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Abstract: This paper proposes an on-line advice eco-driving assistance system (EDAS) for
providing the optimal velocity profile to improve fuel economy. The EDAS employs a driver-
in-the-loop (DIL) framework, where an adviser is designed to provide high-level driving mode
suggestions while the low-level control commands such as throttle and brake, are left to the driver
to implement. A simplified dynamic model is developed in the adviser excluding continuous-
time control variables such as the engine torque and engine brake torque. The adviser employs
an event-triggered model predictive control (MPC) algorithm to provide suggestions in real-
time using predictive road and traffic information. On-line computational cost for the MPC has
been significantly reduced using an efficient mixed-integer optimal control (MIOC) algorithm.
To demonstrate the efficiency and effectiveness of the proposed EDAS, a numerical study and
a simulation using measured data from a real-life driving test is conducted. Comparisons are
made between the proposed EDAS and an eco-driving controller considering both high and low
level control inputs without a driver.

Keywords: Eco-driving, driving assistance system, velocity profile optimization, model
predictive control

1. INTRODUCTION

Eco-driving is a driving strategy to reduce fuel consump-
tion and emissions and has been studied and applied
extensively in the past decade (Huang et al., 2018). Eco-
driving is a complex task and traditionally relies on driver
experience (Brackstone and McDonald, 1999).

A key factor of eco-driving is to provide an optimal ve-
locity profile that minimizes fuel consumption on a road
segment. This can be formulated as an optimal control
problem (OCP), where control inputs including the en-
gine torque and gear positions are optimized. (Hellström
et al., 2009; Kirches, 2011; Saerens, 2012; Sciarretta et al.,
2015; Ozatay et al., 2017). To solve the OCP, different
algorithms have been employed including dynamic pro-
gramming (DP) (Hellström et al., 2009), analytic solution
methods (Sciarretta et al., 2015), Pontryagin maximum
principle (Ozatay et al., 2017) and nonlinear optimization
(Padilla et al., 2018). However, such an all-in-one optimiza-
tion faces safety and implementation difficulties. First, it
is not safe to implement the low-level solutions such as
the brake torque by an automatic controller. Second, there
are additional costs to install and control actuators to im-
plement the driving commands. Therefore, this strategy is
often used in driving scenarios such as adaptive/predictive
cruising control (A/PCC), where minimum operation is
required and automated driving is currently possible (Scia-
rretta et al., 2015).

On the other hand, eco-driving assistance systems (EDAS)
can be immediately installed in real vehicles. The reason

is that it is safer and easier to have a driver-in-the-
loop (DIL) control framework. Traditionally EDAS were
designed for driving style training including theoretical
lessons and practice with an observer (Beloufa et al.,
2017). More recently, in-vehicle assistance systems have
been adopted to give real-time feedback and guiding to
human drivers (Kamal et al., 2010; Hibberd et al., 2015).
On-line assessment systems can provide real-time eco-
driving scores that reflect the driver performance. Active
feedback systems on accelerator and brake pedal can
help drivers to choose more economic driving operations
(Yin et al., 2013; Thijssen et al., 2014). In addition, on-
line advice systems have been exploited to help drivers
track the optimal velocity profile obtained by solving an
OCP with predictive information (Cheng et al., 2013; Lin
et al., 2014). DP and analytic solution methods are usually
employed to solve the optimization problem.

In this work, we propose an in-vehicle on-line advice EDAS
for velocity, gear and driving mode profile optimization.
We limit ourselves to an optimal deceleration scenario
where the vehicle has to decelerate to a certain speed
within a given distance. Extensions to other scenarios such
as optimal acceleration, stop-and-go and eco-cruising are
also possible (Saerens, 2012). An event-triggered model
predictive control (MPC) scheme is developed to repeat-
edly identify deceleration events and to provide driver
suggestions in real-time. As a first step study, this work
assumes an ideal driver who can perfectly follow the sug-
gestions. We evaluate the fuel economy of the proposed
control strategy in a numerical study and in a simulation
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using measured experimental data from a test drive and
compare it with the all-in-one optimization method, which
optimizes high and low level control variables at the same
time. The key contributions of the paper are the following:

• A MPC based adviser is designed to provide high-
level suggestions on how and when to choose an
appropriate driving mode based on predictive road
and traffic information. Low-level commands such
as engine torque and brake torque are left to the
driver to implement in order to track the optimal
suggestions. Safety is thus reasonable.
• An efficient mixed-integer optimal control (MIOC)

algorithm is employed to solve the optimization prob-
lem on-line. Model simplification and gear pruning
heuristics are proposed to make the algorithm run in
real-time.
• A detailed comparison between the proposed adviser

and a traditional all-in-one optimization-based con-
troller is given. We show that the proposed adviser
can achieve comparable fuel savings with significantly
less computational cost.

2. DYNAMIC MODEL FOR OPTIMAL CONTROL
BASED ECO-DRIVING

We review a relatively complete dynamic model of inter-
nal combustion engine vehicles (Kirches, 2011; Saerens,
2012; Sciarretta et al., 2015). The model consists of two
continuous-time control inputs: the engine torque Te and
the engine brake torque Teb. The model has an additional
integer-valued control variable: the gear position y. In this
work, model parameters are measured from a DAF heavy
duty truck.

2.1 Vehicle dynamic model

The longitudinal dynamics of the vehicle is given by

dv

ds
=

1

mv
(
ir
rw

(Tpr − Tb)− Tr), (1)

where v is the vehicle velocity and m is the total mass. The
model is within the spacial domain since the independent
variable is the arc length s. There are three kind of forces:
the propulsion torque Tpr, the brake torque Tb and the
resistance torque Tr. The rear axle transmission ratio is ir
and the wheel radius is rw and regarded as static.

In detail, the three forces can be computed by

Tpr = it(y)η(y)Te, (2)

Tb = it(y)Teb + it(y)Tfric, (3)

Tr = Troll + Taero + Tslope, (4)

where it(y) and η(y) are the transmission ratio and gear
efficiency of the corresponding gear position y respectively
and ωe is the engine speed. The forces are the engine
friction force Tfric, rolling resistance force Troll, aerody-
namic drag force Taero and the gravitational force Tslope
due to road slope. The resistance forces are functions of
the velocity v and the slope angle α:

Troll = mgCr cosα, (5)

Taero =
1

2
ρCdAv

2, (6)

Tslope = mg sinα, (7)

where ρ is the air density, Cd the coefficient of air drag, A
the frontal area of the vehicle, Cr the coefficient of rolling
resistance and g the gravitational acceleration.

The maximum engine torque Te,max, maximum brake
torque Teb,max and friction torque Tfric are functions of
the engine speed ωe, which depends on the vehicle velocity
v and the gear position y:

ωe(v, y) =
60vit(y)ir

2πrw
, if y > 0 (8)

where y = {0, 1, . . . , 12} and ωe is in revolutions per
minute (RPM). In this work, we ignore clutch slipping.
When y = 0, the gear is in neutral with a gear ratio
it(0) = 0 and the engine maintains an idle speed at
ωe,min = 550 RPM.

Note that the disk brake is not considered in this work
since it can be chosen by the driver at any time for safety
considerations. In safe driving scenarios, it is never an
optimal driving mode for eco-driving.

2.2 Fuel consumption model

The fuel consumption has the following dynamics in spa-
cial domain:

dmf

ds
=

1

v
ṁf , (9)

where ṁf [gram/s] is the fuel consumption rate. To ap-
proximate ṁf , a number of models have been compared in
(Saerens, 2012). We consider the second order polynomial
model given by

ṁf (ωe, Te) = β1 + β2ωe + β3ω
2
e + β4ωeTe + β5Te + β6T

2
e ,

(10)
where βi, i = 1, . . . , 6 are polynomial coefficients and can
be obtained by fitting the model with measurement data.
The heavy duty DAF truck adopted in this work has a fuel
consumption map shown in Fig. 1.
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Fig. 1. Fuel consumption rate [g/s] w.r.t. engine speed and
torque. The thick black curve is the maximum engine
torque w.r.t. the engine speed. The thick red curve is
the engine friction torque w.r.t. the engine speed.

2.3 All-in-one optimal control

An optimal control problem can be formulated to minimize
the combination of fuel cost and time cost along a trip in
[s0, sf ]:
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min
g,uc

Te,Teb

w1

∫ sf

s0

1

v
ṁfds+ w2

∫ sf

s0

1

v
ds (11a)

s.t. (1), (11b)

v(s0) = vcurrent, (11c)

v(sf ) = vfinal, (11d)

v(s) ≤ vlaw(s), (11e)

ωe,min(y) ≤ ωe ≤ ωe,max(y), (11f)

0 ≤ Te ≤ Te,max(ωe), (11g)

0 ≤ Teb ≤ Teb,max(ωe), (11h)

where vcurrent is the current vehicle velocity, vfinal is the
final velocity, vlaw(s) is the velocity limit imposed by law,
w1 and w2 are weighting parameters. Constraints (11f)-
(11g) are engine specific constraints, which vary according
to the gear position. As a result, they can be considered
as vanishing constraints (Kirches, 2011).

After solving problem (11), the optimal torque Te, Teb
and gear position y are obtained simultaneously. However,
problem (11) is not easy to solve, especially when there
are gear dependent constraints (11f)-(11h). In addition, it
is not safe to implement the optimal torques without a
driver. The control scheme corresponding to solving (11),
denoted as Controller, is shown in Fig. 2.

Controller Truck

vcurrentvcurrent

veventvevent
TeTe

yy

T e bT e b

Fig. 2. The scheme of eco-driving control based on (11).

3. DYNAMIC MODEL FOR THE ADVISER

In this work, we limit ourselves to developing an adviser for
an optimal deceleration scenario. The adviser will provide
optimal velocity, gear and mode profiles to the driver in
real-time.

3.1 Driving modes for deceleration

The dynamic model for the adviser does not include
the lower level control variables Te and Teb, but instead
consists of abstracted driving modes. We consider four
driving modes M = {1, 2, 3, 4} in an optimal deceleration
scenario:

• Cruising (M = 1): The vehicle maintains a constant
speed with gear not in neutral (y > 0). The dynamics
is given by

dv

ds
=

1

mv
(
ir
rw

(Tpr − Tb)− Tr) = 0, (12)

where Tpr is can be simply obtained by solving (12)
and Tb = it(y)Tfric.
• Eco-roll (M = 2): The vehicle coasts with gear in

neutral, i.e. y = 0. To ensure the engine is still
running, a minimum engine speed is required, thus

consuming a small amount of fuel. The dynamics is
given by

dv

ds
=

1

mv
(
ir
rw

(Tpr − Tb)− Tr), (13)

where Tpr = it(0)η(0)Te = 0 and Tb = it(0)Tfric = 0.
The torque Te = 150 Nm is assumed for Eco-roll with
zero throttle load.

• Coasting (M = 3): The vehicle coasts with a positive
gear position (y > 0). In this mode, there is no fuel
injected into the engine, hence the fuel consumption
is zero. The dynamics is given by

dv

ds
=

1

mv
(− ir
rw
Tb − Tr), (14)

where Tb = it(y)Tfric. The engine torque is Te = 0.
• Engine brake (ENBR) (M = 4): The vehicle deceler-

ates using the modern engine brake functionality with
gear positive (y > 0). Here, it is always assumed that
the maximum engine brake torque Teb = Teb,max(ωe)
is applied. The dynamics is given by

dv

ds
=

1

mv
(− ir
rw
Tb − Tr) (15)

where Tb = it(y)Teb,max + it(y)Tfric. The engine
torque is Te = 0.

The fuel consumption map is modeled as (10) with Te
known for each mode and ωe a function of vehicle velocity
v. In the end, the model can be written as

dv

ds
= f(v,M, y), (16)

where M and y are the discrete-valued decision variables
to be optimized.

3.2 Gear position pruning

A popular way to determine the gear position in eco-
driving is to use a backward-looking model. Such model
usually employs a velocity reference to predict the gear
position along a path given the gear shift look-up table
w.r.t. engine speed and vehicle velocity. However, when the
velocity reference and actual velocity differ significantly,
the prediction is not accurate.

In this work, we employ forward-looking models (1) and
(16) for velocity profile optimization hence the velocity
reference is not an input but an output. We define sub-
modes for the Cruising, Coasting and ENBR mode with
different gear positions. In particular, we define M1,i, M3,i

andM4,i for i = ymin, . . . , ymax with ymin and ymax tuning
parameters. As a result, the total number of driving modes
is 3(ymax − ymin) + 1. Rewrite (16) as

dv

ds
= f(M̃, v), (17)

where M̃ = {M1,i, 2,M3,i,M4,i}. This is still a dynamic
system with only discrete-valued control variables.

If ymin = 1 and ymax = 12, all the gear positions are
free to choose. However, a low/high gear position may
lead to excessively large/small engine speed which is not
allowed. Making all gear positions available also increases
the computational time since the number of modes is large.
In this work, we propose to prune the number of gear
positions using heuristics as follows.
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a = arg min y

s.t. ωe(ṽ, y) ≤ ωe,max(y) (18)

b = arg max y

s.t. ωe(ṽ, y) ≥ ωe,min(y) (19)

where ṽ = 1
2 (vcurrent + vevent). The minimum and maxi-

mum gear position available is computed by

ymin =

{
1, if a = ∅
a, if a ≥ 1

, (20)

ymax =

{
12, if b = ∅
b, if b ≤ 12

. (21)

The solution of (20)-(21) are the minimum and maxi-
mum gear positions allowed assuming that the velocity
ṽ satisfies the engine speed constraints. This heuristics
is based on the fact that the gear ratio is monotonically
decreasing with the gear position and the truck velocity
is also decreasing. As a result, the maximum engine speed
constraint would never be violated for v ≤ ṽ if no gear
down-shift is performed. Similarly, the minimum engine
speed constraint would never be violated for v ≥ ṽ if
no gear up-shift is performed. Note that (20)-(21) give
a conservative choice of gear position pruning with only
partial constraint satisfaction guarantees.

4. EVENT-TRIGGERED MPC

In this work, the deceleration of a vehicle is triggered by
pre-defined speed limiting events. These events include
speed limit changes, deceleration of the vehicle in front
and highway exits. The preview information together with
vehicle status and GPS position is taken into account in an
event triggered MPC based adviser. The adviser outputs
optimal velocity profile and other driver advice such as
gear position and driving mode choice. To distinguish
from the deceleration in (adaptive) cruising, we focus on
letting the vehicle decelerate to a lower speed within a
given distance. The speed of the vehicle is monotonically
decreasing and operations needed after the deceleration
are not considered.

4.1 Speed limit event

While there may be a number of speed limit events along a
path, we take the closest speed limit event as the terminal
constraint given by

v(sf ) = vevent, (22)

where vevent is the speed limit of the closest event, includ-
ing the closest vehicle in front and speed limit sign. As a
result, only boundary constraints at the start and the end
of a road segment are enforced.

4.2 Event triggering rules

A MPC algorithm is designed as the adviser to compute
the optimal driving mode suggestions in real-time while
driving. Unlike traditional MPC which updates its solution
at every sampling instant, the MPC in this work is
triggered by detecting the closest speed limit event (22).
The rules for the detection are:

• The event is more than 20 meters and less than 1.5
kilometer away in front, i.e. 20 ≤ sf ≤ 1500;

• The event has a speed limit lower than the current
vehicle velocity, i.e. vevent ≤ vcurrent.

The driving suggestions are fed back to the driver only if
the same event is detected for more than one sampling
instant. This can avoid unexpected sensor disturbances
and transient speed limiting events. It is worth noting
that the proposed event triggered MPC does not affect the
physical control loop of the vehicle. The optimal solutions
are suggestions to the real actuator (i.e. driver) hence
vehicle safety is not an issue.

4.3 Model predictive control

Once an event is detected, we solve (11) with dynamics
given in (17). Hence the decision variable is the driving

mode with gear position M̃ . The optimal velocity profile
is obtained by applying the optimal solution to (17). The
control scheme denoted as the Adviser is shown in Fig. 3.

Adviser Truck

veventvevent

vcurrentvcurrent

Driver

~M~M

vrefvref

TeTe

T e bT e b

yy

Fig. 3. The scheme of eco-driving adviser based on (11)
and (17).

In the proposed control architecture, a (virtual) driver is

introduced to convert the driving mode (i.e. M̃ , which
includes gear positions) and velocity reference to low level
commands that a vehicle can understand. The driver can
be a human, or a low level controller (e.g. a driver model)
that is able to accomplish this conversion. In this work,
we assume an ideal driver model who follows exactly the
suggestions provided by the adviser.

5. NUMERICAL ALGORITHM

To achieve real-time computation, we employ the method
for MIOC problem proposed by Sager (2009). First, the
problem is discretized and then reformulated by outer
convexification and relaxation to be

min
v,H

N−1∑
k=0

Q∑
j=1

Hk
j Jk(v, M̃k

j ) (23a)

s.t. vk+1 =

Q∑
j=1

Hk
j φ(v, M̃k

j ), (23b)

v0 = vcurrent, (23c)

vN = vevent, (23d)

Hk
j ∈ [0, 1], (23e)

Q∑
j=1

Hk
j = 1, ∀k = 0, . . . , N − 1 (SOS1) (23f)

where j = 1, . . . , Q with Q = 3(ymax − ymin) + 1
denoting the number of modes. The index k denotes
the discretized points in the prediction horizon which is
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divided into N sub-intervals of length ∆s. The function
φ is discretized from f in (16) using the 4th order Runge-
Kutta method. Similarly, Jk is the discretized cost function
for the interval k. The constraint (23f) is the special
ordered set of type 1 (SOS1) enforcing only one active

mode at any time. The binary solution M̃ can be recovered
from the relaxed solution H by the sum-up rounding
(SUR) technique (Sager, 2009), which has a guaranteed
bounded approximation error. It has been proven that the
computational cost of SUR is negligible, hence we need
to only solve a single NLP (23), which can be solved by
a variety of standard NLP solvers in real-time. In this
work, we choose the interior point method solver IPOPT
(Wächter and Biegler, 2006).

6. NUMERICAL SIMULATION

First, a numerical case study is performed with artificially
chosen configurations, e.g. the current and event velocity
and the distance to the event. Second, a simulation is
performed using experimental data from a test drive with
a human driver without EDAS.

6.1 Numerical case study

A static deceleration scenario is created with the following
configurations:

• current velocity: vcurrent = 80 km/h;
• event velocity: vevent = 40 km/h;
• distance to the event: sf = 1 km;
• discretization distance: ∆s = 20 m.

The results from the eco-driving Controller and Adviser
are shown in Fig. 4 and Fig. 5, respectively. It can be
observed that the Controller gives a typical pulse-and-
glide behavior for the first 300 m, while the Adviser is
limited to cruising at a constant speed. However, similar
driving styles are obtained for the rest of the distance
which includes Eco-roll (gear in neutral), Coasting (gear
not in neutral) and ENBR (maximum ENBR torque). For
the Adviser, the gear pruning heuristics keeps the engine
speed in a reasonable region where the peak of ωe = 2058
RPM occurs when switching from Coasting to ENBR.
The fuel consumption and trip time from the Controller
are 38.9g and 52.7s, while those from the Adviser using
a conservative tuning are 39.2g and 54.1s. In this case,
the Adviser is able to achieve a comparable fuel economy
against the Controller at the cost of spending more trip
time. Nevertheless, it should be noted that the trade-off
between fuel consumption and trip time is always possible
for both the Controller and the Adviser. The Adviser
requires significantly less computational effort than the
Controller. The computational time for the Adviser is
0.33s while the time for the Controller is 80.4s, more
than two orders of magnitude faster. The results are
obtained using the solver IPOPT in MATLAB on a PC
with Intel Core i7-6700 processor running at 3.40 GHz.
As a consequence, the proposed eco-driving Adviser can
be seen as a safe and sub-optimal alternative to the eco-
driving Controller that could be implemented immediately
in real-life heavy-duty trucks.
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Fig. 4. Velocity profile, gear position, engine torque and
ENBR torque results of the numerical case study from
the eco-driving Controller using w1 = 1, w2 = 18.
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Fig. 5. Velocity profile, mode advice, gear position and
engine speed results of the numerical case study from
the eco-driving Adviser using a conservative tuning
w1 = 1, w2 = 60, ymin = 9, ymax = 12.

6.2 Simulation using measured data

A simulation is performed using measured data from a
baseline driving performed by a driver without EDAS.
The baseline driving profile is obtained by driving a DAF
truck on the roads around Eindhoven, The Netherlands.
It includes a typical driving circle of 10 km, with multiple
speed limiting events defined by 7 roundabouts, 2 highway
exits, multiple legal speed limits and sharp corners. The
cycle has a negligible slope. During the test, the driver was
free to accelerate and decelerate according to the traffic
and road conditions.
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In Fig. 6, we compare the results from the eco-driving Con-
troller and Adviser using the collected data. A total of 12
deceleration events have been detected excluding two with
pulse-and-glide behavior at around 4 km and 6 km. This
is because pulse-and-glide is known to be a driving style
with much better fuel economy, which is not introduced
in the Adviser in this paper. The fuel consumption for the
Adviser is 135.3g comparing to 139.3g for the Controller.
The trip time for the Adviser is 265.2s comparing to 208.7s
for the Controller. It can be concluded that the Adviser is
able to achieve 2.9% of fuel reduction with 21.3% more
trip time using one specific tuning configuration. More
aggressive or conservative tuning options are intuitive but
not shown here due to lack of space.
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Fig. 6. Simulation velocity profiles: eco-driving Controller,
eco-driving Adviser and baseline human driver.

7. CONCLUSION

In this paper, an in-vehicle EDAS has been developed to
improve fuel economy. A DIL control framework has been
developed, in which, at the high-level, an adviser provides
driving mode suggestions while at the low-level, a driver
can be incorporated to implement control commands to
guarantee safety. For the optimal deceleration scenario, an
event-triggered MPC algorithm has been developed for the
adviser to compute the optimal driving suggestions using
predictive information. A MIOC algorithm has been em-
ployed to solve the optimization problem with constraints
in real-time. The EDAS has been illustrated using a nu-
merical study and a simulation using measured experimen-
tal data. A comparison with the all-in-one optimization-
based controller shows the efficiency and effectiveness of
the proposed EDAS.
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