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Abstract: The Youla-Kucera parametrization is a fundamental result in system theory, very
useful when designing model-based controllers. In this paper, this parametrization is employed
to solve the controller design from data problem, without requiring a process model. It is shown
that employing the proposed controller structure it is possible to achieve more stringent closed-
loop performances than previous works in literature, maintaining a criterion to estimate the
closed-loop stability. The developed design methodology does not imply a plant identification
step and the solution can be obtained by least-squares algorithms in the case of stochastic
additive noise. The designed solution is evaluated through Monte Carlo simulations for the
regulation problem of an under-damped system.

Keywords: Data-based control, Identification for control, Uncertain systems, Parametric
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1. INTRODUCTION

Most controller design procedures are model-based, where
a plant model is derived from data and plant-knowledge
and then employed to design a controller. The resulting
controller is not necessarily optimal because the control
loop performance is restricted by modelling errors. On the
other hand, the available data can be employed to directly
design a controller, avoiding the plant model estimation.
This approach has been named Direct Data-Driven con-
trollers (DDC) tuning. Some approaches to solve the DDC
problem are correlation approach (CbT), periodic errors in
variables (EiV), inverse controller (IV) and prediction er-
ror methods (PEM). A review of the existing methods can
be found in Hou and Wang [2013]. A different approach to
solve the DDC problem, following a deterministic formula-
tion using Set-membership techniques, has been presented
inValderrama and Ruiz [2014], Cerone et al. [2017].

The main ingredients of a DDC problem, specifically, in a
model-reference control problem, are a set of input-output
data generated by the plant to be controlled, a closed-
loop reference model where performance specifications
are embedded, and a given controller structure, usually
parametrized by a fixed set of basis functions. When the
set of bases is not consistent with the reference model, the
resulting controller can yield to closed-loop instability.

One of the main challenges in DDC methods is guarantee-
ing stability. Considering that no plant model is available,
standard stability test cannot be performed. A possibility
⋆ F. Valderrama received a doctoral scholarship from Gobernación
de Boyacá, Colombia. (call 733-Colciencias).

is to test the controller before actual implementation, van
Heusden et al. [2009]. In Kammer et al. [2000] some a-
posteriori stability tests are proposed for an iterative DDC
tuning scheme. In Sala and Esparza [2005] an invalidation
test step, based on the available data, is employed for a
non-iterative DDC scheme, in order to detect if the con-
troller may led to unstable closed-loops. This test requires
the accurate identification of a possibly unstable system
in an errors-in-variables framework.

Some attempts to incorporate a stability constraint at
the design step in non-iterative DDC can be found in
Lanzon et al. [2006] and van Heusden et al. [2011]. Both
methods consider an extended PID controller structure
leading to convex optimization problems. However, such
methods do not offer acceptable performances when the
desired reference model is not achievable employing the
selected controller structure. In Battistelli et al. [2018], the
unfalsified control theory is employed to derive relations
between the choice of the performance criterion to be op-
timized and the closed-loop stability conditions. However,
the controller is non-linearly parametrized, leading to non-
convex optimization problems.

The Youla-Kucera (Y-K) parametrization is a fundamen-
tal result in system theory that allows to parametrize all
the controllers that stabilize a given plant. It has been
extensively applied in optimal and robust control when
designing model-based controllers, see e.g. Doyle et al.
[1991]. However, in its original form has not been applied
in the model-reference control problem when the plant
model is no available. The Y-K parametrization has been
employed previously in [Formentin and Karimi, 2013] to

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 4055



solve a mixed-sensitivity controller design from data prob-
lem. To the author’s knowledge this parametrization has
not been employed in a model reference setting.

In this paper, the Youla-Kucera parametrization is em-
ployed to solve the model-reference control problem, with-
out requiring a process model. The proposed controller
structure allows to reach more stringent reference models
than those proposed previously in the literature, maintain-
ing a convex optimization problem to tune the controller
parameters. The approach is a non-iterative solution that
exploits the CbT formulation. Thus, the controller tuning
procedure does not require iterations or multiple experi-
ments.

The outline of the paper is as follows. In Section 2, the
problem formulation is presented. In Section 3, a stabiliz-
ing controller structure is comprehensively formulated. In
section 4, a tuning scheme inspired by the CbT approach
is developed, employing the proposed structure. Finally, in
Section V a numerical example is developed. The conclu-
sions end the paper in Section 6.

2. STATEMENT OF THE PROBLEM

In this section the data-driven controller (DDC) tuning
problem is formulated. Firstly, the setting and main as-
sumptions and presented.

v(t)

r(t) w(t)u(t)
P(q )C(0,q )

-1 -1

Fig. 1. Assumed feedback control structure

Consider a discrete-time linear-time invariant (LTI) single-
input single-output (SISO) feedback control scheme, as de-
picted in Fig. 1, where q−1 denotes the backward shift op-
erator, P (q−1) is a stable plant transfer function, C(θ, q−1)
is the controller transfer function, θ is a vector of controller
parameters, r(t) is the reference signal, v(t) is output
noise/disturbance, u(t) and w(t) are the plant input and
output signals, respectively.

For the system interconnection in Fig. 1, the aim of the
controller tuning procedure is to select an optimal con-
troller Co(θo) minimizing some performance criterion and
guaranteeing internal stability. For example, an optimiza-
tion problem can be stated as:

Co(θ, q−1) = argminJ(θ) (1)

s.t.

Loop internally stable

For the cost function

JMR(θ) =

∥

∥

∥

∥

M(q−1)−
P (q−1)C(θ, q−1)

1 + P (q−1)C(θ, q−1)

∥

∥

∥

∥

2

2

(2)

Being M(q−1) a strictly proper reference model for the
closed-loop system (i.e. M 6= 1), where performance
specifications are embedded. If system P (q−1) is unknown,
Problem (1) can not be solved directly.

The following assumption defines the framework of the
data-driven stabilizing controller tuning problem.

Assumption 1. P (q−1) is unknown. The available informa-
tion on P (q−1) is a set of input-output data generated by
P (q−1), initially at rest,

D = {w(t), u(t), t = 1, 2, ..., N} (3)

Where

w(t) = y(t) + v(t) =

t
∑

j=0

hju(t− j) + v(t),

hj are the impulse response coefficients of P (q−1), y(t) =
∑t

j=0 hju(t− j) is the noise-free plant output and v(t) is

the output noise/disturbance.

Considering the previous assumption, a data-driven stabi-
lizing controllers tuning problem can be stated as follows:

Problem 1. Data-Driven Stabilizing Controller Tuning:
Given a dataset D generated as in Assumption 1 and a
reference modelM(q−1). Find a controller Ĉ(θ) that solves
(1).

3. A STABILIZING CONTROLLER STRUCTURE

Let us recall that the set of all the stabilizing controllers
C(θ, q−1) for the loop in Fig. 1, given a stable plant P (q−1)
can be expressed as

C
sta =

{

C(θ, q−1) =
Q(θ, q−1)

1− P (q−1)Q(θ, q−1)
: Q(q−1) ∈ H∞

}

(4)

where Q(θ, q−1) is any stable and proper transfer func-
tion. The previous result is known as the Youla-Kucera
parametrization for a stable plant, Doyle et al. [1991].

When the Youla-Kucera parametrization is adopted to find
an optimal controller solving (1), the cost function (2) can
be rewritten as

JMR(θ) = JQ(θ) =
∥

∥M(q−1)−Q(θ, q−1)P (q−1)
∥

∥

2

2
(5)

That is, the complementary sensitivity function of the loop
becomes Q(θ, q−1)P (q−1).

Assumption 2. For the given closed-loop reference model
M(q−1), there exist an optimal filter Q∗(θ∗, q−1) such
that,

M(q−1) = Q∗(θ∗, q−1)P (q−1) (6)

Remark 1. From the previous assumption, the optimal
controller C∗(θ∗, q−1), which solves Problem 1 is,

C∗(θ∗, q−1) = Q∗(θ∗, q−1)(1−M(q−1))−1 (7)

It is worth noting that only the term Q∗(θ∗, q−1) is
unknown, since M(q−1) is proposed by the user.

Given the previous analysis, from now on we focus in
the problem to estimate Q∗(θ∗, q−1), such that the cost
function (5) is minimized.

3.1 A structure for Q.

Several structures can be assumed to design the filter
Q(θ, q−1). For example, recursive polynomial structures
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such as ARX, ARMAX or OE, can be employed. The only
requirement is that Q(θ, q−1) ∈ H∞. However, imposing
stability constraints in autoregressive structures, such as
AR or ARMAX, leads to complex non-linear constraints,
turning the tuning problem into a highly non-convex opti-
mization program, see e.g. Ljung and Chen [2013]. On the
other hand, Finite Impulse Response (FIR) models guar-
antee stability without additional constraints. Therefore,
a FIR structure is adopted for Q as follows,

Q(θ, q−1) =

mq
∑

i=1

θiq
−(i−1), (8)

where mq is the filter impulse response length.

Then, the controller design problem becomes a paramet-
ric estimation problem, where the filter parameters are
selected from the set:

Q =
{

Q(θ, q−1) : θ ∈ Θ ⊆ Rmq

}

3.2 The Q filter in terms of data.

Notice that to estimate a filter Q̂(θ, q−1) minimizing (5) it
is required the knowledge of the plant P (q−1). But, under
the assumptions of the framework, the plant is unknown.
The following Lemma allows to relate the model-based cost
function with a data-based error signal.

Lemma 1. Given an asymptotically stable system P (q−1)
and a data set D generated as in Assumption 1, any stable
filter Q(θ, q−1) ∈ Q satisfies the time-domain relation:

e(θ, t) = Mu(t)−Q(θ)(w(t) − v(t)) (9)

where e(θ, t) is the output of the model matching error
transfer function (i.e., the argument of cost function in
Eq. 2),

Em(q−1) = M(q−1)−
P (q−1)C(θ, q−1)

1 + P (q−1)C(θ, q−1)
. (10)

Moreover, if the reference model M(q−1) satisfies Assump-
tion 2, there exist an optimal filter Q(θ∗, q−1) such that:

e(θ∗, t) = 0.

Then, for data set D, the optimal filter Q(θ∗) satisfies,

Mu(t) = Q(θ∗)(w(t) − v(t)) (11)

Remark 2. In most approaches to DDC tuning (i.e.
CbT,VRFT,..) it has been considered the approximation
1/(1 + P (q−1)C0(θ, q−1)) ≈ 1/(1 + P (q−1)C(θ, q−1)) to
obtain a time expression which approximates the cost
function (2). Note that such approximation is not required
in our approach.

From the previous development, we are able to cast the
problem to tune a filter Q(q−1) into an identification
problem as follows:

Problem 2. Given the signals

yq(t) = M(q−1)u(t), uq(t) = w(t)

Estimate from data an optimal filter Q(θ∗, q−1) that
satisfies the relation:

yq(t) = Q(θ∗, q−1)uq(t) (12)

Note that the previous estimation problem is a system
identification problem for system Q where the output yq(t)
is measured without noise and the input uq(t) is noisy (see
Figure 2).

Fig. 2. Block diagram for Q tuning problem

4. Q̂ TUNING SCHEME

In Problem 2, the estimation of Q has been posed as an
identification problem where the input uq(t) is noisy and
the output yq(t) is free of noise, i.e., an Errors In Variables
(EIV) problem. In this work, we assume that v(t) is i.i.d
noise, however, it is possible to adapt the formulation to
deal with Unknown but Bounded noises, following Set-
Membership identification methods.

The instrumentals Variables (IV) method is a well know
procedure to deal with EIV identification problems, Soder-
strom and Stoica [1983]. In the following, the method
proposed in van Heusden et al. [2007] is adapted to our
framework, since it does not require a second experiment,
neither the plant identification.

4.1 Correlation approach to tune Q̂

Let the correlation function be defined as follows

f(θ) = lim
N→∞

1

N

N
∑

t=1

E {ζw(t)e(θ, t)} (13)

WhereE {·} indicates the mathematical expectation. ζw(t)
is a vector of instrumental variables well correlated with
u(t) and uncorrelated with v(t) given by,

ζw(t) = [uw(t+ l),uw(t+ l − 1), · · ·uw(t),

uw(t− 1), · · · , uw(t− l)]T
(14)

where uw(t) is generated as a filtered version of the plant
input, uw(t) = W (q−1)u(t), l is an proper integer and
e(θ, t) is the model matching error defined in (9). Details
for the selection of l can be found in van Heusden et al.
[2007].

The optimal parameters defining filter Q are selected as

θ̂ = argmin
θ

fT (θ)f(θ) =

l
∑

τ=−l

R2
euw

(τ) (15)

where Reuw
(τ) is the cross-correlation function between

e(θ, t) and uw(t), that is

Reuw
(τ) = lim

N→∞

1

N

N
∑

t=1

E {e(θ, t)uw(t− τ)}

From (9), the previous equation can be rewritten as

Reuw
(τ) = lim

N→∞

1

N

N
∑

t=1

E {[M − PQ(θ)]u(t)Wu(t− τ)}
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Then, the cost function can also be represented in fre-
quency domain, by means of the Parseval’s theorem, as:

lim
l→∞

Jc(θ) =
1

2π

∫ π

−π

|[M − PQ(θ)]W |
2
Φ2

u(w)dw (16)

where Φ2
u(w) is the spectrum of the input signal. Finally,

note that |W | = (Φu(w))
−1 is required for criteria (5)

and (16) being equal, that is, the magnitude of the filter
frequency response equals the inverse of the signal spec-
trum. In this way, liml→∞ Jc(θ) is a good approximation
of JMR(θ).

Remark 3. Note that the main aim is minimizing the
model matching error in (5) and in turn (10). But in order
to apply the correlation method to tune the parameters
of Q, a data error expression is required (i.e. e(θ, t)
in (13)).Therefore, we have considered that the model
matching error in (5) can be represented by means of a
time expression in (9), this theoretical assumption can be
approximated in practice when a signal u(t) persistently
exciting is employed, it means that its spectrum is rich
enough to excite the dynamics of M .

4.2 Procedure to tune Q̂

Given a data set generated as in Assumption 1, a reference
model M and a filter length mq, properly selected. The fol-
lowing procedure leads to a controller that approximately
minimizes (2).

Given the structure for Q, it can be said that

Q(θ, q−1) = βT (q−1)θ (17)

where

β(q−1) =
[

1, q−1, · · · , q−(mq−1)
]

(18)

Now, define the regressor as

φ(t) = β(q−1)uq(t) (19)

Then, note that the error signal e(θ, t) can be expressed
as

e(θ, t) = yq(t)− φ(t)θ (20)

In terms of data, the correlation function is estimated as

fN (θ) =
1

N

N
∑

t=1

ζw(t) [yq(t)− φ(t)θ] (21)

Recalling that ζw(t) is defined in Equation (14), it is
possible to estimate the parameters of Q minimizing the
criterion

JN (θ) = fT
N (θ)fN (θ). (22)

the Least squares solution is:
θ̂ = (XTX)−1XTZ (23)

where

X =
1

N

N
∑

t=1

ζw(t)φ
T (t), (24)

Z =
1

N

N
∑

t=1

ζw(t)yq(t) (25)

Finally, the controller to implement is given by

C(θ̂, q−1) = Q(θ̂, q−1)(1−M(q−1))−1 (26)

4.3 Stability margin estimation

Once a controller has been estimated by the previous
procedure, it is necessary to estimate whether it guarantees
an internally stable loop. A stability margin can be deter-
mined using the Small Gain Theorem, Doyle et al. [1991],
considering the uncertainty associated to the estimated
controller. The loop in Fig. 1 can be reformulated as shown
in Fig. 3. From this scheme, the Small Gain Theorem leads
to the following condition:

The controller given by

C(θ̂, q−1) = Q(θ̂, q−1)(1−M(q−1))−1 (27)

achieves a robustly stable loop if

δQ(θ) = ‖∆θ‖∞ = ‖M(q−1)− P (q−1)Q(θ̂, q−1)‖∞ < 1
(28)

Qs
1-M

Qs
1-M

Q-

P
u

v

r e+

-

+

+ +

+

Fig. 3. Closed-loop with representation of the controller

error Q̂−Qs

1−M
. Qs = Q∗(θ∗, q−1) as in Assumption 2.

Eq. (28) is a tool to estimate the stability of the loop.The
approach in van Heusden et al. [2007] can be employed
as it requires one data batch to estimate the norm, as in
Assumption 1. Given that only an estimation of δQ(θ) is
available, the condition in (28) can be employed as a guide

only, in other words, small δ̂(θ) values imply less risk of
obtaining an unstable loop for a given controller, but it
does not guarantee the closed-loop stability.

5. NUMERICAL EXAMPLES

In this Section, the Youla-Kucera data driven controllers
tuning (YK-DDC) method proposed in the previous sec-
tions is evaluated in simulation. The performance of the
solution is compared with the Correlation-based Tuning
(CbT) method presented in van Heusden et al. [2011].

Consider the flexible transmission system introduced as
a benchmark for digital control design by Landau et al.
[1995]. The plant is

P (q−1) =
0.28261q−3 + 0.50666q−4

1− 0.418q−1 + 1.589q−2 − 1.316q−3 + 0.886q−4

The control objective is given in terms of model-reference
specifications. Two classes of reference models are tested,

M1(q
−1) =

(1− α)2 q−3

(1− αq−1)2
, M2(q

−1) =
0.6q−5

1− 0.75q−1 + 0.35q−2

considering under and over-damped required closed-loop
behaviours. In CbT approach, the controller is parametrized
as:

C(θ, q−1) =

m
∑

i=1

θiq
−(i−1)

1− q−1
(29)

Case I: Reference Model M1. In this case, α indicates
the location of the pole defining the desired loop speed
and bandwidth (See Figure 4). α = 0.5 is employed in
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the following, leading to a closed-loop bandwidth request
much higher that previously reported in literature.

First, a data set is generated using a PRBS signal with
N = 512 samples as plant input, then it is possible to
assume Φu(ω) ≈ 1. White noise is added to the plant
output. The noise variance is selected such that the Signal
to Noise Ratio (SNR) is approximately 20dB. The SNR is
calculated as

SNR = 10log

∑N
t=1 y(t)

2

∑N

t=1 v(t)
2
.
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α=0.9

Bode Diagram

Frequency  (rad/s)

Fig. 4. Reference models M1 class for diferrent α values

A Monte Carlo simulation is carried out, therefore, 1000
reference signals u(t) are generated and applied to the
plant P , maintaining N = 512. The set of output signals
y(t) is corrupted by independent noise realizations v(t)
maintaining a SNR ≈ 20dB, leading to 1000 data sets
D. For each data set, a controller has been tuned via the
procedure in subsection 4.2 employing l = 20, then each
controller is tested in closed-loop with the actual plant
P . For the CbT algorithm, it has been assumed m = 6
and also l = 20 as the instrumental variables length, the
same values are assumed in van Heusden et al. [2011]. To
YK-DDC mq = 12 is fixed based on the impulse response
of M1. Results, in terms of step response, are depicted in
Figure 5 for both methods.

For all controllers tuned via both approaches δ̂(θ) is
estimated via the method in van Heusden et al. [2007],
employing proper signals e(θ, t) for each approach. In CbT

approach 16 controllers led to δ̂(θ) ≥ 1, while in our

approach all controllers led to δ̂(θ) < 1. Results for the
stability criterion are reported in Table 1. In spite of
such results, none of the controllers obtained via both
approaches leads to unstable loops. It is worth noting
that, according to Figure 5, the tracking of the reference
model is better for the controllers obtained by the YK-
DDC approach. The quality of the control loop is measured
employing the maximum error EMAX and the root mean
squared error ERMS of the closed-loop step response with
respect to the reference model. The results are reported in
Table 2.

Case II: Reference Model M2. In this case, a more
stringent reference model with underdamped behaviour

0 0.2 0.4 0.6 0.8 1

Time(seconds)

0

0.2

0.4

0.6

0.8

1

1.2

A
m

p
lit

u
d

e

Fig. 5. Step response of M1 (black line), results for 1000
controllers tuning via our approach (blue lines) and
results for 1000 controllers tuning via CbT (red lines)

.

Employed δ̂(θ)

Method Max Min Mean

Case I CbT 1.433 0.193 0.393
YK-DDC 0.531 0.179 0.241

Case II CbT 2.610 0.970 1.101
YK-DDC 0.510 0.171 0.261

Table 1. Stability results for infinity norm
criterion for both approaches.

Employed Quality measures

Method EMAX ERMS

Case I CbT 0.1819 0.0563
YK-DDC 0.1489 0.0413

Case II CbT 0.5184 0.1415
YK-DDC 0.1091 0.0298

Table 2. Quality control results for both ap-
proaches in both cases.

is imposed. The aim is to evaluate the robustness of the
design procedure when the reference model is complex.
The step response of M2 is shown in Figure 6 with a bold
black line.

As in the first case, a data set with N = 512 and
SNR ≈ 20dB is generated. A Monte Carlo experiment
with 1000 data sets is performed. mq = 13 is fixed based
on the impulse response of M2. The same parameters as
in case I are selected for the CbT approach. The resulting
closed-loop step responses are depicted in Figure 6. As can
be observed, the performance obtained with the YK-DDC
controllers (blue lines) is better than with CbT controllers.

For all controllers tuned via both methods δ̂(θ) is esti-
mated via the method in van Heusden et al. [2007]. For

the CbT approach, 77% of the controllers led to δ̂(θ) ≥ 1,
while with the YK-DDC approach, all the controllers led

to δ̂(θ) < 1. Results for the stability criterion are reported
in Table 1. Nevertheless, when evaluated on the actual
plant, 7 of the controllers obtained via CbT lead to un-
stable loops and all the controllers obtained via YK-DDC

yield stable loops. We can highlight that δ̂(θ) is a good
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indicator of closed-loop instability risk. Note that the YK-

DDC method leads to controllers with δ̂(θ) << 1 and no
unstable loop was obtained.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 6. Step response of M2 (black line), results for 1000
controllers tuning via our approach (blue lines) and
results for 1000 controllers tuning via CbT (red lines)

.

6. CONCLUSIONS

In this work, we have presented a solution to the con-
troller design from data problem, based on a Youla-
Kucera parametrization of the controller. Departing from
a set of input-output data measured from an stable, lin-
ear, time-invariant, SISO system, we have proposed a
procedure to estimate a Finite Impulse Response filter
that parametrizes a controller without requiring the plant
model. The proposed parametrization allows to impose
reference models more stringent that those achievable
with extended PID controller structures, usually employed
in controller design from data. The presented method
translates the controller design process into an errors-in-
variables identification problem and the solution is ob-
tained by least-squares estimation. An a-posteriori stabil-
ity test has been derived, allowing to assess from data the
risk of obtaining an unstable loop for a given controller.
The performance of the solution has been illustrated by
means of Monte Carlo simulations, showing that the pro-
posed solution allows to obtain better performance and
stability margins than previous approaches. Further re-
search is required to extend the method to multi-variable
systems, state less conservative robust stability tests and
to improve the noise handling.
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