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Abstract: In this paper, a heuristic path planning approach for the robotic distribution of
granular-fill insulation material is presented. The initial coarse manual distribution of the
material leads to an uneven surface with areas of excessive or insufficient material. In order
to distribute the granular-fill insulation uniformly with a robot, first the worked area is
captured as point cloud with an RGB-D camera, and afterwards these irregularities are located
via agglomerative hierarchical clustering. Subsequently, their volumes are estimated providing
weights for the path calculation. A path planning method, inspired by the usual working method
of human construction workers, is developed and applied. In a test scenario, the total path length
and the processing sequence are analysed, varying the blade size and the weight of the distance-
to-goal parameter. This analysis yields, that the presented path planning algorithm is well suited
for the described application, showing the best results with a larger blade size and a quadratic
distance-to-goal behavior.
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1. INTRODUCTION

In recent years, building construction has become an im-
portant research area in the field of robotics (Balaguer and
Abderrahim (2008)). One particular application of interest
is the automated distribution of floor insulation mate-
rial, since this is a physically demanding task. With this
motivation, Hurban et al. (2019) modified the manually
operated platform (patent of Karl-Heinz Müller (2006)),
by means of motorising and controlling the manipulator,
with the aim of an automated distribution of granular-
fill insulation material. The considered system, shown in
Fig. 1, is a SCARA-like robotic arm with a distribution
blade as its end-effector tool. This blade is automatically
height adjusted by a laser reference. The arm itself is
mounted on a portable automatically leveled tripod base.
Due to the importance of the system’s transportability, it
is battery-powered and realised as a lightweight construc-
tion.

For the use in floor installation work, the robot is manually
set-up at the desired position. Subsequently, the granular-
fill insulation is distributed roughly over the area to be
processed. The resulting surface of the distributed material
shows an uneven character. In order to perform the final
smoothing sweep, a sufficient amount of material over the
entire working area is required. This raises the question on
how to find a suitable path which leads the robot to fill
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Fig. 1. Granular-fill Insulation Distributing Robot with
SCARA-like configuration. An actuated arm with
an end-effector tool is used to distribute the filling
material in order to smooth the to be processed
surface.

the surface valleys by gathering and accumulating material
from areas with a surplus. Additionally, the path is also
expected to progress from the back to the front of the area.

On a more abstract level, this task describes a routing
problem where the irregularities are considered as the to
be connected nodes, weighted by their type, size, and
distance to the goal. Many exact and heuristic approaches
have been developed and analysed in order to solve similar
problems, such as the Traveling Salesman Problem (TSP),
Open Vehicle Routing Problem (OVRP), and Capacitated
Vehicle Routing Problem (CVPR) (Toth and Vigo (1998);
Baraglia et al. (2001); Pereira and Tavares (2009)).
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For applications with a high number of nodes Prins (2004)
states, that heuristic solutions typically come out as more
flexible and simpler techniques compared to exact solu-
tion methods. Representatives for proposed metaheuristic
methods with the aim of solving a routing problem are the
Ant Colony Optimization (ACO), the Genetic Algorithm
(GA), Simulated Annealing (SA), or tabu search, as pre-
sented in Lee et al. (2008); Vidal et al. (2013); Yu and Lin
(2015); Qiu et al. (2018).

Moreover, several planning approaches with machine
learning methods, for instance Q-learning and unsuper-
vised fuzzy clustering, were conducted in Gambardella and
Dorigo (1995); Maire and Mladenov (2012); Ewbank et al.
(2015).

The contribution of this paper is the path planning con-
cept for a granular-fill insulation distributing robot. In
Section 2, the preparatory work for the use of the path
planning algorithm is described. First, a level plane has to
be detected in order to find the position of the irregularities
and afterwards their volume is estimated. In Section 3, the
algorithm for the path planning and its implementation
is explained in detail. Simulation results are presented
in Section 4. The conclusion and outlook are given in
Section 5.

2. PRELIMINARIES

After the granular-fill insulation material is roughly placed
in the target area, heaps and valleys have to be detected.
The whole scenery, depicted in Fig. 2, is captured with a
Microsoft Kinect v2 RGB-Depth/Distance (RGB-D) cam-
era. With help of the RGB picture, the reference height,
provided by a leveling laser, is obtained. Additionally, the
volumes of the irregularities are estimated.

2.1 Level Plane Detection

In order to calculate the level plane, an RGB image of
the camera is used. The initial task is to detect the red
laser line. This is achieved by first extracting the red
component of the RGB picture. Areas with a low red
value are neglected. Subsequently, the noise of the image
is filtered out with a 3x3 median filter and connected
pixel clusters with 30 objects or fewer are excluded. With
the remaining image, the parameters of the laser line are
calculated with Random Sample Consensus (RANSAC)
by Fischler and Bolles (1981). Afterwards, the subsequent
step is to extrapolate from the detected laser line to the
level plane. Since the RGB and the depth sensor of the 3D
camera are two different devices at different positions, a
function for mapping, as stated in Terven and Córdova-
Esparza (2016), is necessary. Thus, the transformation
of the detected line from the RGB to the 3D image is
enabled. Assuming that the camera is oriented parallel to
the level plane, the normal vector of the latter can be
calculated by geometric considerations (cf. Fig. 2). The
3D vector vL of the laser projection on the background
is calculated according to Eq. 1a. Here, v1 and v2 are
defined as vectors from the camera position to two points
on the laser line. The vector vC defines the direction of the
camera position to the center of the image. Since vL and
vC are direction vectors of the desired level plane, their

cross product results in the planes normal vector n (cf.
Eq. 1b).

vL = v1 − v2 (1a)

n= vC × vL (1b)

Afterwards, the calculated plane can be placed virtually
into the scenery of the area to be processed in order
highlight the irregularities, exemplary shown in Fig. 3.
Here the areas with too much material (brown) protrude
over the plane, while areas with too little material (green)
remain below it.

2.2 Determination of the Position of the Irregularities

For the determination of the irregularities in the surface,
the recorded point cloud is split into two parts: a set above
and a set below the level plane.

Subsequently, an agglomerative hierarchical clustering al-
gorithm, as presented in Gan et al. (2007), is used to
dissect the point cloud and to find the positions of the
heaps and valleys. Clusters exceeding a certain number
of points are partitioned iteratively, until the restriction of
maximum cluster size is met. Also small irregularities close
to each other are combined if they have the same polarity.
In this context, polarity defines the type of irregularity:
either areas with excessive material or areas with insuffi-
cient material. By defining the clusters for the heaps and
valleys, their volumes can be estimated by simply counting
the number of points assigned to them.

3. PATH PLANNING

The requirements of the present application are only par-
tially consonant with the classic Vehicle Routing Problem
(VRP). Firstly, only one path from a fixed start node
to a fixed end node is required. Secondly, the nodes are
not equivalent for the material distribution problem, since
they represent different sized areas with too much or too

𝑣𝐶𝑣1 𝑣2 𝑣𝐿𝑛
.

Fig. 2. By forming the difference of the vectors v1 and
v2, which are vectors from the camera to two points
on the laser line, the 3D direction vector of the laser
projection vL can be obtained. Assuming the camera
orientation is parallel to the desired level plane, the
normal vector of the aforementioned is calculated
according to Eq. 1b.
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Fig. 3. A laser level is used to highlight the desired floor
height (red). Knowing the orientation of the camera,
an artificial plane is placed in the point cloud to point
out the areas with a too high (brown) or insufficient
(green) amount of material.

little material, respectively. This requires a systematic
path planning algorithm, which incorporates the afore-
mentioned needs.

The basic concept of the path planning algorithm strives
to mimic the working principle of construction workers.
They start at the back of the area to be processed in order
not to create unevenness of an already smoothed surface.
The workers take material from heaps and distribute it
with a shovel to areas with too little insulation material.

This approach is mimicked by the algorithm, for planning
the necessary path of the robot manipulator for an even
distribution.

As a first approach, an alternating behavior between low
and high positions is considered. However, as seen in the
illustrative example shown in Fig. 4, this method can lead
into the problem of not filling holes sufficiently. This can
be explained by the fact, that an alternating behavior only
considers the polarity of the irregularities. For that reason,
the volume of the heaps and valleys, and the volumetric
capacity of the blade has to be considered for an efficient
path planning algorithm.

+

+

-

-

+

Fig. 4. Motion Planning for the Distribution: By just
alternating between lows (-) and highs (+) (solid
and dotted line), the last low in this example is not
filled sufficiently. If the motion planning allows the
accumulation of material, the second approach (solid
and dashed line) shows better behavior.

3.1 Planning Algorithm

This section presents the developed path planning algo-
rithm in detail. In order to better exemplify the path plan-
ning method, a pseudo code is presented in Algorithm 1.
The start and the goal position, the position of irregulari-
ties and their weights are handed over as input variables,
since they are obtained in a higher planning level. Initially,
in Line 1 to 5, initialisations are performed. The start
position is provided as the input variable p and is added
to the path solution as a first entry. Then the current
and the maximum number of points for the volumes of
the blade nV and nVmax

are assigned. The target indicates
what kind of irregularity is headed for next, whereas a
high is defined as an area with a surplus of material,
while a low indicates an area with insufficient material. In
this application, the algorithm aims first for a high, since
it needs to accumulate material in the beginning, which
corresponds to the construction worker’s intuitive initial
move to a material heap.

The Euclidean distance of every center position of the
irregularities to the goal is stored in wn (cf. Eq. 2).

Algorithm 1 Planning algorithm

Input: start position p, goal position goal, position
of irregularities centers, volume weights nVc

Output: path solution

1: Initialise nVmax

2: Initialise nV to 0
3: Initialise target to a high
4: wn ← calculateWeights(centers, goal)
5: solution← p
6: while list of centers is not emtpy do
7: [dC , cn]← nearestCenter(p, centers, target, wn)
8: if the target is a low and nV < nVmax

then
9: [dL, cL]← checkNextLow(p, centers, wn)

10: if dL < dC then
11: dC ← dL
12: cn ← cL
13: end if
14: else if the target is a high and nV > 0 then
15: [dH , cH ]← checkNextHigh(p, centers, wn)
16: if dH < dC then
17: dC ← dH
18: cn ← cH
19: end if
20: end if
21: if no cn is found then
22: [x, y]← getLinearPath(p, goal)
23: solution← [solution; [x, y]]
24: break
25: end if
26: [x, y]← getLinearPath(p, cn)
27: solution← [solution; [x, y]]
28: Recalculate nV

29: Remove current center from centers
30: Remove current volume weight from volume list
31: Remove current distance weight from weight list
32: Invert target
33: p← cn
34: end while
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wn = ‖cn − goal‖2 (2)

Afterwards, in Line 6, the procedure is entering a while
loop, which is terminated if either no more appropriate
centers are found or the list of centers is empty. At first,
the nearest centers are checked via the nearestCenter pro-
cedure, which requires the current position p, the centers
of the irregularities centers, the target and the distance
weights to the goal wn as parameters. The return values
of the aforementioned function is the nearest irregularity
cn of the polarity which is defined with the target and its
distance to the current position dC (for more detail see
Section 3.2).

From Line 8 to 20, the algorithm checks if an irregular-
ity with the same polarity as the current center is more
suitable in terms of distance, weight, and volume. If the
current position is at a high, and therefore the next regular
center would be a low, it may occur, that a center with a
positive polarity is closer and/or has a lower weight. If
now the capacity of the blade is not stretched and the
volume of the suitable positive center would not exceed
it, the latter turns up as a superior target candidate.
Analogously, if the current position is at a low, and the
distribution blade has still enough material for a valley
with more favorable properties, it is chosen over the regular
candidate. This behavior corresponds to the presumable
considerations of the construction worker: If the trowel
is able to hold another close material heap, the worker
aims for it. On the contrary, if the trowel is full, the
worker aims for the nearest area with insufficient material.
In order to realise the aforementioned functionality, the
procedures checkNextLow and checkNextHigh are used.
In Lines 26 and 27, the path from current position p to the
chosen target cn is calculated and added to solution. Here,
the procedure getLinearPath delivers a linear connection
between these two points. Afterwards, in Line 28 the blade
volume is recalculated based on the current center. At the
end of the while loop, the current position is set to the
position of chosen target center. The latter is then also
removed from the list of centers. Additionally, the corre-
sponding volume and weight entry is deleted. As the last
statement, the polarity is inverted. The procedure ends,
if nearestCenter in Line 7 returns cn = [ ], which means
no suitable irregularity is found. Hence, the condition in
Line 21 is fulfilled and the algorithm considers the goal as
the last target. Finally, the path from the current position
to the goal is added to solution.

3.2 Nearest Center Procedure

The procedure for the search of the next center takes the
current position p, the irregularities centers, the target,
and the distance weights wn as parameters. For every
center, a weight dn is calculated according to Eq. 3.

dn = ‖p− cn‖2 + wk

n (3)

As can be seen, not only the distance from the current
position to the center, but additionally the weight of the
distance to the goal is considered. This weight can be
raised to the power of k, which increases the effect of this
distance. Since a construction worker is processing the area
from the rear side to the front with the intention to not
enter the processed region again, the presented procedure
supports this desired behavior.

Table 1. Number of points for calculated cen-
ters of the exemplary test case. Since the total
volume of the areas with excessive material is
higher than the total volume of the lows, the
area contains enough material for the distribu-

tion.

Highs Lows

Total Number 22 8

Maximum Volume 160 89

Minimum Volume 2 3

Total Volume 646 204

4. SIMULATION RESULTS

In this section, simulation results of the developed heuris-
tic path planning approach are presented. For this pur-
pose, an actual construction site scenario is used as a test
case, where initially the material is distributed coarsely
within the desired area. The recorded point cloud is shown
in Fig. 5.

With the preliminary steps finished, the positions and
volumes of 30 irregularities are obtained (cf. Table 1). As
can be seen, the overall volume of areas with excessive
material is higher than the volume of the valleys, which
is why no more material needs to be added to the surface
and all valleys can be filled.

The two parameters, blade volume and distance weight
coefficient, are influencing the selected path, which have
to be analysed. Considering this quasi-static approach, the
path length and the processing sequence appear as reliably
measurable criteria.

4.1 Analysis on the Variation of the Maximum Blade
Volume

As the size of the blade, and therefore the maximum
volume of material stored in front of it, changes the path
planning substantially, an according analysis is conducted.

The first experiment, depicted in Fig. 6(a), is performed
with a maximum blade volume of 180 points. Considering
that the biggest center has a volume of 160 points, the
algorithm needs to adapt its path planning accordingly.
As a consequence, the robot manipulator has to alternate
more often between the irregularities of different polarity

Fig. 5. Point cloud of the area to be processed as the initial
situation, where the granular-fill material is roughly
distributed over the area.
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(a) Distribution blade volume 180 and quadratic
consideration of distance to goal

(b) Distribution blade volume 475 and quadratic
consideration of distance to goal

Fig. 6. Distribution path of robot with different maximum blade volume and quadratic consideration of distance
weighting, calculated with presented heuristic for an actual exemplary floor configuration, recorded as a point
cloud via a 3D camera. The computed path (black) begins at the starting point (magenta) and continues until the
end point (red).

(a) Distribution blade volume 750 without
consideration of distance to goal

(b) Distribution blade volume 750 and linear
consideration of distance to goal

(c) Distribution blade volume 750 and
quadratic consideration of distance to goal

Fig. 7. Distribution path of robot with constant blade volume and with linear, with quadratic or without consideration
of the distance to the goal, calculated with presented heuristic for an actual exemplary floor configuration, recorded
as a point cloud via a 3D camera. The computed path (black) begins at the starting point (magenta) and continues
until the end point (red).

which leads in a longer path. For this blade the complete
path results in a length of 18.89 m.

The second experiment is conducted with maximum blade
volume of 475 points, which represents the size of the
currently used blade. The simulation result is presented
in Fig. 6(b). Compared to the first experiment, the path
seems more reasonable considering a shorter total path
length of 17.86 m. In general, the choice of the blade size
will lead to a trade-off between flexibility and weight of the
manipulator versus the maximum possible material load.

4.2 Analysis on the Distance Weighting

A second analysis is conducted based on the distance
weighting of the irregularities. Since it is desired to work
the surface from the back to the front, the distance from
each center to the goal point is used as a weight (cf. Eq. 3).
It is of interest to know which k yields the best results for
the path planning. For this reason, the cases k = {0, 1, 2}
are analysed.

For the analysis of the calculated paths shown in Fig. 7, a
constant maximum blade volume of 750 points is chosen.
The simulation result for the example, without considering

the distance weighting to the goal, by setting k = 0,
is shown in Fig. 7(a). With a total length of 15.77 m,
the planning algorithm without the distance weighting
manages to generate an appropriate path. However, the
sequence is not progressing from the rear end to the front
anymore, which is crucial for the considered industry.

For the second experiment with k = 1, which indicates a
linear dependency of the weight to the distance, the results
in Fig. 7(b) could be obtained. A path, reaching all centers
and taking the back-to-front restriction into account, with
a total length of 16.29 m is generated.

The last simulation covers the case for k = 2, which stands
for a quadratic dependency of the distance weight. The
calculated path with a total length of 15.33 m can be seen
in Fig. 7(c). Considering that the length is 3% less than in
the simulation with k = 0 or 6% less than in the simulation
with k = 1, and the processing path does comply with the
requirement of working from the back to the front, the
method with k = 2 shows the best results in this analysis.

An overview of the lengths for the obtained paths of
both experiments can be seen in Table 2. The parameters
k = {0, 1, 2} and nVmax

= {180, 475, 750} are taken into
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Table 2. Length of calculated paths for the
analysis on the variation of the maximum
blade volume nVmax

and the degree of distance
dependency to the goal k.

nVmax

k 180 475 750

0 19.15 m 18.07 m 15.77 m

1 19.87 m 25.63 m 16.29 m

2 18.89 m 17.86 m 15.33 m

account. As can be seen, the longest path is achieved in
the simulation with a blade size of 475 points and linear
dependency from the centers to the goal. On the contrary,
the quadratic distance dependency from the centers to the
goal leads to the shortest necessary path for all analysed
blade sizes.

In summary, the proposed path planning approach is well
suited for the intended distribution task, delivering the
shortest sufficient routes in the case of a larger sized blade
and a quadratic distance-to-goal dependency.

5. CONCLUSION

In this paper, a heuristic path planning approach for a
granular-fill insulation distribution robot is successfully
developed and analysed. With the aim of detecting the
irregularities of the surface, an RGB-D camera is used.
Preliminary steps comprise the detection of the 3D level
plane, and the calculation of the position of the centers
and the volume estimates of the irregularities. With these
steps done, the developed path planning algorithm, based
on the manual working principle of construction workers,
can be used to obtain a path for the distribution of the
material.

The analysis on the variation of parameters for this heuris-
tic approach yields, that the best results are achieved with
a larger blade size and a quadratic distance dependency to
the goal.

Ongoing work will focus on the analysis of different sensor
and camera concepts. Furthermore, a method to estimate
the overall material volume has to be developed. In order
to fill all surface valleys, this gives the user the information,
whether the area contains a sufficient amount of mate-
rial. Also, further research concerning the path planning
algorithm has to take the velocity and dynamics of the
robot into account. Additionally, the continuation of the
distribution of the material after relocating the robot has
to be analysed.
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