to constraints
violation, invalid control inputs and even instability.
In view of these shortcomings, we propose in this paper
an NMPC (Nonlinear Model Predictive Control) controller
for tackling the attitude control problem under state and
input constraints. The MPC approach is well-known for
its capability of easily handling various constraints with
a standard design while still providing good control per-
formance (Mayne et al., 2000). Thanks to the advances
in fast-solving methods (Badgwell and Qin, 2015), pow-
erful solvers (Wächter and Biegler, 2006) and proces-
sors/microprocessors technologies, it has already become
possible to employ MPC method for aerospace applica-
tions (Gros et al., 2012; Zanelli et al., 2018). However,
there are still remaining issues on MPC design, such as
stability and feasibility. For tackling these issues, two
additional ingredients in the MPC scheme are reported

in the literature: a terminal cost and a terminal con-
straint set (besides the standard indispensable stage cost).
This design is facilitated by the existing designing rules
presented in Mayne et al. (2000) which revolve around
an important ingredient, usually hidden from the MPC
scheme: a local controller, under which, the terminal con-
straint set is both admissible and positive invariant. In our
previous work, Nguyen et al. (2019), we have exploited
the CTC (Computed-Torque Control) law as the local
controller to design the NMPC scheme for “computed-
torque like” systems which stand for a broad range of
systems, such as, aerospace crafts, robot arms and also
the rotation dynamics of the multicopters. The method
provides a larger invariant set and a better insight into
the system’s behavior (w.r.t. the standard approach using
a linear controller (Chen and Allgöwer, 1998)).
In this paper, we apply the contributions in Nguyen et al.
(2019) to design an NMPC controller for angle set-point
tracking with guaranteed stability. The novelties lie in
the several alternative designs for elements such as the
Lipschitz constant and the efficient way to establish the
terminal region. We reduce the dependence of the design
on the desired set-points received from the high control
level which are not known in advance, and hence, mitigate
the complexity of the on-line solving process.

The paper is organized as follows. Section 2 presents the
rotation dynamics of a standard multicopter system and
the corresponding computed-torque controller. Next, Sec-
tion 3 introduces the general NMPC scheme and summa-
rizes the design principals for guaranteeing the closed-loop
stability while the elements of the scheme are detailed in
Section 4. Then, the simulation results are given and dis-
cussed in Section 5. Finally, Section 6 gives the conclusions
and future works.
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2. PRELIMINARIES

2.1 Rotation dynamics of a multicopter system

The rotation dynamics of a multicopter system is usually
employed as those of a fully-actuated 3-dimensional rigid
body (Freddi et al., 2011; Nguyen et al., 2017):

η̇ = W−1ω, (1)

ω̇ = J−1 (−ω × (Jω) + u) , (2)

with η , [φ θ ψ]> ∈ R3, the roll, pitch, yaw angles and

ω , [ωx ωy ωz]
> ∈ R3, the angle rates. The three input

torques are gathered in u , [uφ uθ uψ]> ∈ R3 (i.e. the
multicopter controls the three torques by changing the
relative rotating speeds of its rotors). The inertia tensor is

J , diag{Jx, Jy, Jz} ∈ R3×3 while the matrix W ∈ R3×3

and its inversion are explicitly given by:

W =

[
1 0 − s θ
0 cφ sφ c θ
0 − sφ cφ c θ

]
, W−1 =

[
1 sφ t θ cφ t θ
0 cφ − sφ
0 sφ/ c θ cφ/ c θ

]
,

(3)
with s(·), c(·), t(·) denoting the trigonometric functions
sin(·), cos(·), tan(·), respectively. Furthermore, the system
(1)–(2) is subject to its state and input constraints given
as follows:

X =
{

(|φ|, |θ|) ≤ φmax, (|ωx|, |ωy|) ≤ ωmax

}
, (4)

U =
{
|u| ≤ umax

}
, (5)

with φmax ∈ (0, π/2) the maximum angle value, ωmax ∈
R+ the maximum angle rate and umax ∈ R3

+ gathering the
maximum values of three torques on three axes.

Remark 1. The condition (|φ|, |θ|) ≤ φmax < π/2 is
sufficient to avoid singularities of the matrix W−1 as in (3)
which happens at the perpendicular position, i.e., φ = π/2
and θ = π/2. Also, the roll, pitch angles (φ, θ) and the
two angle rates (ωx, ωy) as in (4) can be constrained by
different limits for each variable. However, it is customary
to design the constraints as in (4) due to the symmetry of
the multicopter system (Hehn and D’Andrea, 2015). In any
case, different bounds for these parameters can be easily
employed within our contributions. �

2.2 Computed-torque control law for attitude control

Computed-torque control (CTC) is a special application
of feedback linearization control particularized for a broad
range of robotics systems referred as “computed-torque
like” systems which admit the Largrangian dynamics
(Lewis et al., 2003; Craig, 2005). The CTC approach is
widely applied for the attitude control problems (Freddi
et al., 2011; Nguyen et al., 2017) which requires first to
transform the system (1)–(2) into its “computed-torque
like” formulation:

JWη̈ + JẆ η̇ + (Wη̇)× (JWη̇) = u, (6)

which is obtained by introducing ω = Wη̇ from (1) to the
dynamics (2). Then, the CTC controller is given by:

uCTC = JWµ+ JẆ η̇ + (Wη̇)× (JWη̇), (7)

in which, η and η̇ are obtained as feedback from the
system. The virtual input µ ∈ R3 is usually designed using
the well-known PD control method:

µ = η̈d +Kηeη +Kη̇eη̇, (8)

with eη = η−ηd, eη̇ = ėη = η̇− η̇d the errors on the angles
and the angle derivatives. The gain matrices are chosen as
Kη = diag{Kφ,Kθ,Kψ} and Kη̇ = diag{Kφ̇,Kθ̇,Kψ̇} in
which all the control gains are strictly negative to ensure
the closed-loop stability (Nguyen et al., 2017).

The CTC attitude controller (7) implies several robustness
problems especially when considering model mismatches,
measurement delays and system constraints (Craig, 2005).
Therefore, a more advanced control technique must be
applied instead. In the next section, we propose an
NMPC (Nonlinear Model Predictive Control) controller
for tackling the multicopter attitude control problem un-
der state and input constraints. Based on our previous
work (Nguyen et al., 2019), the closed-loop stability and
also the solution feasibility of the NMPC controller can be
derived from the properties of the CTC controller (7).

3. NMPC DESIGN FOR ATTITUDE CONTROL

Controlling a multicopter system requires a hierarchical
control design in which, the attitude controller at the low
control level tracks the desired angle ηd , [φd θd ψd]

>

sent from the high control level (Nascimento and Saska,
2019). The desired angles ηd are usually and should
be considered as step references (i.e., (η̇d, η̈d) as in (8)
are fixed as zero) since differentiating these references
potentially introduces large noises to the controlled system
under practical considerations (Cao and Lynch, 2016).
Hence, in the following, we design an NMPC controller
for stabilizing the rotation dynamics (1)–(2) around the
equilibrium consisting of the desired angles ηd, the zero
angle rate and the zero input torque. This is a particular
application of the NMPC design for stabilizing a general
“computed-torque like” system with guaranteed stability
introduced in Nguyen et al. (2019). We first transform the
rotation dynamics (1)–(2) into:

ẋ = f(x, u), (9)

with x , [η η̇]> ∈ R6 and f(·) taking the appropriate
elements from the “computed-torque like” form (6). The
equilibrium point of the dynamics (9) is given by:

xe = [ηd 0]>, ue = 0, (10)

with ηd , [φd θd ψd]
> the angle set-point and 0 ∈ R3

the zero vector. For the problem to be well-defined, the
desired angles need to satisfy the state constraints, i.e.,
(|φd|, |θd|) < φmax as in (4).
The corresponding NMPC optimization problem (OP) at
time t is given by:

min
ut(·)

∫ t+Tp

t

(∥∥x̄(s)− xe
∥∥2
Q

+
∥∥u(s)

∥∥2
R

)
ds (11)

+
∥∥x̄(t+ Tp)− xe

∥∥2
P

subject to:

˙̄x = f(x̄, ū), x̄(t) = x(t), (12a)

x̄(s) ∈ X , ū(s) ∈ U , s ∈ [t, t+ Tp], (12b)

x̄(t+ Tp) ∈ Xf (xe), (12c)

where Tp ∈ R+ is the prediction horizon, x̄(s) and ū(s)
are the predicted state and input while ū(·) stands for
the whole predicted input trajectory along [t, t+ Tp]. The
dynamics f(·) are given in (9). The sets X , U are from
(4)–(5) while the terminal region Xf (xe) ∈ R6 is defined
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hereinafter. The weighting matrices Q, P ∈ R6×6 and
R ∈ R3×3 are all symmetric and positive definite.
Then, the NMPC input at time t is defined as:

uMPC(s, t) = ū∗(s, x(t), xe), ∀s ∈ [t, t+ δ], (13)

with ū∗(s, x(t), xe) with s ∈ [t, t + Tp] the optimal input
resulted from the OP (11)–(12) and δ the sampling time.
The closed-loop stability and the recursive feasibility of the
NMPC controller (11)–(13) has been established in Mayne
et al. (2000); Chen and Allgöwer (1998). They require the
design to satisfy four conditions given as follows:

C1: States constraints satisfaction in Xf , i.e.:

Xf ⊆ X , xe ∈ Xf . (14)

C2: There exists a local controller uloc(x) such that:

uloc(x) ∈ U , ∀x ∈ Xf . (15)

C3: Xf is positive invariant under uloc(x).
C4: ∀x ∈ Xf , the trajectory of the system (9) under

uloc(x) satisfies:

d

dt

(∥∥x− xe∥∥2P)+
∥∥x−xe∥∥2Q+‖u2loc(x)‖2R ≤ 0. (16)

Furthermore, in Nguyen et al. (2019), the foregoing condi-
tions are particularized using the CTC controller uCTC (7)
as the local controller uloc. This allows simpler analysis
(resulted from the linearization effect of uCTC) and larger
size of the terminal invariant set Xf employed in (12c)
(w.r.t. the result obtained from a standard linear controller
as used in Chen and Allgöwer (1998)). The NMPC ingre-
dients proposed in Nguyen et al. (2019) will be introduced
particularly for the system (9) in the next section.

4. NMPC PARAMETERS DESIGN USING A LOCAL
COMPUTED-TORQUE CONTROLLER

Let us consider a ball B centered in (xe, µe) and parame-
terized by a radius ε ∈ R+ as:

B(xe, ε) =
{

(x, µ)| ‖x− xe‖2 + ‖µ− µe‖2 ≤ ε2
}
, (17)

with xe as in (10), µ the virtual input as in (8) and µe = 0
(as η̈d = 0 for set-point tracking). The main ideas given in
Nguyen et al. (2019) are first to establish the condition on
ε such that the set B(xe, ε) from (17) is input constraint
admissible and then, to choose the control gains as in (8)
to make the set B(xe, ε) also invariant. However, various
elements of the setup are constructed depending on the
angle set-point ηd (via xe as in (10)) which is received from
the high control level and hence, is not known beforehand.
This significantly increases the complexity of the on-line
procedure since it has to complete the design first and
then, to solve the NMPC optimization problem (11). Note
that, similar problems also occur for other NMPC design
approaches in the literature (Chen and Allgöwer, 1998;
Mayne et al., 2000) as the terminal constraint sets are
all constructed around the equilibrium. Therefore, this
section will recapitulate parts of the results published
in Nguyen et al. (2019) and also present the original
contributions on how we reduce the dependence of the
controller setup on the equilibrium xe (10) in order to
overcome the aforementioned difficulties.

4.1 Input constraint admissible set

Proposition 2. Let us define two vectors C and M , both
in R3, as follows:

C =
[
Jx
√

1 + s2 φmax Jy Jz

]>
, (18)

M =
1

2

 Jx + 2|Jz − Jy|
2Jy + 2

√
1 + s2 φmax|Jz − Jx|

2Jz + 2
√

1 + s2 φmax|Jx − Jy|

 , (19)

with J = diag(Jx, Jy, Jz) the inertial matrix as in (2) and
φmax the maximum angle as in (4). Next, we further define
εmax as the largest possible positive scalar such that:

Cεmax +Mε2max ≤ umax, (20)

with umax as in (5). Then, for all (x, µ) ∈ B(xe, ε) as in
(17) and with ε ≤ εmax, the followings hold:

‖uCTC − ue‖2 ≤ L(‖x− xe‖2 + ‖µ− µe‖2), (21)

uCTC ∈ U , (22)

with uCTC the CTC controller from (7), (xe, ue) as in (10),
µe = 0, U the input constraint set from (5) and the scalar
L defined as follows:

L = ‖C +Mε‖2 , (23)

with C, M as in (18)–(19).

Proof. The proof starts by applying Taylor’s approxima-
tion to the CTC controller uCTC from (7) around (xe, µe)
as similar to the work in Nguyen et al. (2019):

uCTC = ue + xJ(x−xe) + µJ(µ−µe) +R(x, µ, xe), (24)

with the two Jacobians xJ = (∂uCTC)/(∂x)(xe, µe) = 06×6
and µJ = (∂uCTC)/(∂µ)(xe, µe) = JW (ηd) (i.e. W (ηd) the
matrix W as in (3) given in terms of the desired angle ηd).
By applying Cauchy-Schwarz inequality, we obtain:

|xJ(x− xe) + µJµ| ≤ C(xe)
√
‖x− xe‖2 + ‖µ‖2, (25)

in which, C(xe) is given by:

C(xe) =

 Jx
√

1 + s2 θd
Jy
√

c2 φd + s2 φd c2 θd
Jz
√

s2 φd + c2 φd c2 θd

 ≤ C, (26)

with C as in (18). The latter inequality holds for all
(φd, θd) ≤ φmax from (4).
Next, the explicit formulation of the remainder term
R(x, µ, xe) from (24) is as follows:

R(x, µ, xe) = uCTC − JW (ηd)µ, (27)

As detailed in Appendix A, for all (φd, θd) ≤ φmax from
(4), we have that:

|R(x, µ, xe)| ≤M
(
‖x− xe‖2 + ‖µ− µe‖2

)
, (28)

with the vector M ∈ R3 defined in (19). Then, introducing
(25), (28) to (24) and using ‖x−xe‖2+‖µ‖2 ≤ ε2,∀(x, µ) ∈
B(xe, ε) lead to:

|uCTC − ue| ≤ (C +Mε)
√
‖x− xe‖2 + ‖µ‖2,

which further proves the two assertions (21)–(22) and
hence, completes the proof. �
Remark 3. In Nguyen et al. (2019), for finding the max-
imum radius εmax as in (32), the varying term C(xe)
as in (26) is employed instead of the constant term C
from (18). Furthermore, the remainder term R(x, µ, xe)
as in (27) is bounded by exploiting the Hessian matrix
containing all the second-order partial derivatives of the
CTC controller uCTC from (7). The approach requires to
construct all the elements as well as to calculate again the
maximum radius εmax as in (32) at each time step, hence,
being inappropriate for the attitude control problem which
requires fast solutions. �
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4.2 Constraint admissible invariant set

Let us construct the control gain matrix K as:

K =
[
diag(Kφ,Kθ,Kψ) diag(Kφ̇,Kθ̇,Kψ̇)

]
, (29)

with the control gains as in (8). Then, the virtual PD input
µ as in (8) is shortened into µ = K(x − xe). Using this,
the set B(xe, ε) from (17) becomes:

B(xe, ε) =
{

(x− xe)>(I6 +K>K)(x− xe) ≤ ε2
}
, (30)

with I6 the 6× 6 identity matrix.

Proposition 4. (Nguyen et al. (2019)).
Let us choose the control gains Kp, Kṗ with p ∈ {φ, θ, ψ}
as in (29) such that:

Kp < 0, Kṗ < 0,

4K2
ṗ > −Kp(Kp + 1)2 −Kp −

(Kp + 1)2

Kp
,

(31)

and also choose the radius ε as in (30) such that:{
ε ≤ εmax,

B(xe, ε) ⊆ X ,
(32)

with εmax satisfying (32). Then, the set B(xeε) from (30)
is constraint admissible and positive invariant for the
rotation dynamics (9) under the CTC controller (7). �

Proof. The proof is detailed in Nguyen et al. (2019). �

The condition B(xe, ε) ⊆ X from (32) brings difficulties
due to the nonlinear relation ω = Wη̇ from (1). Therefore,
in the following, we propose an alternative approach for
efficiently choosing ε such that (32) is satisfied.

Corollary 5. (Efficient choice of ε). The conditions (32)
holds for all ε ∈ R+ satisfying:

ε ≤ min

{
εmax, φmax −max{|φd|, |θd|},

ωmax√
1 + sin2 φmax

}
,

(33)
with εmax as in (20), φmax, ωmax as in (4) and φd, θd the
desired roll, pitch angles sent from high control level.

Proof. At first, ε ≤ εmax is as required in (32).
Next, introducing ε ≤ φmax−max{φd, θd} to the formula-
tion of B(xe, ε) as in (17) leads to:

‖η − ηd‖ ≤ φmax −max{|φd|, |θd|}, (34)

which further provides:

(|φ− φd|, |θ − θd|) ≤ φmax −max{|φd|, |θd|}. (35)

Then, the angle constraints as required in (4) are satisfied.

Similarly, choosing ε ≤ ωmax/
√

1 + s2 φmax is to ensure:

‖η̇‖ ≤ ωmax√
1 + s2 φmax

, (36)

which further guarantees the constraints (|ωx|, |ωy|) ≤
ωmax as detailed in Appendix A. �

4.3 Terminal weighting matrix and closed-loop stability

This section completes the NMPC design (11)–(13) by
providing the choice of the terminal weighting matrix P as
employed in (11) and the proof for the closed-loop stability
of the controller.

Proposition 6. (NMPC design with guaranteed stability).
The NMPC design (11)-(22) for stabilizing the system (9)
achieves the recursive feasibility and closed-loop stability
with the ingredients defined as follows:

• The terminal region Xf employed in (12c) is taken as
the set B(qe, ε) from (30) satisfying Proposition 4

• The terminal weighting matrix P ∈ R6×6 from (11)
is obtained as the unique solution of the following
Lyapunov equation:

A>KP + PAK +Q+R∗ = 0, (37)

in which, AK = [03×3 I3;K] ∈ R6×6 (K as in (29)) is
the stable matrix resulted from introducing the CTC
controller (24) to the system (9), Q is from (11) and
R∗ ∈ R6×6 the symmetric matrix satisfies:

R∗ � max(eig(R))L(I6 +K>K), (38)

with L from (23) and the matrix K from (29).

Proof. The design proposed in Proposition 6 satisfies
four requirements C1–C4 (c.f. Section 3) on designing
an NMPC. The first three conditions C1–C3 are clearly
satisfied by using B(xe, ε) from (30) (constraint admissible
and positive invariant), as the terminal constraint set.
Then, regarding the fourth condition C4, we have that:
d

dt

(∥∥x− xe∥∥2P) = (x−xe)>(A>KP +AKP )(x−xe), (39)

with AK = [03×3 I3;K] ∈ R6×6 and K from (29)). Next,
the input term is bounded by:

‖uCTC‖2R ≤ max(eig(R))‖uCTC‖2 ≤
∥∥x− xe∥∥2R∗ , (40)

in which, the latter inequality is due to ‖uCTC‖2 ≤ L(x −
xe)
>(I6 + K>K)(x − xe) from (21). Then, introducing

(39)–(40) to condition C4 (16) leads to:

LHS of (16) (41)

≤ (x− xe)> (A>KP +AKP +Q+R∗)︸ ︷︷ ︸
=0 due to (37)

(x− xe).

This also completes the proof. �

4.4 Summary of the NMPC design using CTC as a local
controller

This section summarizes the design procedure and the
functioning scheme of the NMPC controller in (11)–(13)
for angle set-point tracking of the model (1)–(2).

Procedure 1. (Off-line preparation stage).

1) Choose the symmetric positive definite matrices Q ∈
R6×6 and R ∈ R3×3 as in (11).

2) Choose the prediction horizon Tp based on the compu-
tational constraint of the platform.

3) Find the largest possible εmax satisfying (20) and L as
in (23).

4) Define the matrices K as in (29) satisfying (31).

5) Define the symmetric matrix R∗ satisfying (38), then,
solve the Lyapunov equation (37) for the terminal weight-
ing matrix P . �
Procedure 2. (On-line solving stage).

1) Receive the angle set-point ηd from the high control
level (10).

2) Choose ε as in (33) to obtain the terminal region
B(xe, ε) from (30).

3) Measure the state, solve the NMPC OP (11)–(12) and
provide the input, uMPC as in (13) to the system (1)–(2).�
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5. SIMULATION RESULTS

We consider the simulation model of the rotation dynamics
(1)–(5) characterized by the following numerical values:

• J = diag{1.4 1.4 2.2} × 10−5 [kgm2] as used in (2).
• φmax = 5◦, ωmax = 2 rad/s as used in (4).
• umax = [43 43 17]> × 10−4 N/m as used in (5).

The requirement is to track the desired angle set-points
ηd = [φd θd ψd]

> given in Fig. 1 which are obtained
by applying the zero-order hold method with the holding
time of 0.1 seconds for discretizing a smooth reference.
The NMPC controller is simulated at the sampling time of
δ = 0.01 seconds while the prediction horizon is chosen as
Tp = 0.05 seconds, thus, having 5 steps. The optimization
problem in (11) is solved with solver IPOPT (Wächter
and Biegler, 2006) in Python. All the parameters related
to the off-line preparation stage given in Procedure 1 are
gathered in Table 1.

Table 1. Parameters prepared off-line of the NMPC con-
troller (11) following Procedure 1.

Parameters Value

C as in (18) [14.05 14 22]>10−6

M as in (19) [30 44.6 44]>10−6

εmax as in (20) 8.3047

L as in (23) 10−7

K as in (29), (31) [−0.5I3 − 0.8I3]

Q as in (11) diag{1, 1, 1, 0.1, 0.1, 0.1}
R as in (11) 0.01I3

R∗ as in (38)

[
12.53I3 4I3

4I3 16.44I3

]
10−10

P as in (37)

[
1.46I3 I3

I3 1.31I3

]
At each on-line simulation step, after taking the angle
references ηd (thin step lines in Fig. 1), the controller first
chooses the radius ε as in (33) which is plotted in Fig.
2. Then, the NMPC controller solves the OP (11) and

provides the inputs u , [uφ uθ uψ]> as shown in Fig. 4.
The angle tracking results are shown in Fig. 1 in which the
simulation angles plotted by thick lines (red for φ, green
for θ and blue for ψ) closely track their piece-wise constant
references given in thin lines with according colors. The
angular velocities are given in Fig. 3 in which we observe
a slight chattering phenomenon (can also be seen from
the torques plotted in Fig. 4). This chattering problem is
caused by the controller’s effort to stabilize the angular
velocities and the torques at their zero equilibrium values
as in (10). Through multiple simulations, we find that this
issue is aggravated by increasing the value of the matrix
R as in (11). Thus, we have reduced this phenomenon by
decreasing the value of R and also the gain of the angular
velocities within the cost function (11) as shown in Table
1 (i.e., 0.1 for ω and 0.01 for u in comparison with 1 for
the angle η). The issue can be further mitigated by adding
a penalty on the input variation to the cost as proposed in
Badgwell and Qin (2015). It also should be clarified that
all the states and inputs validates their constraints given
in (4)–(5) due to the usage of the NMPC algorithm.

Fig. 1. Angle tracking results.
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Beside the tracking results, the computing time per step is
also important for the NMPC controller. Table 2 gathers
the computing time per step for the whole simulation,
i.e., 1500 steps. The average computing time is 54 ms
while the minimum value reaches 30.9 ms. Note that,
the maximum value of 93.7 ms only happens once at the
first step when the solver is setting up the algorithm. We

Table 2. Information on the computing time of the NMPC
controller designed for set-point angle tracking.

Mean Min Max Standard deviation

Value [ms] 54 30.9 93.7 10

notice that the computing time is larger than the chosen
sampling time δ = 0.1 seconds, hence, this setup (including
both the formulation of the OP (11) and the employed
hardware) is not ready for a real implementation. However,
we are confident that applying some existing speeding-up
approaches can mitigate the issue. E.g., in Zanelli et al.
(2018), the authors succeed in embedding the OP (11)
into a low-power micro controller by re-formulating the
problem into its approximated quadratic formulation and
then, solving it by using a modified interior-point method.

6. CONCLUSION

This paper presented the design of an NMPC controller
for attitude set-point angle tracking of the multicopter
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system. It employed a CTC (computed-torque control)
local controller to guarantee the NMPC scheme’s closed-
loop stability and feasibility. We provided several alter-
native designs for the NMPC ingredients (in comparison
with the original contributions given in our previous work
(Nguyen et al., 2019)) such as the Lipschitz constant
and the radius of the terminal region. We reduce the
dependence of the design on the desired set-points received
from the high control level since they are not known in
advance, and hence, we are able to reduce the complexity
for on-line computation. Simulations over a quadcopter
model validate the theoretical results. Future works will
concentrate on implementing the proposed controller into
a microprocessor and conducting experimental tests.
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Appendix A. BOUND OF THE TAYLOR’S
REMAINDER R(·) FROM (27)

The remainder R(x, µ, xe) as in (27) is explicitly given by:

R(x, µ, xe) = J(W −W (ηd))µ+ JẆ η̇+ ω× (Jω), (A.1)

in which, ω = Wη̇ as in (1) leads to:

ωx = φ̇− ψ̇ s θ, (A.2)

ωy = θ̇ cφ+ ψ̇ sφ c θ, (A.3)

ωz = −θ̇ sφ+ ψ̇ cφ c θ. (A.4)

Next, applying Cauchy-Schwarz inequality to (A.2)–(A.3)
leads to:

|ωx| ≤
√

(1 + s2 θ)(φ̇2 + ψ̇2) ≤
√

1 + s2 φmax‖η̇‖, (A.5)

|ωy| ≤
√

(c2 φ+ s2 φ c2 θ)(θ̇2 + ψ̇2) ≤ ‖η̇‖, (A.6)

|ωz| ≤
√

(s2 φ+ c2 φ c2 θ)(θ̇2 + ψ̇2) ≤ ‖η̇‖, (A.7)

in which, the second inequality of (A.5) is due to |θ| ≤
φmax as constrained in (4) and to the fact that sin is
monotonously increasing on the interval [0, π/2]. Also,
(A.6) and (A.7) come by using c2 φ+ s2 φ = 1.

Next, let us denoteR , [R1 R2 R3]> and µ = [µ1 µ2 µ3]>.
From (A.1), we have that:

R1 = −Jx
(

(s θ − s θd)µ3 + θ̇ψ̇ c θ
)

+ (Jz − Jy)ωyωz,

(A.8)
in which, the elements are bounded as follows:

• |(s θ − s θd)µ3| =
∣∣∣∣2 s

(
θ − θd

2

)
c

(
θ + θd

2

)
µ3

∣∣∣∣
≤
∣∣∣∣2 s

(
θ − θd

2

)
µ3

∣∣∣∣ ≤ 1

2

(
4 s2

(
θ − θd

2

)
+ µ2

3

)
≤ 1

2

(
(θ − θd)2 + µ2

3

)
. (A.9)

•
∣∣∣θ̇ψ̇ c θ

∣∣∣ ≤ ∣∣∣θ̇ψ̇∣∣∣ ≤ 1

2

(
θ̇2 + ψ̇2

)
. (A.10)

Then, introducing (A.9)–(A.10) and (A.6)–(A.7) to (A.8)
leads to:

|R1| ≤
Jx
2

(
(θ − θd)2 + µ2

3 + θ̇2 + ψ̇2
)

+ |Jy − Jz|‖η̇‖2,

≤
(
Jx
2

+ |Jy − Jz|
)(
‖η − ηd‖2 + ‖η̇‖2 + ‖µ‖2

)
. (A.11)

Due to the limit on space, we will provide only the proof
for R1 since those of the others can be obtained similarly.
Furthermore, using (A.5)–(A.6), we can also prove that
the constraints on angle rates: (|ωx|, |ωy|) ≤ ωmax as in (4)
are satisfied if:

‖η̇‖ ≤ ωmax/
√

1 + s2 φmax, (A.12)

with φmax the maximum angle value from (4). The proof
is obtained by simply introducing (A.12) to (A.5)–(A.6)
which ultimately leads to (ωx|, |ωy|) ≤ ωmax.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6184


