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Abstract: The Laplacian controllability of a family of graphs that are non-simple is studied
in the paper. Without the regular assumption that the adjacency matrix is binary, the authors
consider more flexible weighting parameters to represent the practical connection strength
between nodes. Suppose the node states of the graphs evolve according to the Laplacian
dynamics. The Laplacian eigenspaces of a class of ring graphs are explored, by which a sufficient
condition to render the graphs controllable with the minimum number of input is proposed.
Numerical examples are provided to illustrate the theoretical results.
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1. INTRODUCTION

Motivated by the fundamental importance in effective
operations of networked systems, many researchers have
addressed the controllability issues of connected network
whose node states evolve according to some specific dy-
namics (Egerstedt et al. (2012)). Over the past decade,
one of the major research themes has been on the condi-
tion that determines the controllability from the network
topology composed of leader nodes and follower nodes,
in which the leader nodes serve as the sources of input
signals (Rahmani et al. (2009)). Recently, this topic is
considered from the viewpoint of linear systems evolving
on the Laplacian dynamics. In this model the control
input does not appear as the node in the network but
as simply exterior input sources. As shown in Aguilar and
Gharesifard (2015), this setting gains its wide popularity
since it integrates the study of multi-input network into a
similar formulation. By exploring the symmetric connec-
tion structure in a very general sense, several simple and
verifiable conditions for determining the uncontrollability
of the network were proposed. However, it is not yet clear
how to transform the algebraic methods such as Kalman’s
rank test or Popov-Belevitch-Hautus’s (PBH) rank test
introduced in, e.g., Chen (1999), into their graph-theoretic
counterparts. Though some result independent of the con-
necting type was proposed by Hsu (2019b), in general
the condition to ensure the controllability of a network
by the given controller(s) is available only for specific
types of connection structures such as the paths, grids,
circulant graphs, complete graphs, multi-chain, thresh-
old graphs, and so on (see Parlangeli and Notarstefano
(2012), Hsu and Yang (2019), Notarstefano and Parlan-
geli (2013), Nabi-Abdolyousefi and Mesbahi (2013), Zhang
et al. (2011), Cao et al. (2013), Hsu (2017), and Hsu
(2019a) for the related results). Among these uncontrolla-
⋆ This work is partially supported by the Ministry of Science and
Technology in Taiwan under Grant MOST-107-2221-E-005 -072.

bility or controllability conditions, the network connection
is assumed to form a simple and connected graph. That
means the adjacency matrix is binary; its (i, j)th entry is 1
if node i and j is connected and is 0 otherwise. This model
cannot reflect the interacting strength between nodes, and
restricts its applicability to the case in which negative
weighting parameters can better describe the interaction of
two adversarial nodes (Altafini (2013); Sun et al. (2017)).
In this note we address this issue and consider a class of
flexible weighting parameters. To simplify the analysis we
focus on the ring graphs that satisfy some condition of
periodic constant product. Under this condition we explore
the Laplacian eigenspace properties of the graphs. These
properties shed light on the method to use the minimum
number of controllers to maneuver each node state of the
graph.
The rest of the paper is organized as follows. The second
section is a review of essential graph-theoretical notations,
concepts, and related control theories. Our main results
on the controllability properties of ring graphs satisfying
the periodic product rule are presented in the third sec-
tion.The paper is concluded in Section 4, where potential
extensions to more generalized network are discussed.

2. PRELIMINARIES

Let 0 and 1 be the column vectors of 0’s and 1’s respec-
tively, and ei the ith column of the identity matrix I, with
appropriate size. Let Z be the set of integer numbers, and

Z \ nZ = {z ∈ Z : z ̸= kn, k ∈ Z} . (1)
The product of s1, s2, · · · , sn is denoted by

∏n
i=1 si, and

the determinant of matrix A is |A| or det(A). Let G =
(V,E,W ) represent a directed network or graph, where
V = In := {1, 2, · · · , n} is the set of nodes or vertices and
E ⊆ V × V the set of arrows. In addition, W : E → R is
a mapping of the arrows to the real numbers. An ordered
pair (i, j) ∈ E is called the arrow of the graph G. We call
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i the parent vertex of j and j the child vertex of i. The
neighbor set Ni of vertex i is the collection of the parent
vertices of i. That is,

Ni = {j ∈ V : (j, i) ∈ E} . (2)
Suppose W maps the arrow (i, j) to wij , such that (j, i) ∈
E if and only if wij ̸= 0. The adjacency matrix W of
graph G is an n× n matrix whose (i, j)th entry is wij . To
simplify the analysis, we assume that there is no self-loop
in the graph; i.e., wii = 0, ∀i ∈ V . The degree di of vertex
i is defined as di =

∑
j∈Ni

|wij |. The Laplacian matrix L
of G is

L := D −W, (3)
where D is a diagonal matrix with its ith diagonal term
being di. Thus, the (i, j)th entry of the Laplacian matrix
can be written as

ℓij =

{
di, if i = j,

−wij , o.w. . (4)

Suppose the evolution of node states xi of the graph G
follows the updating law:

ẋi = −dixi +
∑
j∈Ni

wijxj , (5)

or in matrix form,
ẋ = −Lx, (6)

where xT = [x1 · · · xn] and L is the Laplacian matrix
corresponding to the graph G. Suppose the autonomous
system in (6) is driven by p controllers. The controlled
graph becomes a standard linear and time invariant system

ẋ = −Lx+Bu(t), (7)
where uT (t) = [u1(t) · · · up(t)] and B is a binary matrix
whose (i, j)th component is 1 if node i is connected to
controller j and is 0 otherwise. Throughout the paper,
we say a ring graph is (Laplacian) controllable if its
corresponding LTI system in (7) is controllable.
In this paper, we focus on the controllability of a class
of ring graphs. As shown in Parlangeli and Notarstefano
(2012), if the graph is simple, meaning that the adjacency
matrix of the ring is binary, two controllers connected to
two neighboring nodes suffice to render the graph Lapla-
cian controllable. In the subsequent section we will show
that this result can be extended to any non-simple ring
graph. Furthermore, we will show that one controller is
enough to maneuver each node state of the ring graph
if some condition of periodic constant product is satis-
fied. The controllability result is based on the Laplacian
eigenspace analysis of the graph and the application of the
Popov-Belevitch-Hautus theorem (Chen (1999)):
Theorem 1. Let v be the left-eigenvector of L correspond-
ing to λ; i.e., vL = λv, v ̸= 0. The system (L, B) in (7)
is controllable if and only if there is no left-eigenvector
satisfying vB = 0.

3. MAIN RESULTS

Thoughout this paper, we use n as the number of nodes
in the graph. Let the Laplacian matrix of a ring graph be
written as

L(γ, δ) =


b c1 δ

a1
. . . . . .
. . . . . . cn−1

γ an−1 b


T

, (8)

We first present a controllability result that is applicable
to general ring graphs.
Lemma 2. Any connected non-simple ring graph is Lapla-
cian controllable by two controllers connected to two
neighboring nodes respectively.

Proof. In a connected ring, the parameters in (8) have
nonzero γ, δ, and ai, ci for i ∈ {1, 2, · · · , n − 1}. Thus
the rank of the matrix L(γ, δ) − λI is at least n − 2
and thus the geometric multiplicity of any eigenvalue
of L(γ, δ) is at most 2. Furthermore, if two adjacent
components of any eigenvector of L(γ, δ) are zero, then
the eigenvector must be a zero vector, a contradiction. We
conclude by Theorem 1 that the ring graph is controllable
by two controllers connected to two neighboring nodes
respectively.

In the following we focus on a family of ring graphs
satisfying the following condition of periodic constant
product.
Assumption 1. The ring graph has even number of nodes
and parameters in its Laplacian matrix (8) satisfy

aici =

{
d21, if i is odd,
d22, o.w. (9)

and d1, d2 are nonzero.

For the possible values of γ and δ in L(γ, δ), we define

Γ :=
(d1d2)

n
2∏n−1

i=1 ci
, ∆ :=

(d1d2)
n
2∏n−1

i=1 ai
,

and
L0 := L(0, 0),
L1 := L(Γ,−∆),

L2 := L(−Γ,∆).

(10)

In the case of nonzero d1, d2 and complex θ, it is shown
in Zill et al. (2006) that for each constant λ there is an θ
such that

(λ− b)2 = d1
2 + d2

2 + 2d1d2 cos 2θ. (11)
Using this identity Kouachi (2006) derived the eigenvalues
of L0 by proposing the following result:
Lemma 3. If n is odd, the characteristic polynomial of L0

is

det (λI− L0) = (d1d2)
n−1
2

(λ− b) sin(n+ 1)θ

sin 2θ
, (12)

otherwise,

det (λI− L0) = (d1d2)
n
2

sin(n+ 2)θ + d2

d1
sinnθ

sin 2θ
, (13)

where λ and θ satisfy (11).

Now we consider the cases of L1 and L2.
Lemma 4. Let n be even and λ1, · · · , λn be the eigenvalues
of L1 or L2. If k ∈

{
1, · · · , n

2 − 1
}

,

λk = b+

√
d1

2 + d2
2 + 2d1d2 cos

2kπ

n
. (14)
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If k ∈
{

n
2 + 1, · · · , n− 1

}
,

λk = b−
√
d1

2 + d2
2 + 2d1d2 cos

2kπ

n
. (15)

Otherwise,

λk =

b+

√
d1

2 − d2
2, k =

n

2
,

b−
√
d1

2 − d2
2, k = n.

(16)

Proof. We prove the case of L1 and write

E [i : j] :=

∣∣∣∣∣∣∣∣∣λI−

b ci

ai
. . . . . .
. . . . . . cj−1

aj−1 b


∣∣∣∣∣∣∣∣∣ . (17)

Clearly, E [1 : n] = det (λI− L0). Apply the Laplacian
expansion on the last column of det (λI− L1) to yield

det (λI− L1) = (λ− b)E [1 : n− 1]

− d1
2E [1 : n− 2] + d2

2E [2 : n− 1].
(18)

By Lemma 3, we can write (18) as

(d1d2)
n−2
2

(
(λ− b)2 − d1

2 + d2
2
)
sinnθ

sin 2θ
.

As a result, the eigenvalue of L1 can be written as

λ+ = b+

√
d1

2 + d2
2 + 2d1d2 cos 2θ, (19)

λ− = b−
√

d1
2 + d2

2 + 2d1d2 cos 2θ, (20)
where θ = kπ

n , k ∈ Z \ nZ, and

λ+ = b+

√
d1

2 − d2
2, (21)

λ− = b−
√
d1

2 − d2
2. (22)

We thus complete the proof. The case of L2 can be shown
in a similar way and is skipped.

Now we analyze the Laplacian eigenspace. To simplify the
notations, we let

θk :=


kπ

n
, k /∈

{n

2
, n

}
,

1

2
cos−1

(
−d2
d1

)
, k ∈

{n

2
, n

}
.

(23)

and

σj :=


j−1∏
i=1

ai, j > 1,

1, j = 1.

(24)

Lemma 5. Suppose in Assumption 1, d21 ̸= d22. Let
λ1, · · · , λn be defined in Lemma 4 and v(k) the left-
eigenvector of L1 corresponding to λk. The components
v
(k)
1 , · · · , v(k)n of v(k) are given as follows:

(1) When k ∈ {1, 3, 5, · · · , n− 1} \
{

n
2

}
,

(a) if j is odd,
v
(k)
j = σj(d1d2)

− j+1
2 (λk − b) sin(j − 1)θk, (25)

(b) if j is even,
v
(k)
j = σj(d1d2)

− j
2 sin(j − 2)θk

+ σj(d1d2)
− j

2
d2
d1

sin jθk.
(26)

(2) When k ∈ {2, 4, 6, · · · , n− 2} \
{

n
2

}
,

(a) if j is odd,

v
(k)
j = σj(d1d2)

− j−1
2 sin(j − 1)θk

+ σj(d1d2)
− j−1

2
d1
d2

sin(j + 1)θk,
(27)

(b) if j is even,

v
(k)
j = σj(d1d2)

− j
2 (λk − b) sin jθk. (28)

(3) When k ∈
{

n
2 , n

}
,

(a) if j is odd,

v
(k)
j = σj(d1d2)

− j−1
2 (λk − b) cos

(n
2
− j + 1

)
θk,

(29)
(b) if j is even,

v
(k)
j = −σj(d1d2)

− j−2
2 sin

(n
2
− j

)
θk sin 2θk.

(30)

Proof. Suppose k /∈
{

n
2 , n

}
. For each j ∈ {1, · · · , n− 2},

−ajv
(k)
j + (λk − b)v

(k)
j+1 − cj+1v

(k)
j+2 = 0. (31)

In a matrix form we have
λk − b −c2

−a2
. . . . . .
. . . . . . −cn−2

−an−2 λk − b



v
(k)
2
...
...

v
(k)
n−1

 =


a1v

(k)
1

cn−1v
(k)
n

 .

(32)
Applying Cramer’s rule, v(k)2 , · · · , v(k)n−1, can be expressed
by v

(k)
1 and v

(k)
n ; i.e., for each j ∈ {2, · · · , n− 1},

v
(k)
j =

R[j]

E [2 : n− 1]
, (33)

where E [i : j] is defined in (17) and R[j] in the following:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λkI−



b c2 −a1v
(k)
1

a2
. . .

. . .
. . .

. . . cj−2

aj−2 b
aj−1 λk cj

b cj+1

aj+1

. . .
. . .

. . .
. . . cn−2

−cn−1v
(k)
n an−2 b



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(34)
Note that (33) can be written as

v
(k)
j =

(∏j−1
i=1 ai

)
E [j + 1 : n− 1]

E [2 : n− 1]
v
(k)
1

+

(∏n−1
i=j ci

)
E [2 : j − 1]

E [2 : n− 1]
v(k)n .

(35)

Since λk is single, the components v
(k)
1 and v

(k)
n must not

be independent. Recall that v
(k)
2 and v

(k)
n satisfy

(λk − b)v
(k)
1 − c1v

(k)
2 +∆v(k)n = 0, (36)

−Γv
(k)
1 − an−1v

(k)
n−1 + (λk − b)v(k)n = 0. (37)
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Lemma 3 and (37) imply that v(k)1 = 0 for odd k. Lemma 3
and (36) imply that v(k)n = 0 for even k. Thus we obtain the
explicit form of v(k) for k /∈

{
n
2 , n

}
. The case k ∈

{
n
2 , n

}
can be proved in a similar way and is skipped.
Lemma 6. Follow the conditions in Lemma 5 and let v(k)

be the left-eigenvector of L2 corresponding to λk. The
components v

(k)
1 , · · · , v(k)n of v(k) are given as follows:

(1) When k ∈ {1, 3, 5, · · · , n− 1} \
{

n
2

}
,

(a) if j is odd,
v
(k)
j = σj(d1d2)

− j−1
2 sin(j − 1)θk

+ σj(d1d2)
− j−1

2
d1
d2

sin(j + 1)θk,
(38)

(b) if j is even,
v
(k)
j = σj(d1d2)

− j
2 (λk − b) sin jθk. (39)

(2) When k ∈ {2, 4, 6, · · · , n− 2} \
{

n
2

}
,

(a) if j is odd,
v
(k)
j = σj(d1d2)

− j+1
2 (λk − b) sin(j − 1)θk, (40)

(b) if j is even,
v
(k)
j = σj(d1d2)

− j
2 sin(j − 2)θk

+ σj(d1d2)
− j

2
d2
d1

sin jθk.
(41)

(3) When k ∈
{

n
2 , n

}
,

(a) if j is odd,
v
(k)
j = σj(d1d2)

− j−1
2 (λk − b) sin

(n
2
− j + 1

)
θk,

(42)
(b) if j is even,

v
(k)
j = σj(d1d2)

− j−2
2 cos

(n
2
− j

)
θk sin 2θk.

(43)

Proof. The results above can be derived in a similar way
to that for Lemma 5 and thus is skipped.

If d12 = d2
2, both L1 and L2 have a repeated eigenvalue

b. We discuss this case in the following.
Lemma 7. Suppose in Lemma 5, d21 = d22. If k /∈

{
n
2 , n

}
,

v(k) is the same as in Lemma 5, otherwise, the components
v
(k)
1 , · · · , v(k)n of v(k) are described by

v
(k)
j =

σj(d1d2)
− j−1

2 sin
jπ

2
, j is odd,

0, j is even,
(44)

when n ≡ 0 (mod 4) and

v
(k)
j =

0, j is odd,
σj(d1d2)

− j
2 cos

jπ

2
, j is even,

(45)

when n ≡ 2 (mod 4).

Proof. The result can be obtained by solving the system
of linear difference equations:

aivi + ci+1vi+2 = 0, i ∈ {1, · · · , n− 2},
and the boundary conditions:

c1v2 −∆vn = 0,

Γv1 + an−1vn−1 = 0.

Similarly, we have the following result.

Lemma 8. Suppose in Lemma 6, d12 = d2
2. If k /∈

{
n
2 , n

}
,

then v(k) is in Lemma 6, otherwise, the components
v
(k)
1 , · · · , v(k)n of v(k) are described by

v
(k)
j =

0, j is odd,
σj(d1d2)

− j
2 cos

jπ

2
, j is even,

(46)

when n ≡ 0 (mod 4) and

v
(k)
j =

σj(d1d2)
− j−1

2 sin
jπ

2
, j is odd,

0, j is even,
(47)

when n ≡ 0 (mod 4).

The lemmas above suggest that the as d21 = d22, L1 and
L2 are both non-diagonalizable. This makes it possible to
control the ring graph by only one input, even though there
exists the symmetry in some algebraic sense, which leads to
a repeated eigenvalue. In the sequel we present a sufficient
condition for the controllability of the family of ring graphs
satisfying Assumption 1.
Theorem 9. Suppose n ≡ 0 (mod 4). The system (L, b) is
controllable if
(1) L = L1 and b ∈

{
en

2 −1, en
2 +1

}
\ {e1};

(2) L = L2 and b ∈
{
en

2
, en

2 +2

}
\ {en}.

Proof. Let v be a left-eigenvector of L1, with components
v1, · · · , vn. From Lemma 5 and Lemma 7, vej , j ∈{

n
2 − 1, n

2 + 1
}
\ {1}, is nonzero. Thus, from Theorem 1,

system (L1, ej), j ∈
{

n
2 − 1, n

2 + 1
}
\ {1}, is controllable.

Other cases can be shown in a similar way and are skipped.
Example 10. Consider the ring graph in Fig 1, where
γ = −1 and δ = 1. The Laplacian matrix of the graph
is

L1 =



5 −4 1
−4 5 −1

−1 5 4
4 5 −1
−1 5 −4

−4 5 1
1 5 −4

−1 −4 5



T

. (48)

Eigenvalues of L1 are given by

λ1 = 5 +

√
17 + 4

√
2, λ2 = 5 +

√
17, (49)

λ3 = 5 +

√
17− 4

√
2, λ4 = 5 +

√
15, (50)

λ5 = 5−
√
17− 4

√
2, λ6 = 5−

√
17, (51)

λ7 = 5−
√
17 + 4

√
2, λ8 = 5−

√
15. (52)

The eigenvectors corresponding to λk, k /∈ {4, 8}, are
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v(1) =



0
−1√

17 + 4
√
2

4 +
√
2

−
√
34 + 8

√
2

4
√
2 + 1√

17 + 4
√
2

−4



T

, v(2) =



4

−
√
17

1
0
4

−
√
17

−1
0



T

, (53)

v(3) =



0
−1√

17− 4
√
2

4−
√
2√

34− 8
√
2

−4
√
2 + 1√

17− 4
√
2

−4



T

, v(5) =



0
−1

−
√

17− 4
√
2

4−
√
2

−
√

34− 8
√
2

−4
√
2 + 1

−
√

17− 4
√
2

−4



T

,

(54)

v(6) =



4√
17
1
0
4√
17

−1
0



T

, v(7) =



0
−1

−
√

17 + 4
√
2

4 +
√
2√

34 + 8
√
2

4
√
2 + 1

−
√
17 + 4

√
2

−4



T

, (55)

respectively. Obviously, the 3rd and 5th entries of eigen-
vectors v(k), k /∈ {4, 8}, are nonzero. To show that the 5th
entry of v(4) is nonzero, we consider the equation

4
√
15 1

1
√
15 −4

−4
√
15
1 4√

15 −1

−1
√
15 4

1 4
√
15


︸ ︷︷ ︸

M



v
(4)
1

v
(4)
2

v
(4)
3

v
(4)
4

v
(4)
6

v
(4)
7

v
(4)
8


=


−1

−
√
15
−4


v
(4)
5 .

Note that det(M) = 43
√
15 ̸= 0. If v(4)5 = 0, then v(4) is

a zero vector, a contradiction. Similarly, we can show that
the 3rd entry of v(4), the 3rd, and 5th entries of v(8) are
all nonzero. We conclude that this graph is controllable by
either u1 or u2.

4. CONCLUSION

We have considered the Laplacian controllability of a class
of non-simple ring graphs in this paper. It has been shown
that a ring graph is in general Laplacian controllable
by two controllers connected to two neighboring nodes
respectively. Under the condition of periodic constant
product, we have shown that one controller might be
enough to render the ring graph controllable. This is

1 2

3

4

56

7

8

4

1

−4

1

4

−1

4

−γ
4

1

−4

1
4

−1

4

−δ u1

u2

Fig. 1. Let γ = −1, σ = 1. The ring graph is single-input
Laplacian controllable, by either u1 or u2.

made possible by the condition that results in a non-
diagonalizable Laplacian matrix when it has a repeated
eigenvalue. Our main results are based on the detailed
exploration on the Laplacian eigenspace of the graph.
Apparently, deriving the closed form of eigenpairs directly
from the Laplacian matrices is challenging. A potential
research topic of interest is on the possibility of relaxing
our condition (for example, generalizing the period of
constant product from 2 to any positive integer) while
maintaining the tractability of eigenspace analysis. It is
also interesting to know if our result is applicable to a
wider class, such as the non-simple regular graphs.
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