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1. INTRODUCTION

As marine vessels are becoming increasingly autonomous,
having accurate simulation models available is turning into
an absolute necessity. This holds both for facilitation of
development and for achieving satisfactory model-based
control. Linear theory is useful for analyzing ship motion
performed within close proximity to an equilibrium point.
It is however not useful for accurately predicting the
characteristics of tight maneuvers, that are for example
used during docking at ports.

Ship dynamics depend on the forces and moments acting
on the ship according to Newton’s laws of motion. Except
for actuators, like thrusters and rudders, also environmen-
tal forces affect the steering dynamics in this way. Dealing
with these, typically quite impactful process disturbances,
in a correct way is quite challenging already in the linear
case and becomes even more difficult when models are
nonlinear.

The challenges of parameter estimation for nonlinear
model classes are widely known, see for example Ljung
(2010). As a consequence there is a substantial research
effort focused on the problem. One possible way of ap-
proaching it is to consider cases where the Maximum
Likelihood (ML) problem can be formulated and solved.
In Schén et al. (2011) this was done using the Expec-
tation Maximization algorithm and particle smoothing.
In Abdalmoaty (2019) a prediction-error perspective with
suboptimal predictors was explored. The results showed
that linear predictors can give consistent estimators in a
prediction-error framework, for a quite large class of non-
linear models. Larsson (2019) investigated the possibility
of having a parameterized linear observer capturing un-
modelled disturbance characteristics. This linear observer
was an easily accessible way of compensating for miss-
specified predictors.
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Different parametric model structures for ship dynamics
have been proposed in the past, see for example Fossen
(1994). The aim of this work is not to develop new theory
in that regard. Instead, focus is on a fairly general class
of nonlinear regression models for marine vessels called
second-order modulus models. For this model class consis-
tent parameter estimators are suggested, that are robust
to data being influenced by environmental disturbances in
the form of wind, waves, and ocean currents.

In general, formulating the ML problem for parameter es-
timation requires prior knowledge about the disturbances’
probability distributions. Since the environmental distur-
bances considered here usually are not well-described as
white Gaussian processes, the required prior knowledge is
not even necessarily restricted to first and second-order
moments. This makes the ML method unsuitable in the
studied scenario. Another conceivable approach is the least
squares (LS) method. Since the work deals with regression
models the LS estimate can readily be formulated. How-
ever, such an approach usually provides biased estimators
under errors-in-variables conditions.

In Ljungberg and Enqvist (2019) the issue of obtaining
consistent parameter estimators for this class of model
structures under additive measurement noise, was ex-
plored. It was shown that the accuracy of an instrumental
variable (IV) estimator could be improved by conducting
experiments where the input signal had a static offset
of sufficient amplitude and the instruments were forced
to have zero mean. This work complements that study
by acknowledging the possibility of non-additive process
disturbances with unknown probability distributions.

2. PROBLEM FORMULATION

Most model structures used for ships stem from one of
two basic ideas. The first is to base the model on a Taylor
expansion and was first suggested by Abkowitz (1964). If
Taylor expansions are considered, the even-order terms are
often neglected. This is done in order to enforce that the
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model behaves in the same way for positive and negative
relative velocities, something that is necessary due to ship
symmetry. The other type of model structure was first
proposed by Fedyaevsky and Sobolev (1964) and is the one
studied in this work. This type of model structure is based
on a combination of physical effects such as circulation
and cross-flow drag principles, properties that are usually
well-described by quadratic functions. The constraint of
having a symmetric model is therefore instead resolved by
use of the modulus function. Models of this type typically
do not include any terms of higher order than two and
are therefore referred to as second-order modulus models.
For describing a general second-order modulus model, it is
convenient to first define a second-order modulus function.

Definition 2.1. A second-order modulus function is a func-
tion, f : R™™P — R™ that can be written as

f(x,0) = 7 (x)0,

where each element of the p x m matrix ®(x) is on one
of the forms x;, |z;|, ;z;, xi’xj’ for 7,7 < n or zero and
0 € RP is a vector of coefficients.

Since the second-order modulus models are based on
physical principles, they are usually first formulated in
continuous time. A continuous-time second-order modulus
model can however be cast as a discrete-time model
with the same type of terms, using for example Euler’s
explicit method. If the sampling frequency is sufficiently
much faster than the frequency of the signal variations,
the accuracy of this approximation will be good. The
remainder of the paper will deal exclusively with discrete-
time models.

Consider a nonlinear discrete-time state-space system with
n states, m inputs and n outputs

x4 1) = f( [X(’“{l@;’(’ﬂ 00) +wik),  (1a)

y(k) = x(k) + e(k), (1b)

where u(k) is the known input signal, x(k) is a vector
consisting of the latent system states, all of which are
measured directly (with noise) and collected in the output
vector y (k). Moreover, v(k) and w(k) are external signals
that are assumed to be unknown (process disturbances)
and e(k) constitutes an additive measurement error, which
is also assumed to be unknown. The system is described
by the parameter vector 6y, which does not vary over time.
Further, the following premises regarding the system are
assumed to be imposed.

Al. f is a second-order modulus function in agreement
with Definition 2.1 and its structure is known.

A2. The measurement noise e(k) is a stationary signal with
zero mean and well-defined moments of any order. Also,
its amplitude is limited, —n. < e(k) < 7.

A3. The process disturbance w(k) is a stationary signal
with well-defined moments of any order. Moreover, w(k)
is independent of e(k).

A4. The system is operating in open loop, i.e. the input, u,
does not depend on the measured states, y, and is conse-
quently assumed to be independent of the disturbances.

Following Definition 2.1, this system can be expressed as

x(k+1) = B7( [X(’“ (2a)

y(k) = x(k) + e(k). (2b)
Since the structure of the true system is known by Assump-
tion Al, it is reasonable to consider the one-step ahead
predictor model

319 = o7 (55 3o )

for which an additional assumption is made.

A5. The model structure is globally identifiable according
to the definition in Ljung (1999).

The problem considered in this work is to develop consis-
tent estimators of the unknown parameter vector 0. This
is done based on two different assumptions regarding the
process disturbance v(k). First it will be assumed that
v(k) has zero mean. Then a situation where v(k) is of
more general character but is measured will be studied.

The suggested estimators will be based on the IV method.
The IV estimate is

N
O =0l = S 2Ry ()~ SR =0, ()
k=1

where Z(k) is called the instrument matrix and the nota-
tion sol { f(x) = 0} is used for the solution to the system
of equations f;(x) =0, i =1,..., n. From (4) it can be
noted that the IV estimator will be consistent if
E{Z(k)®T (k)} is full rank, (5a)
E{Z(k)[y(k) — @ (k)0o]} = 0, (5b)
i.e. if the instruments are correlated with the regressors
but uncorrelated with the optimal model residual. See
Ljung (1999) for more details, where also the notation
E{} =limy e & Zgzl E{.} was adopted from.

Assume that Np experiments are performed, where in
each Np data points are collected and that for each
experiment, F, there is an p X n instrument matrix

Zg(k) = [Cea(k) ... Cen(k)],
that fulfills the following assumptions.

AG6. Zg is independent of the noise signals e, v, and w.

A7. E{Zg(k)} = 0 and all the moments of higher order
are well-defined.

Since an exact solution to (4) might not exist, the IV
estimate is obtained as the least-squares solution to the
system of pNg equations

! NDZ k)y(k) — ®T
Ny 2o D) - 2

yk=1) | _
a-o

uk—1)
NgNp .
EES zNE<k>[y<k>—<bT<[§(Z_m o =0
D (Np—1)Np+1

Finally it is assumed that when Np — oo the parameters
can be determined uniquely, i.e. that the data from all the
experiments combined are sufficiently informative.
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A8. E{ o7 ( {Y(k - 1;} )} is full rank.

ZNE (k)
3. ZERO-MEAN DISTURBANCE

Now the scenario where the first-order moment of v(k) is
zero will be addressed.

A9. The process disturbance v(k) is a stationary white-
noise signal with zero mean and well-defined moments of
any higher order. Also, the amplitude of v(k) is limited,
—ny, < v(k) < n, and it is independent of e(k) as
well as of earlier values of w(k), i.e. E{v(k)w(l)} =

E{v(k)}E{w()}, ¥ k > L.

The proposed estimator will be based on an assumption
regarding experiment design.

A10. The input in each experiment is such that it ex-
cites the system to the extent that each of its states,
x1(k), ... x,(k), continuously has an amplitude that is
sufficiently well-separated from the origin

’T’l(k” > max(7e,i; o,i) = i,

fork=1, ... Np andi=1,

Performing experiments in accordance with A10 was a key
step proposed in Ljungberg and Enqvist (2019) that is
central, also for the ideas presented here. The assumption
makes it possible to temporarily treat second-order modu-
lus functions as normal second-order functions, during the
analysis of the parameter estimation.

Lemma 3.1. Provided that Assumptions A1-A10 are ful-
filled, the IV method defined by (6) is a consistent estima-
tor of 6.

Proof. Under the assumptions, the consistency of the IV
method can be investigated by analyzing the unbiasedness
of the asymptotic IV estimator, ¢.e. the IV method defined
by (6) when Np — oco. The requirement (5a) is already
fulfilled by A8 which means that a sufficient condition for
consistency is that also (5b) holds, i.e. that

Ezembm - (S~ Phan =0 @)

for all the experiments F = 1, ... Ng. Denot-
ing the columns of the regression matrix as ®(.) =

[©1(.) .. @n(.)] it can be seen that (7) is fulfilled if
B 0l) - (S5 1) ol =
fori=1, ... nand E=1, ... NE.Here

+wi(k—1) + es(k) — A[ Ei g])o

Since E{Cg ;(k)w;(k — 1)} = E{(r.i(k)e;(k)} = 0, by A2,
A3, A6, and A7 it remains to show that

Jy6o

CRCE e
— i ( {x(k —u1()k+_e1()k = 1)} =0 )

holds for all ¢ =1, ..., n.and E =1, ..., Ng. This
residual vector will consist of a combination of different
kinds of elements. Elements on the form u;, |uj| U Uy, OF
uj|uy| are trivially zero since the input is assumed to be

perfectly known. Elements on the form |xj| give
E{¢pi(k)[ |2k — 1) + vi(k — 1)
—[zj(k = 1) +e;(k = D[]} = E{Cp.i(k)[z;(k - 1)
Fui(k—1) = (z;(k = 1) + ¢;(k —1))]} =0,
if ; > n;. This follows by A2, A6, A9, and A10. For

the case when z; < —n; only the sign of the expression
changes. Cross-elements on the form z;|u;| give

E{Cmi(k)(w(k = 1) + v;(k = 1) jus(k = 1)] = (a;(k — 1)
+ej(k —1)|u(k = 1)} = E{Ce.i(k)|u(k — 1)
“(vj(k=1) —e;(k=1))} =0,

which follows from A2, A4, A6, and A9. Cross-elements on

the form w;|z;| give

E{¢p,i(k)[uj(k — 1)|z(k — 1) + vi(k — 1) — uj(k — 1)

ok = 1) + ek = DI} = E{Cpi(k)u;(k - 1)
@k =1 +ok—1) = (@ -1) +ealk-1)))}
= E{Cpi(k)u;(k — D)(vi(k = 1) — ei(k — 1))} = 0,

if ; > m;. This follows by A2, A4, A6, A9, and A10. For
the case when x; < —mn; only the sign of the expression
changes. Finally elements on the form x;|z;| give

E{Cp.i(R)[(2;(k = 1) + v(k = 1)) [2u(k = 1) + vk = 1)]
—(zj(k — 1) +ej(k — 1)) |z(k — 1) + ey (k — 1)]]}
= E{Cp.i(k)[z;(k — Dan(k — 1) + 2;(k — Dui(k - 1)

+’Uj(k' - 1)l‘l(k - 1) +Uj(,l€ - 1)vl(k - 1) 7Ij(k* 1)

zi(k—1)—z;(k—De(k—1) —ej(k— 1)z (k — 1)
—ej(k = De(k — 1]} = E{¢p.i(k)(z;(k — vk — 1)
—e(k—D]+z(k— vk —1) —ej(k —1)]

(k= Dok —1) —e;(k —1e(k — 1))} =0,
if 2; > ;. This follows by A2, A3, A4, A6, A7, A9, and
A10. For the case when x; < —mn; only the sign of the
expression changes.

First and second-order elements without the modulus
operator can be seen to equal zero following to the same
type of reasoning. Hence, all elements in (8) will be zero,
regardless of 4, j, [, and E. Conclusively (7) is fulfilled so
the estimator for 6 is consistent. This concludes the proof.

Remark 3.1. Only the biggest of n; . and n; , is necessary
to consider when the experiment is designed.

4. GENERAL DISTURBANCE

Now the scenario where the process disturbance v(k) is of
more general character will be addressed. It will however
be assumed that an independent measurement of v(k) is
available. Therefore let y,(k) = x(k) + e1(k), —ne, <
e1(k) < ne,, denote the original state measurement.

A11. The process disturbance v(k) is a signal with well-
defined moments of any order and its amplitude is limited,
=1, < v(k) < ny.

A12. An unbiased measurement y,(k) = v(k) + ez(k) is
available. The measurement noise ey(k) is a stationary

1156



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

signal with zero mean and well-defined moments of any
order. Also, its amplitude is limited, —7., < e2(k) < 7e,-

A13. Z is independent of es.

A14. The measurement disturbances, e (k) and eq(k), are
independent of the process disturbances, v(k) and w(k).

A15. The input in each experiment is such that it ex-
cites the system to the extent that each of its states,
z1(k), ... x,(k), continuously has an amplitude that is
sufficiently well-separated from the origin

A
‘xl(k)| > MNey i + Nes,i + N, = MNi,e + MNv,i
fork=1, ... Npandi=1,
Let y(k) = y,(k) + yo(k) and consider the predictor
. v(k—1
sk = o7 ([S(5 1) . )

Define the IV estimator as the least-squares solution to
the system of p/Ng equations

7 > ZiM) (k) - 2 [ﬁéz - m )0l =0,

NgNp .
Yz k) - 9 ﬁ’;ﬂ]m =0
D e (Ng—1)Np+1

(10)
Lemma 4.1. Provided that Assumptions A1-A8 and All-

A15 are fulfilled, the IV method defined by (10) is a
consistent estimator of 6.

Proof. Under the assumptions, the consistency of the IV
method can be investigated by analyzing the unbiasedness
of the asymptotic IV estimator, i.e. the IV method defined
by (10) when Np — oo. The requirement (5a) is already
fulfilled by A8 which means that a sufficient condition for
consistency is that also (5b) holds, i.e. that

Eze®bn®) - o (S e =0 an

for all the experiments E = 1, ... Ng. Again de-
noting the columns of the regression matrix as ®(.) =

[©1(.) .. @n(.)] it can be seen that (11) is fulfilled if
- y(k—1
B{Ge (0l o(k) — o7 (S8~ 1 oul) 0.
fori=1, ... nand E=1, ... Ng. Here
)= [0 o= e N
y(k —1
+ wi(k—l) + el,i(k) - (,0;"1( ngz _ 1g:| )9(].

Since E{(p,i(k)w;(k—1)} = E{Cpi(k)er,i(k)} = 0, by A2,
A3, A6, and A7 it remains to show that

BT 0 )
(S Y=o a2

holds for all i =1, ..., n.and EF =1, , Ng. Let

r(k) = x(k) + v(k), (13)

e(k) £ e1 (k) + ea (k). (14)
Then it holds that y(k) = r(k) + é(k). Further note that
A15 and (13) implies that

|xl(k)] > Ne,i +]vl(k)’ - ’Tz(k)
Verifying (12) is equivalent to verifying

e
- %-T({

| > 77é7i.

The remainder of the proof is similar to that of Lemma 3.1
but is still included for completeness. The residual vector
above will consist of a combination of different kinds of
elements. Elements on the form u;, . are
trivially zero since the input is assumed to be perfectly
known. Elements on the form |7"j| give

E{Cpi(B)] |rj(k = D] = |rj(k = 1) + &k = D]}

= E{Cpi(R)[rj(k = 1) = (rj(k = 1) + & (k = 1))]} =0,
if r; > ns ;. This follows by A2, A6, Al2, Al3, and
A15. For the case when r; < —une; only the sign of the
expression changes. Cross-elements on the form 7;|u;| give

E{Cmi(k)lrj(k = Dk = 1)] = (rj(k = 1) +¢&;(k = 1))
Ju(k = 1)1} = —E{Cei(k)[u(k — 1) &;(k — 1)} =0,

which follows from A2, A4, A6, A12 and A13. Cross-

elements on the form u;|r;| give

E{¢p,i(k)[uj(k — 1)|ri(k — 1) — uj(k — 1) - |ry(k — 1)

+eak =D} = E{Ci(k)us(k — 1)(ri(k = 1) — (r(k — 1)

+eé(k—1))} = —BE{Cpi(k)u;(k — 1) (k — 1)} = 0,

if r; > ns;. This follows by A2, A4, A6, A12, Al3, and

A15. For the case when z; < —ns,; only the sign of the
expression changes. Finally elements on the form r;|r;| give

E{(p,i(k)[rj(k = 1)|ri(k — 1) = (rj(k — 1) + &(k — 1))
ik = 1) + ek = D[} = E{Cea(k)rj(k — V)ri(k — 1)
= (rj(k = 1)+ &k = D)(ru(k = 1) + &k - 1))}
= —E{Cpi(k)[rj(k — Déi(k — 1) + ¢;(k — 1)ri(k — 1)
+éj(k—1)é(k—-1)]} =0,
if r; > ne;. This follows by A2, A4, A6, A7, All, Al2,
A13, A14 and A15. For the case when z; < —1; only the
sign of the expression changes.

First and second-order elements without the modulus
operator can be seen to equal zero following to the same
type of reasoning. Hence, all elements in (12) will be zero,
regardless of i, j, [, and E. Conclusively (11) is fulfilled so
the estimator for 6 is consistent. This concludes the proof.

Remark 4.1. In this scenario, it was never assumed that
the disturbances, e1, es, v, and w, are white. In fact, v can
even include a deterministic time-dependent component.

Remark 4.2. A15 is a more restricting condition for the
experiment design than A10.

Remark 4.3. The main idea of the proof is to consider the
aggregation r(k) = x(k) + v(k) as state, temporarily dur-
ing estimation. Instead of adding a second measurement
of the disturbance v(k) it is sometimes possible to add a
measurement of the aggregated state r(k).
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Remark 4.4. Whether it is feasible to measure a system
disturbance or not is highly application dependent. For
example wind speed and direction can be measured using
an anemometer together with a weathervane. It is not
uncommon that ships are equipped with these sensors.

5. ILLUSTRATIVE EXAMPLE

It is clearly the case that v(k), which enters the system
through the nonlinearity, is the challenging disturbance to
deal with. This will be illustrated by an example. Assume
that data is generated based on the single-input single-
output (SISO) system

ok +1) = no(x(k) + v(k))|z(k) +v(k)| + fou(k) +w(k),
y1(k) = z(k) + ex(k),

where v(k) = v + 0(k) and 0(k) is white, uniformly

distributed and has zero mean, —nz < 0(k) < ng, w(k)

is a stationary signal with well-defined moments of any

order and e (k) is uniformly distributed with zero mean,
—Ne, < e1(k) < ne,. Consider the predictor

91E16) = [~ Dlan 6= ] i~ )] 7] 2 7

and the input u(k) = u+a(k), where @(k) is uniformly dis-
tributed with zero mean, —n; < a(k) < ng. If the system
is stable this will yield an output that, with the notation
E{z(k)} = Z, can be written as

(k) =z +2(k), E{z(k)} =0.
For simplicity assume that @ > 0, £ > 0 and

xz(k) =z + 2(k) > max(|9] + ns,me,) > 0.

Under the stated circumstances it can be concluded that
x(k)+v(k) > 0and z(k)+eq(k) > 0 and as a consequence,
all occurrences of the modulus operator, both in the
system and in the predictor can be ignored. Provided
that the input is informative such that (5a) holds, the
consistency of an IV estimator can be studied by the
fulfillment of (5b), which left-hand-side in this situation
is

E{C(k) (y1(k) =" (k)00)} = E{C (k) (no(x(k—1) + v(k—1))*
+ fou(k—1) + w(k—1) + ey (k) — no(x(k—1) 4+ e1(k—1))?
— Joulk=1))} = 200 B{C(R)x(k — Do(h-1) — ex(k~1))}
+noB{¢(k) (v(k—=1)* = ex (k=1)*)} + E{¢(k)w(k — 1)}

+ E{((k)e1(k)} = 2nov E{¢(k)z(k — 1)},

where the last equality follows if u(k) and ((k) are in-
dependent of the disturbances, E{((k)} = 0, and the
disturbances are mutually independent. If (5a) holds it

is the case that E{((k)z(k —1)} # 0. This means that the
estimator will be consistent if ¥ = 0 but not otherwise.

~— —

As described in Section 4, one way to get consistency in
the general case when v # 0, is to add a second sensor for
measuring the disturbance, yo(k) = v(k) + ea(k). Here it
will be assumed that also ez(k) is uniformly distributed
with zero mean, —n., < e2(k) < ne,. Now consider the
aggregated-state predictor

in(b16) = [0 = ]~ ] i~ ] 7] 2 T 00

where g(k) = z(k) + v(k) + é(k) and é(k) = ey (k) + ea(k).
In order to be able to ignore the modulus functions it is
assumed that

(k) > [0 + 15 + 1ey + e
This gives another left-hand-side of (5b)

E{C(R)(y1 (k) — @7 (K)o)} = E{C(k)(no(z(k — 1)

+ ok —1))%+ fou(k —1) +w(k — 1) + ey (k)

=no(x(k = 1) +v(k = 1) +é(k = 1))* = fou(k — 1))}

— —2n0 B{C(k)(@(k — 1)+ v(k — 1))é(k — 1))}

— mpB{C(R)E(k — 17} + B{C(Rw(k — 1)} + B{C(kye: ()}
= “2noE{e(k — 1)}E{C(k)(v(k —1) + z(k — 1))} =0,
where the last equality holds provided that the same
assumptions regarding instrument vector, input, and dis-

turbances are imposed. This means that the estimator is
consistent.

6. SIMULATIONS

In order to further illustrate the results, simulations were
performed using a small-scale second-order modulus sys-
tem with a single state. According to Fossen (1994), the
model

wa(k + T;—z _ ao(wa(k) — u}(.(k)) + no(wa(k)

— we(k))|wa (k) — we(k)| + for(k) +€(k),  (15)
is describing the hydrodynamic damping of an underwater
vehicle’s heave motion. Here w is the heave velocity and
should not be confused with £ which is an unmodelled
discrepancy between gravity and buoyancy. The subscript
a signifies that w, is the vehicle’s absolute velocity which
is assumed to be measured, whereas w, is the speed of
the surrounding water. Further, 7 is a controllable input
thrust.

— wq (k)

Using the notation w,.(k) = we (k) — w.(k), assuming unit
sampling time, and restructuring of (15) gives the system
wa(k + 1) = aowr(k) + nOwr(k)|wr(k>’ + fOT(k) + f(k)7

y1(k) = wa (k) + e1(k),
which data was generated based on. Here ag = 1 + ao,
&(k) = we(k) + £(k), and an additive uncertainty, ej,
was associated with the measurement of the absolute

velocity. This system is sufficiently simple and transparent
for analysis but yet the estimation of its parameters,

Oy = [ao no fo]T, is a non-trivial task which includes all
the challenges discussed in the work. Initially, the one-step
ahead predictor

§(k|0) = ayr(k — 1) + nyr (k — D]y (k = 1)| + fr(k = 1),
was considered.

The input, 7(k), was a set of pulses with amplitudes
between 0.1 and 0.3. The pulses were of varying width
and excited the system well. The true system parameters
were ag = 0.99, ng = —0.1 and fy = 1. The three noise
sources were sampled from Gaussian distributions w, (k) ~
N (w,.,0.01), &(k) ~ N(w. — 0.05,0.01), and ey (k) ~
N(0,0.01). This means that neither the distribution of the
measurement noise nor of the underwater current did have
finite support, a choice made in order to test the robustness
of the method. Each of the simulation sets used N = 10*
data points for each parameter estimation step, and was
repeated 1000 times, using new noise sequences, in a Monte
Carlo manner.
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Fig. 1. Histograms of normalized estimation errors for the
set of Monte Carlo runs with w. = 0.

A common way of obtaining instruments in practice is by
simulation of an auxiliary model, as in Thil et al. (2008).
In this work the model obtained by taking the LS estimate

N
oy = argmin > lyi (k) — 9(k[0)), (16)
k=1
for the parameters was used for this so that
T

C(h) = | = 1) 085k - D]k - 1] 76~ ).

where
wy® (k) = a" wk® (k — 1) + A" % (k — 1)

+ S (k—1), k=1, ..., N.
The parameters were then refined by iteratively letting the
instruments instead be simulated from the model param-

eterized by the latest version of #4" until convergence, as
described in Young (2008).

WES (k1)

Three estimators were compared in the simulations, one
LS estimator, and two IV estimators. The IV estimators
differed by having zero-mean instruments or not. In order
to obtain zero-mean instruments, the average value of each
component of ((k) was simply subtracted

N
Ci(k) = Gi(k) — %Zg,—(k), i=1, 2, 3.
k=1

The first set of simulations were performed with, w. = 0
and histograms showing the parameter errors for the three
estimators are provided in Figure 1 and Table 1. Only the
IV estimator with zero-mean instruments can be seen to
be consistent. The consistency does however come with a
price, since the corresponding estimation errors also have
higher variance.

After this a set of simulations were performed with w. =
0.1. In this setup it was assumed that an additional
measurement yo(k) = w.(k) + ea(k) was available, where
ea(k) ~ N(0,0.01). The relative measurement g(k) =
y1(k) — y2(k) was formed and the predictor

§(k[0) = ag(k — 1) + ng(k = D|g(k — V| + fr(k - 1),
was considered. Estimating the parameters under these
premises gave results similar to those obtained for the first

set of simulations. The estimation errors are presented in
Table 2.

Table 1. The mean plus/minus one standard
deviation of normalized estimation errors for
the set of Monte Carlo runs with w. =0

| (a—ag)/ao (7 — no)/no (f = fo)/fo
LS —0.0586 £ 0.0082 0.0794 4+ 0.0526 0.1309 + 0.0191
v —0.1013 £+ 0.0079 —0.4553 4+ 0.0536 —0.0034 £+ 0.0197

0.0041 + 0.0504 0.0192 + 0.2309 —0.0002 % 0.0202

VE{c1=0

Table 2. The mean plus/minus one standard
deviation of normalized estimation errors for
the set of Monte Carlo runs with w, measured

and w. = 0.1.
(a —ag)/ag (7 —nog)/no (f = fo)/fo
LS —0.0460 £ 0.0104 _ 0.3413 + 0.0627 0.2502 £ 0.0244
v —0.0994 4 0.0088  —0.4470 4 0.0591  —0.0032 =+ 0.0252
IVp{c}=o 0.0023 + 0.0576 0.0115 + 0.2642 0.0001 + 0.0259

7. CONCLUSIONS

Two scenarios where consistent parameter estimators for
second-order modulus models can be obtained have been
shown. These results are based on the assumption that all
system states are measured directly. In practice it is more
common that only some components of the state vector are
available immediately, whereas other components must be
obtained by filtering techniques. This is a scenario that it
would be of interest to explore further. Another possible
area of future work is to address the problem of parameter
estimation in the class of model structures suggested by
Abkowitz (1964), where there are cubic regressors present.
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