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Abstract: In this paper, online convex optimization is applied to the problem of controlling
linear dynamical systems. An algorithm similar to online gradient descent, which can handle
time-varying and unknown cost functions, is proposed. Then, performance guarantees are
derived in terms of regret analysis. We show that the proposed control scheme achieves sublinear
regret if the variation of the cost functions is sublinear. In addition, as a special case, the system
converges to the optimal equilibrium if the cost functions are invariant after some finite time.
Finally, the performance of the resulting closed loop is illustrated by numerical simulations.
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1. INTRODUCTION

Online convex optimization is an extension of classical
numerical optimization to the case where an algorithm
operates online in an unknown environment. Whereas
in convex optimization the goal is to minimize a given
cost function subject to known constraints (Boyd and
Vandenberghe, 2004; Nesterov, 2018), in an online con-
vex optimization (OCO) problem the cost function to be
minimized is time-varying and the algorithm only has
access to past information. Specifically, at every time t, the
algorithm has to choose an action yt ∈ Y from an action set
Y based on the actions chosen at previous time instances
and the corresponding observed cost functions. Then, the
environment reveals a new cost function Lt : Y→ R, which
leads to the cost Lt(yt). The goal is to minimize the total
cost in T stages. The classical OCO framework was intro-
duced in (Zinkevich, 2003) and has received considerable
interest as a tool for online optimization and learning (see
Shalev-Shwartz (2012); Hazan (2016) for an overview).
The performance of OCO algorithms is commonly char-
acterized by regret, which is defined as the gap between
the algorithm’s performance and some offline optimum in
hindsight. In (Hazan et al., 2007), several algorithms which
achieve low static regret, i.e., low regret with respect to the
best constant action, are presented. Dynamic benchmarks
are proposed in (Besbes et al., 2015; Mokhtari et al., 2016).
Sublinear regret is generally desirable because it implies
that the algorithm’s performance is asymptotically on
average no worse than the benchmark. One major advan-
tage of the OCO framework is its ability to handle time-
invariant as well as time-varying constraints (Paternain
and Ribeiro, 2016; Cao and Liu, 2019).

In particular, an online version of gradient descent termed
online gradient descent (OGD) has proven to be a simple
algorithm that achieves low regret in the OCO setting
(Hazan, 2016). In OGD, at every time instant t, the action
yt is chosen as yt = ΠY(yt−1−γ∇ft−1(yt−1)), where ΠY(y)
denotes a projection of a point y onto the convex constraint

set Y, γ ∈ R is a step size parameter, and ft(y) is the
cost function to be minimized. Hence, instead of solving
an optimization problem at every time instant t, only
one gradient descent step on the previous cost function
is employed to reduce computational complexity.

Whereas classical OCO does not consider coupling
between time instances and, therefore, no underlying
dynamical system, some combinations of OCO with dy-
namical models have been studied recently. On the one
hand, in (Hall and Willett, 2015), algorithms for online
prediction of incoming data are proposed, where the data
is generated by a dynamical system. It is shown that the
regret of the proposed algorithms is low if the environment
follows the model of the underlying system. On the other
hand, coupling between time instances in the OCO setting
has been considered by introducing a switching or cost
d(yt − yt−1) to study the effect of a time coupled cost
function (Tanaka, 2006; Lin et al., 2013). In (Li et al.,
2018), the switching cost is chosen as d(yt − yt−1) =
β
2 ‖yt − yt−1‖

2
, where β ∈ R is a weighting parameter.

This can be interpreted as an additional quadratic cost on
the input ut−1 of a single integrator system yt = yt−1 +
ut−1. This approach is extended to general linear systems
in (Li et al., 2019). However, this work strongly focuses
on the case where predictions of future cost functions are
available to the algorithm. It is shown that the algorithm’s
regret can be reduced substantially by utilizing predic-
tions. Moreover, in (Abbasi-Yadkori et al., 2014; Cohen
et al., 2018; Akbari et al., 2019), linear dynamical systems
and quadratic cost functions are considered. Therein, the
best linear controller is chosen as the benchmark in the
definition of regret and the proposed algorithms apply
OCO to optimize over the set of stable, linear policies. This
method is generalized to general convex cost functions in
(Agarwal et al., 2019). A different approach is taken in
(Colombino et al., 2020), where online optimization is used
to steer a linear dynamical system to the solutions of time-
varying convex optimization problems.
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In contrast, many control algorithms able to handle dy-
namical systems equipped with a cost function as well
as state and input constraints exist. In particular, Model
Predictive Control (MPC) is able to minimize a given cost
function while taking constraints explicitly into account
(Rawlings and Mayne, 2009). However, classical MPC
techniques require solving a potentially large optimiza-
tion problem at every time instant. Therefore, inexact or
suboptimal MPC algorithms have been proposed, which
only complete a finite number of optimization iterations
at every time instant (Scokaert et al., 1999; Diehl et al.,
2005). Research in the field of suboptimal MPC typically
focuses on stability, feasibility, and computational com-
plexity. However, there are limited results on the closed-
loop performance of suboptimal MPC schemes.

In this work, OCO for controlling a general linear control-
lable dynamical system equipped with a general convex
cost function Lt(x, u) is considered. We focus on the cases
where the cost functions are strongly convex and smooth,
and we propose an algorithm which is similar to online
gradient descent in classical OCO. We show that the pro-
posed algorithm attains sublinear regret if the variation
of the cost functions is sublinear in time. In contrast to
existing results in OCO, which do not consider an underly-
ing dynamical system, this requires novel algorithm design
and analysis techniques since the dynamical system cannot
move in an arbitrary direction in a single time instant.
Moreover, we do not restrict the proposed algorithm to the
set of stable, linear controllers. Compared to suboptimal
MPC, we explicitly consider a time-varying stage cost
which is usually not possible in the MPC literature. In
particular, in MPC the cost function needs to be known a
priori in order to obtain performance guarantees.

This paper is organized as follows. Section 2 defines
the problem setting and states our proposed algorithm.
A theoretical analysis of the closed loop and the main
theorem are given in Section 3. In Section 4, we illustrate
the algorithm’s performance by numerical simulations.
Section 5 concludes the paper.

Notation: For a vector x ∈ Rn, ‖x‖ denotes the Euclidean
norm, whereas for a matrix A ∈ Rn×m, ‖A‖ denotes the
corresponding induced matrix norm and AT the trans-
posed of the matrix A. We define by N[a,b] the set of natural
numbers in the interval [a, b]. The gradient of a function
f(x) is denoted by ∇f(x). Additionally, In is the identity
matrix of size n × n, and 0n×m is the matrix of all zeros
of size n×m.

2. SETTING AND ALGORITHM

2.1 Problem setup

We consider discrete-time linear systems of the form

xt = Axt−1 +But (1)

with a given initial condition x0 ∈ Rn, where xt ∈ Rn are
the states of the system, ut ∈ Rm are the control inputs,
and A ∈ Rn×n, B ∈ Rn×m.

Remark 1. Note that we slightly deviate from the usual
notation for linear systems (i.e., xt+1 = Axt + But) to
facilitate notation in the proposed OCO approach.

At every time instant t ∈ N[1,T ], we choose a control action
ut which is applied to system (1). Then, afterwards, a cost
function Lt : Rn × Rm → R is revealed which results in
the cost Lt(xt, ut) before we move on to the next time
step. As is standard in OCO, we measure our algorithm’s
performance by regret. In our case, regret is defined as

R :=

T∑
t=1

Lt(xt, ut)− Lt(x∗t , u∗t ).

Here, the state and input sequences x∗ = (x∗1, . . . , x
∗
T )

and u∗ = (u∗1, . . . , u
∗
T ) are defined as the solution to the

optimization problem

min
u1,x1,...,uT ,xT

T∑
t=1

Lt(xt, ut) s.t. xt = Axt−1 +But.

Hence, (x∗t , u
∗
t ) denote the optimal states and inputs

at time t in hindsight, with full knowledge of the cost
functions Lt. The regret R can therefore be viewed as
a measure of how much we regret receiving information
about the cost functions Lt only after we choose a control
input ut. We do not consider any cost on the initial
condition x0 at time t = 0 since it cannot be influenced by
the algorithm’s decisions, i.e., control inputs ut.

Similar to various works in OCO (see, e.g., Mokhtari et al.
(2016); Li et al. (2018)), we assume the cost functions Lt
to be separable, strongly convex, and smooth as stated in
the following assumption.

Assumption 2. For every t ∈ N[0,T ], the cost function Lt
satisfies the following conditions:

(1) Lt(x, u) = fxt (x) + fut (u),
(2) fxt (x) is αx-strongly convex and lx-smooth,
(3) fut (u) is αx-strongly convex and lx-smooth,

where an α-strongly convex function f : Rn → R satisfies

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
α

2
‖y − x‖2 , ∀x, y ∈ Rn,

and l-smoothness means that f satisfies

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
l

2
‖y − x‖2 , ∀x, y ∈ Rn.

We note the fact that l-smoothness of a convex function f
implies the following Lipschitz condition on the gradient
of f (Nesterov, 2018) ‖∇f(x)−∇f(y)‖ ≤ l ‖x− y‖.
Moreover, we define θt = arg minx f

x
t (x) and

ηt = arg minu f
u
t (u). In the following, we assume that the

minima are attained and therefore finite and, due to con-
vexity, unique. Hence, at each time t when the cost Lt(x, u)
is measured, that is t ∈ N[1,T ], (θt, ηt) is the minimizer of
Lt(x, u). In contrast to the trajectories x∗ and u∗, the
sequences θ = (θ1, . . . , θT ) and η = (η1, . . . , ηT ) do in
general not satisfy the system dynamics (1).

So far, the optimizer (θt, ηt) and the cost functions Lt are
only defined for t ∈ N[1,T ]. For the remainder of this work,
we fix without loss of generality L0(x, u) = fx0 (x) + fu0 (u)
such that Assumption 2 is satisfied, arg minx f

x
0 (x) = θ0,

and arg minu f
u
0 (u) = η0. The values of θ0 and η0 can

be defined arbitrarily, and a convenient choice for our
subsequent analysis is given below.

If the cost function Lt is allowed to change arbitrarily at
every time step, we cannot expect to achieve a low regret.
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Therefore, we consider the path length as a measure for the
variation of the cost functions Lt. Path length is defined
as the accumulative absolute difference of the optimizer of
the cost function at two consecutive time steps:

Path length :=

T∑
t=1

‖θt − θt−1‖+

T∑
t=1

‖ηt − ηt−1‖ .

Path length plays an important role in dynamic regret
analysis (Mokhtari et al., 2016). In (Li et al., 2018) it is
shown for single integrator systems that sublinear regret
can be achieved if the path length is sublinear in T .

In this paper we consider tracking cost functions as
described in the following assumption.

Assumption 3. For all t ∈ N[1,T ], θt and ηt satisfy

θt = Aθt +Bηt.

Assumption 3 states that the minimum (θt, ηt) of the cost
function Lt(x, u) is a steady-state with respect to the
system dynamics (1), meaning that the control objective is
to track a priori unknown and online changing setpoints.
Relaxing this assumption to general convex cost functions
(termed economic cost functions in the context of MPC
(Faulwasser et al., 2018)) is part of our ongoing work.

Last, we assume that system (1) is controllable and require
the norm of A ∈ Rn×n to be bounded as follows:

Assumption 4. (A,B) is controllable with controllability
index µ, i.e.,

rank Sc = rank (B AB . . . Aµ−1B) = n.

Moreover, A satisfies ‖A‖ < lx+αx
2(lx−αx) .

The norm of A can be interpreted as a measure for the
stability/instability of system (1). Achieving low regret
for a sequence of cost functions fxt (x) by applying an
algorithm similar to OGD means that the gradient descent
step needs to counteract the instability of the system.
Hence, it is natural to require an upper bound for the
norm of A in terms of the smoothness and convexity of
the stage cost fxt (x). In particular, if the cost function is

given by Lt(x, u) = β
2 ‖x− θt‖

2
+fut (u) for some β > 0, we

obtain αx = lx = β. Hence, in this case, any controllable
system satisfies Assumption 4.

2.2 Online gradient descent for linear systems

Before we state our algorithm, we first define two useful

matrices. The matrix W =

(
0m×(µ−1)m 0m×m
I(µ−1)m 0(µ−1)m×m

)
shifts a vector by m components, whereas the matrix
e =

(
0m×(µ−1)m Im

)
extracts the last m components.

The proposed OCO scheme is given in Algorithm 1, where
we set gt = 0 if t < 1 in (4) and (6). Note that
the inverse (ScS

T
c )−1 in (5) exists due to controllability

in Assumption 4. In our setting, at every time step t,
given the previous state xt−1 and cost function Lt−1(x, u),
Algorithm 1 computes a control input ut which is then
applied to system (1). Afterwards, a new cost function Lt
is revealed resulting in the cost Lt(xt, ut).

Since no cost function is known at the first time instant,
a standard method in OCO is to apply an arbitrary ini-
tialization input v0. At time t = 1, Algorithm 1 computes

Algorithm 1 (OGD for linear dynamical systems)

Given step sizes γv and γx, initialization v0, x0, and
state vector xt−1. At time t ∈ [1, T ]:
Input OGD

vt = vt−1 − γv∇fut−1(vt−1) (2)
Prediction

V̂t =

vt...
vt

 ∈ Rµm (3)

x̂t+µ−1 = Aµxt−1 + ScV̂t + Sc

µ−1∑
i=1

W igt−i (4)

State OGD
gt = −γxSTc

(
ScS

T
c

)−1∇fxt−1(x̂t+µ−1) (5)
Output

ut = vt +

µ−1∑
i=0

eW igt−i (6)

v1 = v0 − γv∇fu0 (v0) and g1 = −γxSTc (ScS
T
c )−1∇fx0 (x̂µ).

Therefore, we fix θ0 = x̂µ and η0 = v0, which yields
v1 = v0, g1 = 0, and, hence, u1 = v1 = v0.

Roughly speaking, the proposed algorithm employs OGD
twice to seek the optimal input ηt and the optimal
state θt. First, we apply OGD in (2) to track the
optimal input. Next, we would like to apply OGD
again on the states of the system which would yield
But = Bvt − γx∇ft−1(Axt−1 + Bvt). Unfortunately, this
is not possible if the system is not 1-step controllable,
i.e., rank(B) < n. Instead, as illustrated in Figure 1,
the algorithm predicts an input sequence for the next µ
time steps and the corresponding system state µ time
steps ahead in (4). Then, an additional input sequence
uOGD = (uOGD0 , . . . , uOGDµ−1 ) for the next µ time instances
is determined such that application of both computed
input sequences results in a gradient descent step on
the previous cost function µ time steps in the future.
Hence, we require Scgt = −γx∇fxt−1(x̂t+µ−1), where

gt =
(
(uOGDµ−1 )T . . . (uOGD0 )T

)T ∈ Rµm is the vector cre-
ated by stacking the components of the additional input
sequence. Moreover, because we want vt to converge to
the optimal input ηt, we need gt such that it does not
contribute much to the input cost fut (ut). Therefore, we
choose gt to be the solution of

min
gt∈Rµm

‖gt‖2 s.t. Scgt = −γx∇fxt−1(x̂t+µ−1).

Solving this optimization problem analytically yields (5).
By employing the matrices W and e as in (6), we extract
the required input uOGDi from gt at time t+i, i ∈ N[0,µ−1],
to complete one gradient descent step at time t+ µ− 1.

3. THEORETICAL ANALYSIS

In this section, we state our main result which gives a
bound on the regret of Algorithm 1. To shorten notation,
let Θτ =

∑τ
t=1 ‖θt − θt−1‖

2
and Hτ =

∑τ
t=1 ‖ηt − ηt−1‖

2
.
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x
θt

xt−1

x̂t+µ−1

−γx∇fxt (x̂t+µ−1)

Fig. 1. Illustration of Algorithm 1. Dashed: contour lines
of Lt(x, u); blue: Predicted system states for the next
µ time steps; red: desired gradient descent step.

Theorem 5. Let Assumptions 2, 3, and 4 be satisfied and

let αu > 2−
√
2

2+
√
2
lu. Given step sizes 2−

√
2

2αu
< γv ≤ 2

lu+αu

and 2‖A‖−1
2‖A‖αx < γx ≤ 2

lx+αx
, there exist constants Λθ > 0

and Λη > 0, such that for each T ∈ N≥1, the regret of
Algorithm 1 can be upper bounded by

R ≤ Cµ + ΛθΘT + ΛηHT ,

where Cµ = lx/2
∑µ−1
t=1 ‖xt − θt‖

2
.

The proof of Theorem 5 is given in the appendix.

Theorem 5 states that the regret of Algorithm 1 can
be upper bounded, where the bound depends linearly
on ΘT and HT , up to a constant Cµ. First, note
that the step sizes γv and γx are well defined. Due
to the lower bound on αu in Theorem 5 we have
2−
√
2

2αu
= 2(2−

√
2)

(2+
√
2)αu+(2−

√
2)αu

< 2(2−
√
2)

(2−
√
2)lu+(2−

√
2)αu

= 2
lu+αu

.

In addition, the upper bound on ‖A‖ in Assumption 4

yields 2‖A‖−1
2‖A‖αx = 1

αx
− 1

2‖A‖αx <
1
αx
− lx−αx

(lx+αx)αx
= 2

lx+αx
.

Second, Cµ = lx/2
∑µ−1
t=1 ‖xt − θt‖

2
can be bounded in

terms of Θµ and Hµ as well. While we omit a detailed
derivation due to space limitations, we note that, since
θt and ηt are finite, Cµ is a constant (depending on x0,
v0, θ1, . . . , θµ−1, and η1, . . . , ηµ−1) which is independent
of T . This is sufficient in order to attain sublinear regret
(compare Corollary 7 below). The constants Λθ and Λη,
which are independent of T as well, can be explicitly
calculated as is shown in the proof.

Remark 6. In the first step of bounding the regret in the
proof of Theorem 5, we exploit optimality of (θt, ηt) to
lower bound fxt (x∗t ) and fut (u∗t ) by fxt (θt) and fut (ηt),
respectively. Hence, we could also use the point-wise in
time optima θ and η as a benchmark in the definition
of regret instead of the best possible trajectories x∗ and
u∗ and would still achieve the same bound on the regret.
Characterizing and exploiting properties of the trajectories
x∗ and u∗ to achieve a less conservative regret bound is
an interesting topic for future research. Furthermore, if
Lt(θt, ηt) = 0 for all t ∈ N[1,T ], the bound on the regret in
Theorem 5 is a bound on the total cost over T stages.

Having established an upper bound on the regret R
of Algorithm 1, we now examine whether the regret is

sublinear in T . The corollary below gives a sufficient
condition for sublinear regret.

Corollary 7. Let θt ∈ Dθ and ηt ∈ Dη for all t ∈ N,
where Dθ and Dη are compact sets. If the path length∑T
t=1 ‖θt − θt−1‖ +

∑T
t=0 ‖ηt − ηt−1‖ is sublinear in T ,

then the regret of Algorithm 1 is sublinear in T .

Proof of Corollary 7. Compactness of Dθ and Dη implies
‖θt − θt−1‖ ≤ dθ for some dθ ∈ R and ‖ηt − ηt−1‖ ≤
dη for some dη ∈ R for all t ∈ N. Hence, we

have ΘT =
∑T
t=1 ‖θt − θt−1‖

2 ≤ dθ
∑T
t=1 ‖θt − θt−1‖,

HT =
∑T
t=1 ‖ηt − ηt−1‖

2 ≤ dη
∑T
t=1 ‖ηt − ηt−1‖. Thus,

ΘT and HT are sublinear in T . Theorem 5 states that
the regret of Algorithm 1 is at most linear in ΘT and HT .
Therefore, the regret of the proposed algorithm is sublinear
in T . 2

Remark 8. Consider, as a special case, that for some finite
time t′ the minimizer of the cost functions satisfy θt = θt′
and ηt = ηt′ for all t ≥ t′. Optimality of (θt, ηt) and the
fact that θt and ηt are both finite implies

R ≤
T∑
t=1

fxt (xt)− fxt (θt) + fut (ut)− fut (ηt)

≤ Cµ + ΛθΘT + ΛηHT = Cµ + ΛθΘt′ + ΛηHt′ < Λ

for some Λ ∈ R independent of T , where the second
inequality is by Theorem 5 (compare Remark 6). We also
have fxt (xt)− fxt (θt) ≥ 0 as well as fut (ut) − fut (ηt) ≥ 0.
Now, if we let T → ∞, we obtain limT→∞ xt = θt′ and
limT→∞ ut = ηt′ , i.e., the closed loop converges to the
optimal equilibrium.

4. SIMULATIONS

We illustrate the effectiveness of the proposed algorithm
through numerical simulations. We randomly choose the

matrix A =

(
1.05 0.7 1.75
0.35 0.7 1.05
1.4 0.105 1.855

)
. We set B = (1 0 1)

T

which yields a controllable system with µ = 3. We set
T = 30, the cost function to Lt(x, u) = fxt (x) + fut (u) =
1
2 ‖x− θt‖

2
+ 1

2 ‖u− ηt‖
2
, and choose γv = 0.98 and

γx = 0.995. It is easy to see that this choice satisfies all
conditions in Theorem 5 since fxt and fut are α-strongly
convex and l-smooth, where α = l = 1. Algorithm 1 is

initialized with x0 = (0 0 0)
T

and v0 = 0.

In the first experiment, the sequences θ and η are chosen
randomly, i.e., η1 is sampled randomly from a uniform
distribution over the interval [−5, 5] and θ1 is calculated
such that Assumption 3 is satisfied. Then, at every time
instant t ∈ N[2,30], the minimizer (θt, ηt) are modified with
a probability of 0.1. If they change, ηt is again sampled
randomly from the interval [−5, 5] and θt is calculated
accordingly. Hence, the control objective is to track a
priori unknown setpoints. Figure 2 presents the resulting
closed-loop trajectories for all three states and the input
trajectory ut. The closed loop closely tracks the desired
setpoints, and it converges to the optimal states and
control input within a few time steps whenever the cost
function is changed.

In a second experiment, the system and the cost function
are chosen as before and 1000 simulations are conducted,
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Fig. 2. Blue, solid: The three states xi, i ∈ {1, 2, 3},
and the input ut; red, dashed: The optimal states θi,
i ∈ {1, 2, 3}, and input ηt.

where we set T = 500. At every time step t, the optimal
state and input (θt, ηt) is changed with a probability

of 0.25 j
1000 , where j ∈ N[1,1000] is the number of the

simulation run. As before, if the cost function is changed,
the new value for ηt is sampled randomly from the interval
[−5, 5] and θt is calculated such that Assumption 3 is
satisfied. Thereby, we cover a wide range of path lengths.
Figure 3 shows the resulting total cost and path length
for each simulation run. Apparently, the total cost grows
linearly with the path length as stated in Theorem 5.

5. CONCLUSION

In this paper, we apply online convex optimization to
linear dynamical systems equipped with a cost function
and propose a first online algorithm for this problem. We
derive a bound on the regret of the algorithm and show
that it achieves sublinear regret if the variation of the cost
functions, measured in terms of path length, is sublinear
in time. The performance of the proposed algorithm is
illustrated by numerical examples.

Since we do not consider any constraints in this work, an
interesting direction for future research is to investigate
how input and state constraints can be satisfied by an
OCO algorithm. Moreover, Assumption 3 could be relaxed,
allowing economic cost functions, and more efficient algo-
rithms than OGD could be applied. Finally, predictions on
the future cost functions could be incorporated to improve
the algorithm’s performance.
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Appendix A. PROOF OF THEOREM 5

Before the formal proof of Theorem 5, we derive three
auxiliary results. First, we study the closed-loop dynamics
resulting from application of Algorithm 1 to system (1).
Let t ∈ N[1,T−µ+1], then we have by repeatedly applying
the system dynamics (1)

xt+µ−1 = Aµxt−1 +

µ−1∑
i=0

AiBut+µ−1−i

(6)
= Aµxt−1 + ScV

µ
t +Begt+µ−1

+ (BeW +ABe)gt+µ−2 + . . .

+ (BeWµ−1 +ABeWµ−2 + · · ·+Aµ−1Be)gt

+ · · ·+Aµ−1BeWµ−1gt−µ+1,

where V µt =
(
vTt+µ−1 . . . v

T
t

)T ∈ Rµm.

Inserting the relations
∑k
i=0A

iBeW k−i = Sc(W
T )µ−1−k

and
∑k
i=0A

µ−1−iBeWµ−1−k+i = ScW
µ−1−k, where

k ∈ N[0,µ−1], yields

xt+µ−1 =Aµxt−1 + ScV
µ
t + Scgt

+ Sc

µ−1∑
i=1

(WT )igt+i + Sc

µ−1∑
i=1

W igt−i.
(A.1)

Next, the predictions in (4) can be calculated recursively.

Let E01 =

(
0m×(µ−1)m
I(µ−1)m

)
, then we have for t ∈ N[µ,T+µ−2]

x̂t+1
(4)
= Aµxt−µ+1 + ScV̂t−µ+2 + Sc

µ−1∑
i=1

W igt−µ+2−i

(1),(6)
= Aµ

(
Axt−µ +Bvt−µ+1 +B

µ−1∑
i=0

eW igt−µ+1−i

)

+

µ−1∑
i=0

AiBvt−µ+2 + ScW

µ−1∑
i=0

W igt−µ+1−i

= A

(
Aµxt−µ + ScV̂t−µ+1 + Sc

µ−1∑
i=1

W igt−µ+1−i

)

−AScV̂t−µ+1 +AµBvt−µ+1 +

µ−1∑
i=0

AiBvt−µ+2

+AScgt−µ+1,

where we use Wµ = 0 in the second and the relation
ScW +AµBe = ASc in the third line. Inserting (4) yields

x̂t+1 =Ax̂t +Bvt−µ+2 +AScgt−µ+1

+ ScE01E
T
01

(
V̂t−µ+2 − V̂t−µ+1

)
.

(A.2)

Third, we have the following result on the rate of conver-
gence of gradient descent (Nesterov, 2018, Chapter 2.3.3,
Theorem 2.3.4). For an α-convex and l-smooth function
f : Rn → R to be minimized, one gradient descent step
x1 = x0 − γ∇f(x0) yields

‖x1 − θ‖ ≤ κ ‖x0 − θ‖ , (A.3)

where θ = arg minx f(x) and κ = 1− αγ. Accordingly, we
define κx = 1− αxγx and κv = 1− αuγv. Before we prove
Theorem 5, we introduce the following supporting lemma.

Lemma 9. Let Assumptions 2, 3, and 4 be satisfied. Let

αu >
2−
√
2

2+
√
2
lu. Given step sizes 2−

√
2

2αu
< γv ≤ 2

lu+αu
and

2‖A‖−1
2‖A‖αx < γx ≤ 2

lx+αx
, the predicted states x̂t satisfy

τ∑
t=1

‖x̂t+µ−1 − θt−1‖2 ≤Cθ/lx
τ−1∑
t=1

‖θt − θt−1‖2

+ Cη/lx

τ−1∑
t=1

‖ηt − ηt−1‖2 ,

where τ ∈ N[1,T ], Cη =
8lx(‖B‖2κ2

v+‖ScE01‖2γ2
vl

2
u(µ−1))

(1−2κ2
v)(1−4‖A‖2κ2

x)
and

Cθ = 4‖A‖2lx
1−4‖A‖2κ2

x
.

Proof. Note that the bounds on the step sizes imply
1− 2κ2v > 0 and 1− 4 ‖A‖2 κ2x > 0. By Jensen’s inequality
we have ∥∥∥∥∥

p∑
i=1

ai

∥∥∥∥∥
2

≤
p∑
i=1

λi ‖ai‖2 , (A.4)

where
∑p
i=1

1
λi

= 1 and λi > 0 for all i ∈ N[1,p]. In
particular, we can choose λi = p for all i ∈ N[1,p].

Next, we derive three auxiliary results on the relation of
vt and ηt. Remember that η0 = v0 = v1. Hence, we have

τ−1∑
t=1

‖vt+1 − ηt‖2
(2)
=

τ−1∑
t=1

‖vt − γv∇fut (vt)− ηt‖2

(A.3)

≤ κ2v

τ−1∑
t=1

‖vt − ηt‖2

(A.4)

≤ 2κ2v

τ−1∑
t=1

‖vt − ηt−1‖2 + 2κ2v

τ−1∑
t=1

‖ηt − ηt−1‖2

v1=η0
≤ 2κ2v

τ−1∑
t=1

‖vt+1 − ηt‖2 + 2κ2v

τ−1∑
t=1

‖ηt − ηt−1‖2 .

Since 1− 2κ2v > 0, rearranging yields

τ−1∑
t=1

‖vt+1 − ηt‖2 ≤
2κ2v

1− 2κ2v

τ−1∑
t=1

‖ηt − ηt−1‖2 . (A.5)

Moreover, we have
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τ∑
t=1

‖vt − ηt‖2
(A.4)

≤ 2

τ∑
t=1

‖vt − ηt−1‖2 + 2

τ∑
t=1

‖ηt − ηt−1‖2

v1=η0
= 2

τ−1∑
t=1

‖vt+1 − ηt‖2 + 2

τ∑
t=1

‖ηt − ηt−1‖2

(A.5)

≤ 2

1− 2κ2v

τ∑
t=1

‖ηt − ηt−1‖2 . (A.6)

Finally, due to optimality of ηt and, hence, ∇fut (ηt) = 0,

k−1∑
t=1

‖vt+1 − vt‖2
(2)

≤ γ2v
k−1∑
t=1

‖∇fut (vt)−∇fut (ηt)‖2

≤γ2v l2u
k−1∑
t=1

‖vt − ηt‖2
(A.6)

≤ 2γ2v l
2
u

1− 2κ2v

k−1∑
t=1

‖ηt − ηt−1‖2 , (A.7)

where we use the fact that lu-smoothness of fut (u) implies
a Lipschitz condition on its gradient in the second line.

Last, we show the bound on the predicted states. Since
θ0 = x̂µ, we have

τ∑
t=1

‖x̂t+µ−1 − θt−1‖2 =

τ−1∑
t=1

‖x̂t+µ − θt‖

(A.2),(A.4)

≤
τ−1∑
t=1

(
2 ‖A(x̂t+µ−1 + Scgt − θt)‖2

+4 ‖B(vt+1 − ηt)‖2 + 4
∥∥∥ScE01E

T
01

(
V̂t+1 − V̂t

)∥∥∥2)
(A.4),(A.5)

≤ 4 ‖A‖2
τ−1∑
t=1

∥∥x̂t+µ−1 − γx∇fxt−1(x̂t+µ−1)− θt−1
∥∥2

+4 ‖A‖2
τ−1∑
t=1

‖θt − θt−1‖2+
8 ‖B‖2 κ2v
1− 2κ2v

τ−1∑
t=1

‖ηt − ηt−1‖2

+ 4 ‖ScE01‖2 (µ− 1)

τ−1∑
t=1

‖vt+1 − vt‖2

(A.3),(A.7)

≤ 4 ‖A‖2 κ2x
τ−1∑
t=1

‖x̂t+µ−1 − θt−1‖2

+ 4 ‖A‖2
τ−1∑
t=1

‖θt − θt−1‖2

+
Cη(1− 4 ‖A‖2 κ2x)

lx

τ−1∑
t=1

‖ηt − ηt−1‖2 ,

Since 1 − 4 ‖A‖2 κ2x > 0, rearranging yields the desired
bound. 2

Proof of Theorem 5. The proof consists of three parts.
First, we derive a bound on the cost of the con-
trol inputs. In the second part, we derive a bound on∑k
t=1 ‖x̂t+µ−1 − xt+µ−1‖

2
, which will be useful to bound

the cost on the states. The last part is to combine these
results to find a bound on the regret of Algorithm 1.

First, we have for k ∈ N[1,T ]

k∑
t=1

∥∥∥∥∥
µ−1∑
i=0

eW igt−i

∥∥∥∥∥
2
(A.4)

≤ µ
k∑
t=1

µ−1∑
i=0

∥∥eW igt−i
∥∥2

≤µ
k∑
t=1

µ−1∑
i=0

∥∥eW igt
∥∥2

(5)

≤µγ2xC1

k∑
t=1

∥∥∇fxt−1(x̂t+µ−1)−∇fxt−1(θt−1)
∥∥2

≤µγ2xl2xC1

k∑
t=1

‖x̂t+µ−1 − θt−1‖2 ,

where we use the fact that gt = 0 for t ≤ 1 in

the second line, C1 =
∑µ−1
i=0

∥∥eW iSTc (ScS
T
c )−1

∥∥2 and
∇fxt−1(θt−1) = 0 in the third line, and Lipschitz continuity
of the gradients in the last line. By Lemma 9, we obtain

k∑
t=1

∥∥∥∥∥
µ−1∑
i=0

eW igt−i

∥∥∥∥∥
2

≤ µγ2xlxC1Cθ

k−1∑
t=1

‖θt − θt−1‖2

+ µγ2xlxC1Cη

k−1∑
t=1

‖ηt − ηt−1‖2 .

(A.8)

Hence, we have

T∑
t=1

‖ut − ηt‖2
(6),(A.4)

≤ 2

T∑
t=1

‖vt − ηt‖2+2

T∑
t=1

∥∥∥∥∥
µ−1∑
i=0

eW igt−i

∥∥∥∥∥
2

(A.6),(A.8)

≤ 4

1− 2κ2v

T∑
t=1

‖ηt − ηt−1‖2

+2µγ2xlxC1

(
Cθ

T−1∑
t=1

‖θt − θt−1‖2 + Cη

T−1∑
t=1

‖ηt − ηt−1‖2
)
.

(A.9)

Having established a bound on the regret of the control
inputs chosen by Algorithm 1, we derive a bound on∑k
t=1 ‖x̂t+µ−1 − xt+µ−1‖

2
in the second part of the proof.

First, let k ∈ N[1,T−µ+1]. The last component of V̂t
and V µt is the same, therefore, we insert the matrix

E10 =

(
I(µ−1)m

0m×(µ−1)m

)
∈ Rmµ×(µ−1)m which yields

k∑
t=1

∥∥∥Sc (V̂t − V µt )∥∥∥2 =

k∑
t=1

∥∥∥ScE10E
T
10

(
V̂t − V µt

)∥∥∥2
≤ ‖ScE10‖2

k∑
t=1

µ−1∑
i=1

‖vt+i − vt‖2

= ‖ScE10‖2
k∑
t=1

µ−1∑
i=1

∥∥∥∥∥∥
i∑

j=1

vt+j − vt+j−1

∥∥∥∥∥∥
2

,

where we make use of a telescoping series in the last line.
Next, by inserting (A.4), upper bounding i, and finally
positivity of the norm we have
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k∑
t=1

∥∥∥Sc (V̂t − V µt )∥∥∥2
(A.4)

≤ ‖ScE10‖2
k∑
t=1

µ−1∑
i=1

i

i∑
j=1

‖vt+j − vt+j−1‖2

≤ ‖ScE10‖2 (µ− 1)2
k∑
t=1

µ−1∑
j=1

‖vt+j − vt+j−1‖2

≤ ‖ScE10‖2 (µ− 1)3
k+µ−2∑
t=1

‖vt+1 − vt‖2

(A.7)

≤ C2

k+µ−2∑
t=1

‖ηt − ηt−1‖2 , (A.10)

where C2 =
2‖ScE10‖2γ2

vl
2
u(µ−1)

3

1−2κ2
v

. Next, we apply (A.4) to

obtain

k∑
t=1

∥∥∥∥∥Sc
µ−1∑
i=0

(WT )igt+i

∥∥∥∥∥
2
(A.4)

≤
k∑
t=1

µ−1∑
i=0

µ
∥∥Sc(WT )igt+i

∥∥2
≤µ

k+µ−1∑
t=1

µ−1∑
i=0

∥∥Sc(WT )igt
∥∥2

(5)

≤µγ2xC3

k+µ−1∑
t=1

∥∥∇fxt−1(x̂t+µ−1)−∇fxt−1(θt−1)
∥∥2 ,

where C3 =
∑µ−1
i=0

∥∥Sc(WT )iSTc (ScS
T
c )−1

∥∥2 and we use
the fact that ∇fxt (θt) = 0 due to optimality of θt in the
last line. Lipschitz continuity of the gradient yields

k∑
t=1

∥∥∥∥∥Sc
µ−1∑
i=0

(WT )igt+i

∥∥∥∥∥
2

≤ µγ2xl2xC3

k+µ−1∑
t=1

‖x̂t+µ−1 − θt−1‖2.

By Lemma 9, we obtain

k∑
t=1

∥∥∥∥∥Sc
µ−1∑
i=0

(WT )igt+i

∥∥∥∥∥
2

≤ µγ2xlxC3Cθ

k+µ−2∑
t=1

‖θt − θt−1‖2

+ µγ2xlxC3Cη

k+µ−2∑
t=1

‖ηt − ηt−1‖2 .

(A.11)

Combining the last two results yields the desired bound

k∑
t=1

‖x̂t+µ−1 − xt+µ−1‖2

(4),(A.1)
=

k∑
t=1

∥∥∥∥∥Sc (V̂t − V µt )− Sc
µ−1∑
i=0

(WT )igt+i

∥∥∥∥∥
2

(A.4)

≤ 2

k∑
t=1

∥∥∥Sc (V̂t − V µt )∥∥∥2+2

k∑
t=1

∥∥∥∥∥Sc
µ−1∑
i=0

(WT )igt+i

∥∥∥∥∥
2

(A.10),(A.11)

≤ 2µγ2xlxC3Cθ

k+µ−2∑
t=1

‖θt − θt−1‖2

+ 2
(
C2 + µγ2xlxC3Cη

) k+µ−2∑
t=1

‖ηt − ηt−1‖2 .

(A.12)

Before we combine all results to obtain a bound on the
regret, we apply (A.4) to obtain

k∑
t=1

‖θt+p − θt−1‖2 =

k∑
t=1

∥∥∥∥∥
p∑
i=0

θt+i − θt+i−1

∥∥∥∥∥
2

(A.4)

≤
k∑
t=1

(p+ 1)

p∑
i=0

‖θt+i − θt+i−1‖2

≤ (p+ 1)2
k+p∑
t=1

‖θt − θt−1‖2 . (A.13)

Finally, we are ready to compute the regret of Algorithm 1.
By optimality of (θt, ηt), we have

R =

T∑
t=1

fxt (xt)− fxt (x∗t ) + fut (ut)− fut (u∗t )

≤
T∑
t=1

fxt (xt)− fxt (θt) + fut (ut)− fut (ηt).

Next, we apply l-smoothness of the cost functions fxt (x)
and fut (u). Due to ∇fxt (θt) = 0, ∇fut (ηt) = 0, and after
splitting up the sums we get

R ≤ lx
2

µ−1∑
t=1

‖xt − θt‖2+
lx
2

T∑
t=µ

‖xt − θt‖2+
lu
2

T∑
t=1

‖ut − ηt‖2

= Cµ+
lx
2

T−µ+1∑
t=1

‖xt+µ−1 − θt+µ−1‖2+
lu
2

T∑
t=1

‖ut − ηt‖2.

We first apply (A.4) to the first sum and (A.9) to bound
the cost on the control inputs. Afterwards, inserting (A.4)
and (A.12) yields

R
(A.4),(A.9)

≤ Cµ + lx

T−µ+1∑
t=1

‖x̂t+µ−1 − θt+µ−1‖2

+ lx

T−µ+1∑
t=1

‖x̂t+µ−1 − xt+µ−1‖2 +
2lu

1− 2κ2v
HT

+ µγ2xlxluC1 (CθΘT−1 + CηHT−1)

(A.4),(A.12)

≤ Cµ + 2lx

T−µ+1∑
t=1

‖x̂t+µ−1 − θt−1‖2

+ 2lx

T−µ+1∑
t=1

‖θt+µ−1 − θt−1‖2 + C4CθΘT−1

+ (2lxC2 + C4Cη)HT−1 +
2lu

1− 2κ2v
HT ,

where C4 = µγ2xlx(2lxC3 + luC1). Finally, we can apply
Lemma 9 and (A.13) to obtain

R ≤Cµ + 2CθΘT−µ + C4CθΘT−1 + 2lxµ
2ΘT

+ 2CηHT−µ + (2lxC2 + C4Cη)HT−1 +
2lu

1− 2κ2v
HT .

Positivity of the norm yields

R ≤ Cµ + ΛθΘT + ΛηHT ,

where Λθ = 2Cθ +C4Cθ + 2lxµ
2 and Λη = 2Cη + 2lxC2 +

C4Cη + 2lu
1−2κ2

v
. 2
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