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Abstract: When optimising the vehicle trajectory and powertrain energy management of hybrid
electric vehicles, it is important to include look-ahead information such as road conditions and
other traffic. One method for doing so is dynamic programming, but the execution time of such
an algorithm on a general purpose CPU is too slow for it to be useable in real time. Significant
improvements in execution time can be achieved by utilising parallel computations, for example,
using a Field-Programmable Gate Array (FPGA). A tool for automatically converting a vehicle
model written in C++ into code that can executed on an FPGA which can be used for dynamic
programming-based control is presented in this paper. A vehicle model with a mild-hybrid
powertrain is used as a case study to evaluate the developed tool and the output quality and
execution time of the resulting hardware.
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1. INTRODUCTION

By adapting the driving pattern and powertrain energy
management of hybrid electric vehicles to the road ahead
and traffic conditions, the fuel consumption and emissions
of the vehicle can be reduced. Connected vehicles and
infrastructure (V2X), GPS, and route data, give relevant
information for calculating the optimal split between the
use of the electric motor and combustion engine, for ex-
ample using Dynamic Programming (DP) (Pérez et al.,
2006). However, the runtime of a DP algorithm grows
exponentially with the number of inputs and state vari-
ables which makes its use for real time calculations in
a Hybrid Electric Vehicle (HEV) difficult on a general
purpose CPU (Sciarretta and Guzzella, 2007).

Due to the computational complexity, DP is often only
applied for off-line analysis and to generate benchmark
performance results, see e.g., Wang and Lukic (2012).
There are real-time implementations of DP for conven-
tional powertrains, see for example Hellström et al. (2009),
where the model complexity is less than, for example,
hybrid electric powertrains. Different approaches have
been proposed to reduce computational complexity, for
example using efficient search strategies (Hellström et al.,
2010). In Lock and McKelvey (2017), an iterative DP
approach is applied where a finer and finer search grid
is used around the previous solution to reduce the overall
complexity. Also, connected vehicles and cloud-computing
have been proposed to have access to additional computa-
tional power (Ozatay et al., 2014). Another option which
is explored here is to exploit the high degree of parallelism
present in DP algorithms by running them on a Field

Programmable Gate Array (FPGA). While the primary
focus here is to run the optimisations locally in a vehicle,
an FPGA implementation would also be beneficial in a
cloud computing scenario as FPGAs have a much lower
power consumption than CPUs and GPUs.

FPGAs are configurable integrated circuits allowing them
to make computations without the overhead of fetching
and executing instructions. They are also able to effi-
ciently exploit parallelism which makes them suitable for
this application. A potential downside of FPGAs is that
programming them requires a different skill set than gen-
eral purpose processors. In order to mitigate that, a tool
is proposed in this paper, Cinnabar 1 , which converts a
vehicle model written in C++ into code in a Hardware
Description Language (HDL) that can be executed on
FPGA hardware. The process requires some manual steps,
but no knowledge of FPGA programming.

A case study of a mild-hybrid electric vehicle is used in
this paper to evaluate the performance and output quality
of the DP algorithm when the vehicle model is run on an
FPGA.

2. PROBLEM STATEMENT

In order to run the DP algorithm for vehicle speed optimi-
sation and powertrain energy management on an FPGA,
a model of the vehicle that can be executed on an FPGA
must be created. However, implementing algorithms on an
FPGA requires different skills compared to implementa-
tion on a general purpose processor. Therefore, a tool that

1 https://gitlab.com/cinnabar/cinnabar
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Fig. 1. Overview of the model conversion process.

can automatically convert models used for simulation and
control, into code that can be run on an FPGA would help
save development time. A tool, Cinnabar, which automates
most of this process is presented in this paper.

Figure 1 shows an overview of the process required to use
the tool. Since vehicle models often already exist as code
in high level languages such as Matlab or C++, the goal of
Cinnabar is to convert high level code, in this case C++,
into code that can be executed on an FPGA. Most of the
process is fully automatic, but for now, some manual work
is required.

The process starts with expressing the vehicle model in
C++ code using special tool defined classes. This code is
passed to the tool along with sample model inputs and
outputs for use in verification and optimisation. Using
the sample inputs and the C++ code, the tool outputs
HDL code which can be synthesized and executed on an
FPGA. It also outputs new C++ code which emulates the
HDL code. This new code allows further simulation, or
verification of the model.

The output quality and amount of FPGA resources used
by the model depends in a large part on the data types
used for the computations. Therefore, an investigation is
conducted using a case study to investigate how many
bits are needed for the computations without significantly
reducing the output quality.

3. POWERTRAIN ENERGY MANAGEMENT USING
DYNAMIC PROGRAMMING

The problem of optimising the fuel efficiency of an HEV
for a given route is to find a power split strategy, gear
shift sequence, and velocity profile that minimizes fuel
consumption while fulfilling given constraints.

Optimisation constraints include speed limits, allowed
variations in battery State of Charge (SOC), and travel
time. Since route constraints, such as speed limits and
locations of stop signs, depend on travelled distance,
the optimisation problem is formulated with respect to
travelled distance instead of time (Hellström et al., 2009).
The constraints as a function of travelled distance are
illustrated in Fig. 2 where vehicle velocity is used as the
only state. With the car at a specific velocity and distance
from the start, each of the control inputs will put the car
in another state. The path to get to the current state is

Speed limit

Stop sign

Velocity

Distance

Fig. 2. State space for a vehicle with velocity as the only
state variable.

represented by the red line, and the effect of the possible
control inputs is represented by the blue triangle. The
infeasible states are marked with grey colour and, in this
case, correspond to speed limits and stop signs.

3.1 Dynamic Programming

DP is an efficient exhaustive search method that solves
optimisation problems by recursively solving a set of
simpler sub-problems (Bellman et al., 1954). In this case,
if the cost of getting from a state x2 to the goal is known,
and an input u takes the vehicle from state x1 to x2, then
the cost of x1 using input u is the cost of that input plus
the cost of x2. This cost cstate can be computed recursively
from the goal and backwards as

cstate(xi) = min
u∈inputs

(
cinput(u) + cstate(s(xi, u))

)
(1)

where cinput computes the cost of a specified input, cstate
is the cost of the specified state, also referred to as cost-to-
go, and s(x, u) computes the resulting state when applying
input u in state x.

Finding an optimal solution requires evaluating every
input in every state, which requires a lot of calculations.
However, if there is no way to go between two states, those
two states can be evaluated in parallel. This is the case
here since a vehicle can not change velocity or state of
charge without also moving forward in time. This inherent
parallelism is the primary motivation for exploring the
usage of FPGAs for this optimisation.

4. FPGA

A Field Programmable Gate Array (FPGA) is a chip
consisting of a large number of programmable logic blocks
which are connected by reconfigurable interconnect. By
changing the behaviour of the logic blocks and the con-
nections between them, the FPGA can be configured to
perform arbitrary computations.

FPGAs have a number of advantages and disadvantages
over conventional computers. One such advantage is that
they can be programmed to perform a specific computa-
tion without the overhead associated with a general pur-
pose processor which has to fetch and parse instructions.
They are also able to perform many calculations in parallel
as each logic block acts independently.

FPGAs can exploit parallelism in a computation by using
pipelining. Each step of the computation to be performed
is given dedicated hardware where the result of the previ-
ous step is fed into the next through registers. For example,
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Fig. 3. Schematic view of the vehicle being modelled.

if (a + b) + c is to be computed for several values of a, b,
and c, the value of a1 + b1 can be computed in one adder
while (a2 + b2) + c2 is being computed in another.

This works until there is a dependency between values, for
example if a is the result of the previous sum in the above
example. At that point, the pipeline has to be stalled until
the previous computation is finished.

4.1 Related Work

There has been some previous research into using FPGAs
for DP. For example, Hu and Georgiou (2013) presented
an FPGA adaptation of a genome sequencing algorithm.
The algorithm is different to the one used for vehicle
optimisation which means that most of their findings are
hard to apply here.

Settle (2013) also performed genome sequencing using
dynamic programming on an FPGA. Unlike the previously
mentioned paper, they used OpenCL for programming,
which removes the need for knowledge of FPGA program-
ming. However, it instead requires knowledge of OpenCL.

There are also several previous studies of running dy-
namic programming on other parallel hardware. For ex-
ample, Cruz et al. (2014) presents a method for efficiently
running dynamic programming on a Very Large Instruc-
tion Word (VLIW) processor. Miyazaki and Matsumae
(2018) presents a pipelined DP implementation for Graph-
ics Processing Units (GPUs). However, since the papers
investigate different kinds of hardware for other problems,
their findings are not directly applicable to this work.

Using a high level language to write code for FPGAs is
not a new concept, and there is a wide variety of tools
available for the task. For an overview, see (Nane et al.,
2016) in which the authors conducted a survey of some of
the available tools. Unlike most other High Level Synthesis
(HLS) tools, Cinnabar automatically selects the data types
used for the computations. Additionally, it is focused on
models for use with dynamic programming, rather than
arbitrary code.

5. VEHICLE MODEL

This section summarises the vehicle model used in the case
study to illustrate some of the component models that
are used for look-ahead powertrain energy management
applications, e.g. in Jung et al. (2018). The objective is
to highlight the kind of computations that the tool must
support for executing the model. For a more detailed
description of the powertrain and component models, the
reader is referred to, e.g., Jung et al. (2018).

The case study is a mild parallel HEV as illustrated in
Fig. 3, but the methods can be applied to other kinds
of powertrain architectures as well. The model has three
inputs: gear, electric motor torque, and combustion engine
torque which is combined with braking force. It also
has two states: kinetic energy, and battery SOC. Kinetic
energy is used as state instead of velocity as recommended
in Hellström et al. (2010).

The vehicle model computes the average velocity and fuel
consumption for the given inputs for a given interval.
These are used to compute the next state, and cost of
the inputs which are then used in (1). Since the states are
parametrised by distance, the cost of a state is computed
as

cstate(x) =
∆d

vavg
(ṁfuel + γ), (2)

where ∆d is the distance between states, vavg is the average
velocity during the interval, and ṁfuel is the amount of fuel
consumed in the interval. Finally, γ is a tuning parameter
which determines how to prioritise arrival time over fuel
consumption (Hellström et al., 2009).

The longitudinal vehicle dynamics at distance step i are
computed from kinetic energy as

v2i+1 = v2i +
2

m
∆d (Ftrac,i − Fa,i − Fr,i − Fm,i) ,

where m is vehicle mass, v is speed, Ftrac is the traction
force generated by the powertrain, Fa is aerodynamic
friction, Fr is rolling friction, and Fm is rolling resistance
(Sciarretta and Guzzella, 2007).

The transmission is modelled using the relations wpt =
αwwh, and

Twh =

αηTpt if Tpt ≥ 0
α

η
Tpt otherwise,

(3)

where Tpt and wpt are powertrain torque and speed, Twh

and wwh are wheel torque and speed, respectively, α is the
selected gear ratio between motor and wheel rotation, and
η is the efficiency of the gearbox.

The electric motor efficiency and combustion engine fuel
consumption are modelled with static efficiency maps as
functions of motor/engine speed and torque.

The current consumed by the electric motor is computed
by

Iem =
Voc(SOC)−

√
Voc(SOC)

2 − 4R0Pem

2R0(SOC)
, (4)

where Voc and R0 are the open circuit voltage and internal
resistance of the battery, respectively, while Pem is the
desired power from the electric motor.

The battery SOC during interval i is updated as SOCi+1 =
SOCi−∆dIem/(vavgC) where C is the battery cell capac-
ity.

All of these equations contain standard arithmetic oper-
ations on both constants and variables which therefore
has to be supported by the tool. In addition, (4) requires
computing both the square root, and square of values. The
values Voc(SOC) and R0(SOC) are functions of the battery
SOC. However, instead of being computed directly their
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values determined by a lookup table with interpolation
between values. The tool supports this for both 1D and 2D
functions. Finally, to compute (3), support for conditional
values and boolean operators is required.

6. VEHICLE MODEL TO FPGA CONVERSION

Cinnabar requires a version of the vehicle model written
in C++ using some tool defined classes. The following
code snippet shows a comparison between a normal C++
function and a function using the tool defined classes.

// Original function using normal C++ data types

float example(float x, float y) {

float product = x * y;

if (x > y) {

return product + x;

}

return product - y;

}

// Cinnabar version of the same function

Node example(Input x, Input y) {

Node product = x * y;

return _if((x > y),

product + x,

product - y

)

}

The first thing to notice in this example is that the
original code and the Cinnabar version are structurally
similar. The basic operands are exactly the same, apart
from working with different data types. Some operations
however, like the if-statement can not be directly executed
on an FPGA as they can not easily conditionally execute
code. Instead, both branches are computed, and the con-
dition decides which value to return. This operation is
represented by the if-function.

In addition to the C++ code, the tool must be provided
with sample inputs and outputs for the model. From that,
the tool determines values for the Fractional Word Lengths
(FWLs) which ensures a low enough error while keeping
resource usage low.

The sample input provided should be representative of
the actual input that the model will receive when in use.
If this is not the case, the resulting code might produce
worse results than desired in some situations that were
not covered by the sample input.

6.1 Cinnabar Internals

Figure 4 shows an overview of the process that Cinnabar
uses to convert C++ code into HDL code. As explained in
the previous section, the tool is fed with C++ code using
tool defined classes. While the classes behave like normal
primitive data types to a user, their internal representation
is quite different. Rather than representing values, the
types represent computations. For example, the result of
an addition is not the value of the sum of the operands, it
is the computation of that sum.

These classes together build up an expression graph,
a structure which describes all the operations required
to perform a computation. This basic expression graph
is most likely not optimal, for example, there may be

C++

Expression graph

Transformations

Updated graph

Interval Arithmetic

Integer word
lengths

Simulation

Simulation result

Comparison

Reference output

New C++
and HDL

Update
FWL

Reference
Input

Fig. 4. Overview of the conversion process used by
Cinnabar.

unnecessary computations, or computations that can be
made more efficient in hardware. To mitigate this, the
graph is transformed using various optimisations to yield
a new and improved expression graph.

One important step in designing FPGA hardware is to
determine what data types to use for storage and compu-
tations of values. Typically, fixed point values are preferred
instead of floating point as the resulting hardware for
performing computation on them is simpler and uses fewer
resources.

However, to use fixed point values the tool must determine
how many bits to use. The required integer word length for
each register can be determined from the size of the values
to be stored there. If the size of the inputs is known, the
size of all other values can be computed recursively using
interval arithmetic. For example, the bounds on the size
of the result of an addition is the sum of the bounds on
the operands.

Determining the amount of fractional bits required is
more challenging as errors introduced through quantisa-
tion propagate through to the result. The tool simulates
the model on the provided test data using different frac-
tional word lengths. Once the simulation is done, the user
can select a FWL setting that provides a good trade-off
between output quality and resource usage. Currently, the
same amount of fractional bits is used for all values.

Each operation in the graph is mapped to a unique com-
ponent in the resulting hardware. Registers are inserted
between components in order to ensure that inputs arrive
at the correct time.

6.2 Executing the Vehicle Model

Once hardware for the vehicle model has been generated,
it is connected to hardware which performs the dynamic
programming described in Section 3.1. An overview of the
hardware for doing so is shown in Fig. 5.
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Fig. 6. One scenario used for performance evaluation.

In each state, the cost and resulting state of every input
must be evaluated, which means that the vehicle model is
executed once for each input in each state. The resulting
state is used to look up the cost of the reached state
in the cost-to-go memory (CTG-mem.) and the resulting
cost is added to the cost of the input. Once all inputs are
evaluated, the minimum value of the total cost is stored
as the cost of the current state.

7. PERFORMANCE EVALUATION

In order to evaluate the performance of the tool and the
resulting code, data from two test scenarios was used. One
of the profiles is the same as the one used in Olin et al.
(2019), while the other was created for this project and is
shown in Fig 6. The routes in each scenario are discretised
into 680 distance steps where the road profile consists of a
mix of urban and highway driving.

The model was originally written in C++ using standard
data types, and was then converted to the Cinnabar data
types. The original model output was used to generate the
reference output.

7.1 Output Quality

Figure 7 shows the resulting cost of journeys through the
two different driving scenarios as a function of the amount
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Fig. 7. Optimisation output when the model is run with
different amounts of fractional bits.
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Fig. 8. Velocity profile at various fractional bit counts. As
the difference is subtle, only a small section of the full
path is shown.
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shown in Fig. 8 at various fractional bit counts.

of fractional bits used for the computation. The dashed
line represents the output of the original model.

The two graphs show a similar shape, with errors decreas-
ing slightly as the fractional bit count approaches 20, at
which point the cost of the fixed point version almost
perfectly matches the reference. The simulation was run
for 10 to 30 fractional bits, but no feasible solution was
found by the model below 16 and 17 bits respectively.

Figures 8 and 9 show the velocity and battery state of
charge profiles of the resulting paths for different word
lengths. The profiles at 20 and 25 fractional bits are very
close to the reference profiles. The velocity profile is also
fairly close, even at 17 bits, while the state of charge profile
deviates more noticeably at 17 bits. This is consistent with
the conclusion that 20 fractional bits is enough for outputs
which are very close to the original model.
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7.2 Runtime Performance

In the model used throughout this work, all states in
a single distance step can be computed in parallel. The
generated FPGA hardware is pipelined which means that
one model execution can start and finish every clock cycle
apart from when flushing the pipeline between distance
steps. This means that the amount of clock cycles required
for an execution of the DP algorithm is t = D · (SN +P ),
where D is the amount of distance steps, S is the amount
of states in a single distance step, N is the amount of
inputs to test, and P is the pipeline depth.

The sample model used has 680 time steps which each
contain 900 combinations of states, and in each state,
there are 5400 inputs to test. The depth of the pipeline
generated by Cinnabar for the sample model is 94 stages,
which results in

t = 680 · (900 · 5400 + 94) = 3 304 863 920 clock cycles.

At 300 MHz, a typical maximum frequency for many
FPGAs, one full model evaluation would then take

T
300·106 ≈ 11 s. This is likely too slow for real-time usage,
however, it is possible to further exploit the parallelism by
adding concurrent pipelines. For example, with 11 parallel
pipelines, each execution of the DP algorithm would only
take 1 s, though it also requires 11 times more hardware.

Even without the concurrent pipelines, the code is much
faster than the corresponding CPU model which runs in
roughly 250 s on an Intel Core i7–7500U without exploiting
any parallelism.

It is worth noting that the runtime of the FPGA version
is independent of the complexity of the model, one model
execution can always be done almost every clock cycle
(apart from when waiting for the pipeline to be flushed).
This allows addition of additional information to the
model, such as road conditions, traffic, and plans of other
connected vehicles without affecting runtime. It also means
that making the model less complex will not speed up
execution, the only ways to do that are to increase the
clock frequency, further increase parallelism, or reducing
the amount of states.

8. CONCLUSIONS AND FUTURE WORK

DP is a useful tool for analysing optimal energy man-
agement strategies for HEVs. However, the application of
DP for real-time control is limited by its computational
complexity. The computation time of DP can be signifi-
cantly reduced by utilising parallel computations and one
method for doing so is to execute it on an FPGA. The
developed tool, Cinnabar, allows creation of FPGA code
from a vehicle model with little manual work, and no
knowledge of FPGA programming. The analysis shows the
potential of the resulting hardware for real time vehicle
applications.

For future work, further improvements of the tool are
considered to reduce the amount of FPGA resources used.
For example: selecting the amount of fractional bits used
for each value independently, rather than using the same
FWL for every value. It is also worth investigating making
changes to the model which would benefit the FPGA im-
plementation. For example, reducing the amount of states

used, changing the lookup tables used for functions, or
replacing lookup tables with normal function evaluations.
Another improvement to be considered is to generate the
Cinnabar C++ code from other representations, for exam-
ple a model designed in Simulink.
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