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Abstract: This paper addresses the state estimation for a class of stochastic systems with
both uncertain dynamics and measurement bias. By using the idea of uncertainty/disturbance
estimation, an extended state based Kalman filter algorithm is developed to estimate the original
state, the uncertain dynamics and the measurement bias. Furthermore, a necessary and sufficient
condition for the observability of augmented system is presented. Also, the stability of the
proposed algorithm is analyzed. It is shown that the proposed filter can achieve unbiased
estimation of measurement bias, such that the influence of measurement bias is eliminated.
Finally, a simulation study is provided to illustrate the effectiveness of proposed method.
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1. INTRODUCTION

State estimation plays a central role in many control en-
gineering problems. As is well known, the classical Luen-
berger observer (Luenberger, 1966) is a popular method
for the state reconstruction of linear systems with exact
model information. And for the linear systems with white
noise, Kalman filter (KF) provides an optimal estimation
in the mean square sense (Kalman, 1959). However, model
uncertainties and disturbances, which are ubiquitous in
practice, are not considered in the original KF. In the
past years, various state estimation methods have been
proposed for systems with model uncertainties. Generally
speaking, these model uncertainties can be divided into
sensor errors and process errors.

In practice, sensor errors are often modeled more accurate-
ly as the sum of a white-noise component and a strongly
correlated component. The correlated component can, for
example, be random constant bias (Zanetti and Bishop,
2012). And a common technique to deal with this case is to
augment the state vector of the original problem by adding
additional component to represent the unknown bias. In
an attempt to reduce the computation cost, Friedland
(1969) proposed the two-stage or separate-bias estimation
to decouple the augmented filter into two parallel reduced-
order filters. This idea have also been expanded for sys-
tems with bias modeled by first-order Markov process and
systems with nonlinear dynamics (Keller and Darouach,
1997; Zhang et al., 2014). Although the estimator with
bias observation has drawn much research attention, the
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observability of the augmented system with bias, which
is an important condition to guarantee the stability of an
estimator, has not yet been adequately investigated, to the
best of our knowledge.

On the other hand, the process errors of a dynamical sys-
tem also contain a strongly correlated component. There-
fore, similar to the sensor errors, the process errors should
be modeled as the the sum of a white-noise component
and a strongly correlated uncertain dynamics. In order to
deal with the influence of uncertain dynamics or external
disturbances in actual systems, a number of observer de-
sign method have been proposed. Extended state observer
(ESO) (Han, 1995; Xue et al., 2016; Chen et al., 2020)
was proposed to estimate both the original state and the
extended state lumping the unknown internal dynamics
and external disturbances. And the convergence of the
nonlinear ESO proposed in Han (1995) has been proved
recently in Zhao and Guo (2018). Moreover the ESO based
control methods have been successfully used in several
industrial sectors (Sira-Ramı́rez et al., 2014; Zhu et al.,
2014; Qiu et al., 2014; Zheng and Gao, 2018). Addition-
ally, disturbance observer (DOB) (Schrijver and van Dijk,
2002; Hu et al., 2014) and nonlinear disturbance observer
(NDOB) (Yang et al., 2013; Li et al., 2014; Chen et al.,
2016) are popular methods of estimating the external dis-
turbance for linear systems and nonlinear systems, respec-
tively. Treating the modeling uncertainties and external
disturbances as a lumped term, uncertainty and distur-
bance estimator (UDE) based control has been shown to
be effective in estimating model uncertainty and external
disturbance (Chen et al., 2016; Sun et al., 2016). For the
sake of attenuating the influence of measurement noise, the
pioneer work in Bai et al. (2018) and Zhang et al. (2018)
has started the work of combining ESO and KF/KBF
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algorithms to estimate states of some nonlinear systems
without considering measurement bias. Although some
estimation methods for systems with uncertain dynamics
have been studied thoroughly from different perspectives,
little of these literatures considered the situation that both
the uncertain dynamics and measurement bias present.

Summarizing the above discussions, this paper will focus
on the state estimation problem for a class of stochastic
systems with both uncertain dynamics and measurement
bias which is more common in practice. By using the idea
of extended state based Kalman filter (ESKF) in Bai et al.
(2018), a filter to estimate the original state, the uncertain
dynamics and the measurement bias will be developed.
The main contribution of this paper is threefold:

i) The ESKF algorithm is constructed for a class of
stochastic systems with both uncertain dynamics and
measurement bias;

ii) A necessary and sufficient condition for the observabil-
ity of augmented system is presented, based on which the
stability of ESKF is analyzed;

iii) The bias estimation of the proposed filter is also prove
to be convergent in mean square sense, such that the
influence of bias can be eliminated.

The remainder of the paper is organized as follows: The
problem formulation is given in Section 2. Section 3
introduces the design method of ESKF in detail. Follow
on, Section 4 analyzes the performance of ESKF. After
that, an illustrative example is presented in Section 5, and
finally some concluding remarks are given in Section 6.

Notation: Throughout this paper, the notations used are
fairly standard. The sub-index k to denote each variable
at the k-th time instant. Rn represents the n-dimensional
Euclidean space and Rm×n stands for the space of real m×
n-matrices; C denotes the complex number set. Im stands
for the identity matrix of size m, and 0m×n stands for the
zero matrix of m rows and n columns and the sub-index
will be occasionally removed for notational convenience
if no confusion is expected. For a vector or matrix X,
XT denotes its transpose; rank (X) denotes its rank;
‖X‖ denotes its spectral norm. For a square matrix X,
tr (X) denotes its trace; λmax (X) represents its maximal
eigenvalue. For a invertible matrix X, X−1 denotes its
inverse matrix. For symmetric matrices X and Y , X � Y
(or X � Y ) denotes X − Y is a positive semidefinite (or
positive definite) matrix. For a stochastic vector X, E{X}
denotes its mathematical expectation, and var (X) denotes
its covariance matrix.

2. PROBLEM FORMULATION

Consider the following stochastic system with uncertain
dynamics and unknown measurement bias:{

xk+1 =Axk +Bξk(xk) + ωk+1,

yk =Cxk +Db+ νk,
k = 0, 1, · · · , (1)

where xk ∈ Rn is the state to be estimated, yk ∈ Rm
is the measurement contaminated by unknown bias and
noise, ξk ∈ Rp is the uncertain dynamics, b ∈ Rq is
the measurement bias, ωk ∈ Rn and νk ∈ Rm are zero
mean white process noise with covariance matrices Q � 0
and R � 0, respectively. x0, ωk and νk are assumed

independent. A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n and
D ∈ Rm×q are all known matrices. In addition, we assume
A is invertible.

We aim to develop a state estimation algorithm to recon-
struct the system state, despite of the above uncertain-
ties. To ensure the well-posedness of the state estimation
problem, some assumptions on the system structure and
uncertain dynamics are introduced. Firstly, it is natural
to assume that the nominal system without bias and
uncertain dynamics is observable.

Assumption 1. The pair (A,C) is observable.

Different from the fast changing process noise, we assume
ξk is slow time-varying, as show in the following assump-
tions.

Assumption 2. The change of uncertain dynamics at each
step is bounded, i.e.,

E
{
δkδ

T
k

}
� Qδ, δk , ξk(xk)− ξk−1(xk−1), (2)

where Qδ � 0 is known matrix.

Obviously, compared with the completely irregular process
noise and measurement noise, the uncertain dynamics
ξk(xk) and unknown bias b are likely to be estimated.
Therefore, it is an intuitive and simple idea to treat ξk(xk)
and b as augmented states being estimated and attenuated.
As a result, system (1) can be equivalently transformed to

[
xk+1

ξk+1

bk+1

]
=

[
A B 0n×q

0p×n Ip 0p×q
0q×n 0q×p Iq

][
xk
ξk
bk

]
+

[
ωk+1

δk+1

0q×1

]
,

yk = [C 0m×p D]

[
xk
ξk
bk

]
+ νk, k = 0, 1, · · · .

(3)

For notational convenience, denote

Xk ,
[
xTk ξTk bTk

]T
, ∆k ,

[
ωTk δTk 01×q

]T
,

Ā ,

[
A B 0n×q

0p×n Ip 0p×q
0q×n 0q×p Iq

]
, C̄ , [C 0m×p D] .

(4)

As a result, system (3) can be rewritten as{
Xk+1 =ĀXk + ∆k+1,

yk =C̄Xk + νk,
k = 0, 1, · · · . (5)

Formally, system (5) appears to be structurally similar
to the standard Kalman filter model. Nevertheless, it is
important to point out that due to the presence of δk,
the process error ∆k(·) in system (5) is highly correlated
with the system state, which is far beyond the white noise
hypothesis required by standard Kalman filter. Thus, how
to deal with this uncertain correlation is a fundamental
problem to be solved. In the next section, this problem
will be discussed in detail.

3. FILTER DESIGN

Based on the augmented system (5), we consider the
following filtering structure:

X̂k = X̄k +Kk

(
yk − C̄X̄k

)
, (6a)

X̄k+1 = ĀX̂k, (6b)

where X̄k and X̂k are the state prediction and state update
at the k-th moment, respectively. And Kk is the filter gain
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to be designed, such that filter (6) can retain some basic
features similar to the standard Kalman filter.

One of the most fundamental properties of an estimator
is that the true estimation errors should be consistent
with their predicted statistics. Owing to this, the following
definition is introduced.

Definition 1. (Julier and Uhlmann, 1997) Consider a ran-
dom vector x. Further, let x̂ be an estimate of x and P an
estimate of the corresponding error covariance. Then, the
pair (x̂, P ) is said to be consistent if

E
{

(x̂− x) (x̂− x)
T
}
� P. (7)

Consistency implies that the estimated error covariance P
be an upper bound of the true error covariance. This prop-
erty becomes even more important for the filter with un-
known cross correlation between process error and system
state. Based on the concept of consistency, the following
theorem provides a design principle for filter gain Kk.

Theorem 1. Consider the system (1) with Assumption 2
and the filtering structure (6) with initialization X̄0 =
E {X0} and P̄0 = var (X0). For any positive sequence ηk,

the pairs (X̄k, P̄k) and (X̂k, Pk) are both consistent, where
P̄k and Pk are recursively calculated through

Pk =
(
I−KkC̄

)
P̄k
(
I−KkC̄

)T
+KkRK

T
k , (8a)

P̄k+1 = (1 + ηk+1) ĀPkĀ
T + Q̄k+1, (8b)

and

Q̄k+1 =

 Q 0n×p 0n×q

0p×n
1 + ηk+1

ηk+1
Qδ 0p×q

0q×n 0q×p 0p×p

 . (9)

Proof. The proof can be achieved by mathematical induc-
tion. According to the filter structure (6), the estimation

error ēk , X̄k −Xk and ek , X̂k −Xk satisfy

ek =
(
I−KkC̄

)
ēk +Kkνk, (10a)

ēk+1 = Āek −∆k+1. (10b)

Suppose that at the k-th moment, E
{
ēkē

T
k

}
� P̄k. Since

E
{
ēkν

T
k

}
= 0, according to (8a) and (10a), it is immediate

to see that E
{
eke

T
k

}
� Pk. On the other hand, due to

E
{
ekω

T
k+1

}
= 0, by (10b), the mean square estimation

error of X̄k+1 satisfies

E
{
ēk+1ē

T
k+1

}
= ĀE

{
eke

T
k

}
ĀT

+

 Q 0n×p 0n×q
0p×n E

{
δk+1δ

T
k+1

}
− E

{
Āekδ

T
k+1 + δk+1e

T
k Ā

T
}

0p×q
0q×n 0q×p 0p×p

 .
Then, according to the Youngs inequality for the matrices
case, for any positive scalar ηk+1, there is

E
{
Āekδ

T
k+1 + δk+1e

T
k Ā

T
}
≤ ηk+1ĀE

{
eke

T
k

}
ĀT

+
1

ηk+1
E
{
δk+1δ

T
k+1

}
.

Therefore, according to Assumption 2, (8b) and (9) imply
E
{
ēk+1ē

T
k+1

}
� P̄k+1. The proof can be concluded by

noting that, with the initialization of X̄0 and P̄0, the
consistency holds at time instant k = 0. 2

Remark 1. Different from the standard Kalman filter, s-
ince the coupling issue between the δk+1 and system state

in prediction step, equation (8b) adds a scaling term to
handle the cross term between ek and δk+1 with the assis-
tance of Young’s inequality. And based on the consistency
of (X̂k, Pk), the filter gain is derived from the following
optimization problem:

K∗k = argmin
Kk

Pk = P̄kC̄
T
(
C̄P̄kC̄

T +R
)−1

. (11)

Remark 2. In (8b), a new parameter ηk has been intro-
duced. It can be selected as a positive constant for simplic-
ity or derived from the following optimization problem:

η∗k = argmin
ηk

tr
(
P̄k
)

=

√
tr (Qδ)

tr
(
ĀPk−1ĀT

) . (12)

Summarizing the above results, a complete solution to
the problem of state estimation for system (1) or (5) is
provided in Algorithm 1.

Algorithm 1 Extended State based Kalman Filter (ES-
KF)

1: if k = 0 then
2: Initializes X̄0 = E {X0}, P̄0 = var (X0).
3: end if
4: Updates the state estimation and approximated co-

variance

Kk =P̄kC̄
T
(
C̄P̄kC̄

T +R
)−1

,

X̂k =X̄k +Kk

(
yk − C̄X̄k

)
,

Pk =
(
I−KkC̄

)
P̄k
(
I−KkC̄

)T
+KkRK

T
k .

5: Predicts the state prediction and approximated covari-
ance

X̄k+1 =ĀX̂k,

Q̄k+1 ,

 Q 0n×p 0n×q

0p×n
1 + ηk+1

ηk+1
Qδ 0p×q

0q×n 0q×p 0p×p

 ,
P̄k+1 = (1 + ηk+1) ĀPkĀ

T + Q̄k+1.

4. FILTER PERFORMANCE ANALYSIS

Since system (1) has both nonlinear uncertain dynamics,
unknown bias and stochastic noise, how to ensure the
stability of the proposed algorithm should be another
significant issue to be studied. Firstly, a necessary and
sufficient condition for the observability of the pair

(
Ā, C̄

)
is given, which is also an fundamental condition to ensure
the stability of ESKF.

Lemma 1. Under Assumption 1, the pair
(
Ā, C̄

)
is observ-

able if and only if

rank

([
A− In B 0n×q
C 0m×p D

])
= n+ p+ q. (13)

Proof. The observability of the pair
(
Ā, C̄

)
is equivalent

to

rank

([
Ā− sIn+p+q

C̄

])
= n+ p+ q, ∀s ∈ C. (14)

(Necessity) In (14), taking s = 1 leads to condition (13).
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(Sufficiency) According to Assumption 1, the pair (A,C)
is observable, i.e.,

rank

([
A− sIn

C

])
= n, ∀s ∈ C.

Therefore, while s 6= 1, by the definitions of Ā and C̄ in
(4), equation (14) holds. As for the situation s = 1, (14)
is directly deduced from condition (13). 2

Next, the boundedness of the estimation error of ESKF in
mean square sense is discussed.

Theorem 2. Considering the system (1) with Assumption-
s 1-2 and (13), and the Algorithm 1 with ηk satisfies

infk≥0 ηk , η > 0 and supk≥0 ηk , η <∞, there is

sup
k≥0

E
{(

X̂k −Xk

)(
X̂k −Xk

)T}
≺ ∞. (15)

Proof. Due to the consistency of Algorithm 1 in Theo-
rem 1, we just need to prove supk≥0 Pk ≺ ∞. In fact, Pk
in equation (8) can be see as the minimum estimation error
covariance of the follow system:{

X̃k+1 =
√

1 + ηk+1ĀX̃k + ω̃k+1,

ỹk =C̄X̃k + ν̃k,
k = 1, 2, · · · , (16)

where ω̃k and ν̃k are white noise with covariance matrices
Q̄k and R, respectively. According to Lemma 1, the pair(
Ā, C̄

)
is observable. Thus there exist α > 0, β > 0, and

a positive integer N , such that

αI ≤
N∑
i=0

(Ā−i)T C̄TR−1C̄Ā−i ≤ βI.

Then by the upper boundedness of ηk, it is easy to verify
that system (16) is uniformly completely observable, i.e.,
there is ᾱ = α

(1+η)N
, for any k ≥ N , such that

ᾱI ≤
k∑

i=k−N

ΦTi,kC̄
TR−1C̄Φi,k ≤ βI,

where

Φi,j ,

{
In+p+q, if i = j,√

1 + ηjΦi,j+1Ā, if i 6= j.

Meanwhile, there also is

γ̄ = max

{
λmax (Q) ,

1 + η

η
λmax (Qδ)

} N∑
i=0

(1 + η)
i ‖A‖2i,

for any k ≥ N , such that
∑k
i=k−N Φk,iQ̄iΦ

T
k,i ≤ γ̄I. Then

according to the Kalman filter theory (Jazwinski, 1970),
for any k ≥ N , there is

Pk ≤
1 + (n+ p+ q)2βγ̄

ᾱ
In+p+q,

i.e., Pk is upper bounded. 2

The following theorem displays the bias estimation of
Algorithm 1 is convergent in the mean square sense.

Theorem 3. Considering the system (1) with Assumption-
s 1-2 and (13), and the Algorithm 1 with positive constant
η, there is

lim
k→∞

E
{(

b̂k − b
)(

b̂k − b
)T}

= 0. (17)

Proof. Since Pk � P̄k, by the consistency of Algorithm 1,
we just need to prove limk→∞HP̄kH

T = 0, where H ,[
0q×(n+p) Iq

]
. Combination of (8a) and (8b) yields

P̄k+1 = (1 + η) ĀP̄kĀ
T − (1 + η) ĀP̄kC̄

T(
C̄P̄kC̄

T +R
)−1

C̄P̄kĀ
T + Q̄.

(18)

To analyze the asymptotic properties of P̄k, for any posi-
tive scalar ε, consider the following Riccati equation

P̄
(ε)
k+1 = (1 + η) ĀP̄

(ε)
k ĀT − (1 + η) ĀP̄

(ε)
k C̄T(

C̄P̄
(ε)
k C̄T +R

)−1

C̄P̄
(ε)
k ĀT + Q̄+ εI

(19)

with P̄
(ε)
0 � P̄0. With the assistance of the matrix inverse

formula, according to (18) and (19), it is easy to verify that

for any positive scalar ε, P̄k ≺ P̄
(ε)
k . Therefore, to prove

(17), we just need to validate limε→0 limk→∞HP̄
(ε)
k HT =

0. Since
(
(1 + η) Ā, C̄

)
is observable and Q̄+ εI is positive

definite, P̄
(ε)
k has a limitation which is the unique positive

definite solution of the following Riccati equation

P̄ (ε) = (1 + η) ĀP̄ (ε)ĀT − (1 + η) ĀP̄ (ε)C̄T(
C̄P̄ (ε)C̄T +R

)−1

C̄P̄ (ε)ĀT + Q̄+ εI.
(20)

According to the expression of Ā, C̄ and Q̄, the Riccati
equation (20) implies that

P̄
(ε)
1,2 =ÃP̄

(ε)
1,2 − Ã

(
P̄

(ε)
1,1 C̃

T + P̄
(ε)
1,2D

T
)

(
C̄P̄ (ε)C̄T +R

)−1 (
C̃P̄

(ε)
1,2 +DP̄

(ε)
2,2

)
,

P̄
(ε)
2,2 =P̄

(ε)
2,2 −

(
P̄

(ε)
2,1 C̃

T + P̄
(ε)
2,2D

T
)(

C̄P̄ (ε)C̄T

+R)
−1
(
C̃P̄

(ε)
1,2 +DP̄

(ε)
2,2

)
+ εIq,

(21)

where

P̄
(ε)
1,1 = GP̄ (ε)GT , P̄

(ε)
1,2 = GP̄ (ε)HT ,

P̄
(ε)
2,1 = HP̄ (ε)GT , P̄

(ε)
2,2 = HP̄ (ε)HT ,

Ã ,
√

1 + η

[
A B

0p×n Ip

]
,

C̃ , [C 0m×p] ,

G ,
[
I(n+p) 0(n+p)×q

]
.

Let ε→ 0, by the positive of R, equation (21) yields[
Ã− In+p 0(n+p)×q

C̃ D

]lim
ε→0

P̄
(ε)
1,2

lim
ε→0

P̄
(ε)
2,2

 = 0(n+p+q)×q. (22)

On the other hand, according to condition (13),[
Ã− In+p 0(n+p)×q

C̃ D

]
is column full rank. Therefore limε→0 P̄

(ε)
2,2 = 0. 2

5. NUMERICAL SIMULATION

To illustrate the effectiveness of ESKF, the simulation for
the following stochastic system with uncertain dynamics
and measurement bias is considered:

xk+1 =

[
0.5 −0.5
0 1

]
xk +

[
1
1

]
ξk + ωk+1,

yk =

[
1 0
0 1

]
xk +

[
1
1

]
b+ νk.

(23)
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The covariance matrices of process noise ωk and measure-
ment noise νk are set to be Q = I2 and R = I2, respec-
tively. It is assumed that the initial value of the system

state satisfies E {x0} = [0 0]
T

and var (x0) = 100I2. The
measurement bias is assumed to be b = 10. As for the
uncertain dynamics, two different cases are carried out:

Case 1: ξk = 5 sin (0.02k) +
xk(1) + xk(2)

1 + xTk xk
− 10, (24a)

Case 2: ξk = −0.1k +
xk(1) + xk(2)

1 + xTk xk
− 10, (24b)

where xk(1) and xk(2) are the first and second elements
of xk, respectively. And in ESKF the parameters are
selected as X0 = 04×1, P0 = 100I4, Qδ = 0.01 and

ηk =

√
tr(Qδ)

tr(ĀPk−1ĀT )
, respectively.

Fig. 1 and Fig. 2 display the estimation results of ESKF
in Case 1 and Case 2, respectively. In the left half of
these two figures, the blue solid lines represent one sample
of the system state data generated by system (23) and
the red dash lines are the corresponding estimation result
of ESKF. As for the right half parts, the red dash lines
stand for the mean square errors (MSE) of ESKF obtained
from 500 statistical experiments, and the blue solid lines
represent the diagonal elements of Pk provided by ESKF.
As can be seen from these two figure, the estimation result
of ESKF can track the true state well. Meanwhile, the
estimation error covariances of ESKF keep stable in the
given period and the consistency remains, which validates
Theorem 1 and Theorem 2. Fig. 3 compares the estimation
errors of Kalman filter, augmented state Kalman filter
(ASKF) which treats bias as an augmented state and
ESKF in Case 1. And Fig. 4 shows the results in Case 2.
In these two figures, the black solid lines, green solid
lines and blue solid lines represent the maximum and
minimum estimation errors obtained from 500 statistical
experiments of KF, ASKF and ESKF, respectively. And
the dark purple dash lines, pink dash lines and red dash
lines are one sample from each 500 experiments. It can be
seen in these two figures, the estimation results of KF and
ASKF both have biases affected by uncertain dynamics
and measurement bias, but with the assistance of timely
estimating uncertain dynamics and measurement bias,
ESKF can eliminate such estimation bias. In addition, in
Fig. 4, the estimation error of ASKF is even greater than
KF, which means that for the system with large uncertain
dynamics, the measurement bias cannot be estimated
independently regardless of the uncertain dynamics.

6. CONCLUSION

This paper studied the state estimation problem for a
class of stochastic systems with uncertain dynamics and
unknown measurement bias. With the idea of timely es-
timating the uncertain dynamics and unknown bias, an
extended state based filter structure was developed. The
consist filter was proposed. In addition, a necessary and
sufficient condition for the observability of augmented
system was presented, such that the stability of the pro-
posed filter was analyzed. It is shown that the designed
filter can realize the estimation of measurement bias. A
numerical simulation was also carried out to illustrate the
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Fig. 1. Left part: The system state data generated by
system (23) and the estimation of ESKF in Case 1;
Right part: The mean square errors of ESKF and the
diagonal elements of Pk provided by ESKF in Case 1.
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Fig. 2. Left part: The system state data generated by
system (23) and the estimation of ESKF in Case 2;
Right part: The mean square errors of ESKF and the
diagonal elements of Pk provided by ESKF in Case 2.

effectiveness of proposed method. In this paper, the bias is
assumed to be a unknown constant, and it can be extend-
ed to the situation that the bias satisfies certain model
without much work. While the bias model information is
incomplete, it may be another interesting problem.
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and Contreras-Ordaz, M.A. (2014). On the control of
the permanent magnet synchronous motor: An active
disturbance rejection control approach. IEEE Transac-
tions on Control Systems Technology, 22(5), 2056–2063.

Sun, L., Li, D., Zhong, Q., and Lee, K.Y. (2016). Control
of a class of industrial processes with time delay based
on a modified uncertainty and disturbance estimator.
IEEE Transactions on Industrial Electronics, 63(11),
7018–7028.

Xue, W., Huang, Y., and Gao, Z. (2016). On ADRC for
non-minimum phase systems: canonical form selection
and stability conditions. Control Theory and Technolo-
gy, 14(3), 199–208.

Yang, J., Li, S., Sun, C., and Guo, L. (2013). Nonlinear-
disturbance-observer-based robust flight control for air-
breathing hypersonic vehicles. IEEE Transactions on
Aerospace and Electronic Systems, 49(2), 1263–1275.

Zanetti, R. and Bishop, R.H. (2012). Kalman filters with
uncompensated biases. Journal of Guidance Control and
Dynamics, 35(1), 327–335.

Zhang, L., Lv, M., Niu, Z., and Rao, W. (2014). Two-
stage cubature Kalman filter for nonlinear system with
random bias. In 2014 International Conference on Mul-
tisensor Fusion and Information Integration for Intelli-
gent Systems, 1–4.

Zhang, X., Xue, W., Fang, H., and He, X. (2018). On
extended state based Kalman-Bucy filter. In 2018
IEEE 7th Data Driven Control and Learning Systems
Conference, 1158–1163.

Zhao, Z. and Guo, B. (2018). A novel extended s-
tate observer for output tracking of mimo system-
s with mismatched uncertainty. IEEE Transac-
tions on Automatic Control, 63(1), 211–218. doi:
10.1109/TAC.2017.2720419.

Zheng, Q. and Gao, Z. (2018). Active disturbance rejection
control: some recent experimental and industrial case
studies. Control Theory and Technology, 16(4), 301–313.

Zhu, E., Pang, J., Sun, N., Gao, H., Sun, Q., and Chen,
Z. (2014). Airship horizontal trajectory tracking control
based on active disturbance rejection control (ADRC).
Nonlinear Dynamics, 75(4), 725–734.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2338


