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Abstract: The aim of this paper is to illustrate the design and the simulative validation of
an adaptive controller developed for an hydraulic press. With respect to controllers actually
implemented, the proposed solution assures similar performances in nominal conditions, but it
is simpler to be tuned and it is able to estimate the leakage inside the hydraulic piston. Such an
estimate is used to maintain the performances acceptable in a wide set of operative conditions
and for predictive maintenance. By using singular perturbation arguments, we show robustness
to slowly increasing leakage gains, which is a typical situation in a real-world application. The
control scheme is validated on a simulative Simscape model.
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1. INTRODUCTION

This paper deals with the robust control of hydraulic
presses used in many industrial sectors. Such system is
characterised by a nonlinear behaviour and by the presence
of several undesired elastic modes and delays, which makes
its control definitely complicated, especially because of
the challenging tracking error requirements. Furthermore,
the system is highly time-varying due to the wear-out of
the hydraulic components, and it is typically subject to
huge external forces that can be treated as disturbances.
Such forces have an order of magnitude of dozens of kilo-
newtons (kN), and are responsible for tracking and steady-
state errors if not properly compensated. Another major
problem is that the position error is increasing in time
because of the wear-out effect in the components. This fact
is responsible not only for the degraded performances in
the production cycle, but very often for the interruption of
the machine to re-calibrate the controller. In addition, no
information about the health of the hydraulic components
is available e.g. for (predictive) maintenance.

The requirements that the controlled system has to meet
are a maximum tracking error of 0.1÷0.5 mm during the
transient phase, and a maximum steady state error of
one order of magnitude lower. Moreover, the maximum
overshoot has to be lower than the 1%. Such severe re-
quirements, in conjunction with the system non-idealities
mentioned before, forces the adoption of nonlinear adap-
tive control systems that assure performances in nominal
working conditions, as well as in uncertain conditions,
when external forces and wear-out of the components
are present. In this work we are mainly driven by the
adaptive robust control framework, Yao (1997); Yao and
Tomikuza (1997), and by the use of classical backstepping
techniques, Krstic et al. (1995); Sepulchre et al. (1997).

Such techniques have been already successfully employed
to control hydraulic systems, see e.g. Bu and Yao (2000);
Yao et al. (2000); Bu and Yao (2001); Yao et al. (2001),
machine tools Yao et al. (1997), and other engineering
systems.

An inner / outer loop control strategy is adopted. The
outer loop is responsible for controlling the motion of
the press having the force applied to the piston as input,
while the inner one for generating such pressure by acting
on a servo-valve. On top of this scheme, two adaptive
laws have been designed. The first one is associated with
the outer loop and responsible for compensating not only
the external forces that are generated during the pressing
phase, but also all the unmodelled effects that act on the
mechanical sub-system, such as friction, non-idealities in
the pressure supply system, and fluid compressibility. The
second adaptive law is devoted to reduce the performance
degradation due to the wear-out of the components, whose
major effect is the generation of a leakage flux in the servo-
valve. Such phenomenon is time-varying, but characterised
by a dynamic that is largely much slower than the one
associated with the working cycle of the press. Since
the closed-loop system resulting from the inner / outer
loop structure, together with the two adaptive laws, is
exponentially stable when the unknown parameters are
constant, we show that the control solution guarantees a
limited performance degradation when the leakage slowly
increases. The result is proved via singular perturbations,
see Khalil (1996).

The paper is organised as follows. In Section 2, the main
characteristics are presented, and the mathematical model
used for control design is introduced in Section 3. Section 4
presents the control design. The performances of the
obtained control law are then evaluated on a “virtual”
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Fig. 1. Diagram of the Y2-axis of the hydraulic press.

plant, i.e. a Simscape simulative model, in Section 5.
Finally, conclusions are discussed in Section 6.

2. SYSTEM DESCRIPTION

In the press, 8 hydraulic axes moving in a synchronised
manner are present. Even if different in size, maximum
velocity and generated pressure, all the axes share a similar
structure, schematically reported in the simplified diagram
of Fig. 1. In this work, the focus is on a specific axis,
referred to as Y2, whose main components are:

• The pressure supply, responsible for providing a nom-
inal pressure of 280 bar, even if in the real application
the working pressure is generated by a hydraulic
sub-system able to minimise the pressure oscillations
caused by the load.
• The flexible pipes with circular section, denoted by

DNi, i = 1, . . . , 4.
• Resistive elements, denoted by ACj , j = 1, 2, taking

into account the interconnection between the piston
chambers and the pipes.
• A group of 2 pistons in which compressibility effect

of the fluid are taken into account.
• An asymmetric 4-ways servo-valve, to move the piston

back and forth.

One of the main requirements is to identify and compen-
sate for the leakage in the hydraulic circuit. Leakage is one
of the most critical problems in hydraulic systems, and
the components usually responsible for it are pistons and
valves. Generally speaking, a leakage flow is an undesired
flow between two paths. Leakage flow depends on several
environmental conditions and on their time-evolution, and
thus it is hard to be modelled. In our model, it is thought
of small and time-varying orifices that suddenly appear in
the system. In the hydraulic system under study, leakage
effects appear either in cylinders and in valves. In pistons,
leakage phenomena can be divided into two main types,
namely the internal ones, which are associated with a
hydraulic flow between the two chambers, and the external
ones, associated with a fluid flow from one chamber to the
environment. In this work, for the sake of simplicity, only
internal leakage has been taken into account.

Similar considerations can be drawn for the leakage flows
in the valve. Usually, they are caused by small openings
among the lines of the different chambers, mainly because
of the wear-out of the spool seas, especially for zero over-
lapped valves. However, such effect has not been taken into

account in this paper, since the control algorithm discussed
in Section 4 is robust enough for compensating such dis-
turbance and able to guarantee the desired performances.

3. MODEL FOR CONTROL DESIGN

Starting from the general description provided in Sec-
tion 2, a mathematical representation of the Y2 axis of
the hydraulic machine is now obtained for control design
purposes. It has been already pointed out that the plant
consists of 2 cylinders operating in parallel, and a single
valve. To simplify the model, only one piston is described,
but with double areas with respect to the ones used in
the real device. This means that velocities, flow rates and
pressures appearing in the model correspond to the “real”
ones. The state space model of the plant is

ẋ1(t) = x2(t)

ẋ2(t) =
1

m

[
A1x3(t)−A2x4(t)− Cvx2(t)−

− Ff (x2(t))
]

+ d(t)− g

ẋ3(t) =
βe

V1(x1(t))

[
Q1(x3(t), u(t))−

−A1x2(t)− qleak(t)
]

ẋ4(t) =
βe

V2(x1(t))

[
−Q2(x4(t), u(t))+

+A2x2(t) + qleak(t)
]

(1)

where

• x1(t) and x2(t) are the cylinder position and velocity,
• m is the piston mass,
• Cv is the viscous friction coefficient,
• Ff (x2) takes into account unmodelled friction effects,

with Ff unknown but Lipschitz-continuous,
• d(t) are the unknown external disturbances / forces

acting on the piston,
• g is the gravity acceleration,
• A1 and A2 are the areas of the piston chambers,
• x3(t) and x4(t) are the pressures in the lower and

upper chambers, respectively,
• βe is the bulk modulus of the fluid,
• V1(x1) and V2(x1) are known functions that give the

actual volumes of the lower and upper chambers,
respectively,

• u(t) is the spool displacement of the valve, i.e. the
control input,

• qleak(t) is the unknown internal leakage flow,
• Q1(x3, u) and Q2(x4, u) are the input and output flow

rates in the lower and upper chambers, respectively.

In (1), the control input is the spool displacement. Since
the valve has an asymmetric behaviour, the flow rates Q1

and Q2 are clearly asymmetric. More precisely, as far as
Q1 is concerned, it turns out that

Q1(x3, u) = C01u
√
|∆P1| sign(∆P1) (2)

where

∆P1 =

{
Psource − x3 if u ≥ 0

x3 − Pr if u < 0
(3)

where Psource = 280 bar is the supplied pressure, Pr =
0 bar is the reference (environment) pressure, and and C01

is the flow rate gain of the valve. Similarly, for the upper
chamber it turns out that
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Q2(x4, u) = C02u
√
|∆P2| sign(∆P2) (4)

where

∆P2 =

{
x4 − Pr if u ≥ 0

Psource − x4 if u < 0
(5)

and C02 is the flow rate gain of the valve.

4. CONTROL DESIGN

The aim of this section is to show how to design a
robust and adaptive control system for (1) that is able
to dynamically react against high magnitude external
disturbances d(t) generated during the pressing process,
and also able to compensate the offset caused by the slowly
varying internal leakage effect qleak(t). A reliable estimate
of the latter quantity is also necessary for diagnostic and
maintenance purposes. From (1) and due to (2) and (4),
the plant is described by:

ẋ1 = x2

ẋ2 =
1

m

[
A1x3 −A2x4 − Cvx2−

− Ff (x2)
]

+ d− g

ẋ3 =
βe

V1(x1)

[
C01u

√
|∆P1| sign ∆P1−

−A1x2 − qleak
]

ẋ4 =
βe

V2(x1)

[
− C02u

√
|∆P2| sign ∆P2+

+A2x2 + qleak
]

(6)

where V1(x1) = V01 + A1x1, V2(x1) = V02 − A2x1, and
∆P1 and ∆P2 are defined in (3) and (5), respectively. Let
x?1(t) be a desired (periodic) reference trajectory for the
piston defining the nominal working cycle for the press,
and let x?2(t) := ẋ?1(t) be the associated velocity profile.
The following assumptions are then made:

• The parameters Cv, C01, C02, m, βe, A1, A2, V01 and
V02 are known, and constant;
• The function Ff is globally Lipschitz, i.e. there exist
F̄ > 0 such that for all xa and xb we have that

|Ff (xb)− Ff (xa)| ≤ F̄ |xb − xa| (7)

and for any reference profile x?2(t) we have that

Ff (x?2(t)) =

Nf∑
i=1

φiΦi(x
?
2(t)) := Fφ(x?2(t)) (8)

where each Φi(x
?
2) is a known and bounded function,

while the φi are real and unknown constants, with
i = 1, . . . , Nf .
• For any reference trajectory x?1(t), there exist a set of

known and bounded functions Γi(t), a set of unknown
parameters γi, i = 1, . . . , Nd, and a known and
bounded function Fext(x1) such that

d(t) = Fext(x1(t)) + dγ(t) (9)

being

dγ(t) :=

Nd∑
i=1

γiΓi(t) (10)

• As for the internal leakage, we assume that

qleak(t) = C0lxl(t)
√
|x3(t)− x4(t)|·
· sign (x3(t)− x4(t)) (11)

where C0l is the discharge gain of an undesired
orifice responsible for the leakage flow, and xl(t) the
associated opening. In this respect, both C0l and xl(t)
are unknown, so that (11) can be more compactly
rewritten as

qleak(t) = gl(t)Gl(x3(t), x4(t)) (12)

where Gl(x3, x4) =
√
|x3 − x4| sign (x3 − x4) and

gl(t), which is a sort of time-varying “leakage gain,”
bounded and unknown. Moreover, since the dynamic
associated to the change in the leakage flow is much
slower than the hydraulic system dynamic, we have
that 0 < ġl(t) and bounded, and such that ġl(t) ' 0.

• The state vector x = (x1, x2, x3, x4) is measurable.

By changing coordinate as x3 7→ x̄3 := A1x3 − A2x4, it
turns out that the first three dynamics in (6) read as

ẋ1 = x2

ẋ2 =
1

m

[
x̄3 − Cvx2 − Ff (x2)

]
+ d− g

˙̄x3 = f1(x)u− f2(x1)x2 − f3(x1)qleak

(13)

where

f1(x) :=
βeA1

V1(x1)
C01

√
|∆P1| sign ∆P1+

+
βeA2

V2(x1)
C02

√
|∆P2| sign ∆P2

f2(x1) := βe

[
A2

1

V1(x1)
+

A2
2

V2(x1)

]
f3(x1) := βe

[
A1

V1(x1)
+

A2

V2(x1)

]
.

This system is in semi-strict-feedback form, Polycarpou
and Ioannou (1993).

We face the problem of letting the state (x1, x2) of (13) to
track the reference signal (x?1, x

?
2). To achieve this, we start

by considering the first two dynamics regarded as a second
order system with state (x1, x2) and virtual control input
x̄3. By defining the error coordinates z1(t) = x1(t)− x?1(t)
and z2(t) = x2(t)− x?2(t), the system in question reads as

ż1 = z2

ż2 =
1

m

[
ū− Cv(z2 + x?2)− Ff (z2 + x?2)

]
+

+ Fext(z1 + x?1) + dγ − g

(14)

in which we denoted by ū the state variable x̄3 to empha-
sise the fact the latter is regarded as virtual input for (14).
For this system, a feedback linearising control action ū(t)
that makes the origin of (14) globally exponentially stable
when Ff (x2) = 0 and dγ(t) = 0 can be simply obtained.
Such control action is given by

ū = −m
[
K1z1 +K2z2 + Fext(z1 + x?1)− g

]
+

+ Cv(z2 + x?2) (15)

with K1, K2 > 0. The next proposition builds on (15) to
present an adaptive control law that makes the origin of
(14) globally exponentially stable when Ff (x2) and dγ(t)
are present. Before presenting the result, we make the
following assumption.

Hypothesis 1. Consider the functions Ff (x?2(t)) and dγ(t)
introduced in (8) and in (10), respectively, and let
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Θ(t) :=

(
− 1

m
Φ1(t), . . . ,− 1

m
ΦNf

(t),Γ1(t), . . . ,ΓNd
(t)

)T

.

(16)
The entries of Θ : R+ → RNf+Nd are C1, and there exists
positive constants D0 and D1 such that maxt∈R+ ‖Θ(t)‖ ≤
D0 and maxt∈R+ ||Θ̇(t)|| ≤ D1, where ‖·‖ denotes the
Euclidean norm. Moreover, there exists positive constants

µ and T such that
∫ t
t−T Θ(τ)ΘT(τ) dτ ≥ µI, for all

t ≥ T . This last requirement is the classical persistency
of excitation condition, Ioannou and Sun (1985).

Proposition 2. Consider system (14) in which Ff (x2) sat-
isfies conditions (7) and (8), dγ(t) is defined as in (9),
and Θ(t) as in (16). Moreover, suppose that Hypothesis 1
holds true. Let θ := (φ1, . . . , φNf

, γ1, . . . , γNd
)T. Then, the

trajectories of the closed-loop system resulting from (14),
with the control action

ū = −m
[
K1z1 +K2z2 + Fext(z1 + x?1)− g

]
+

+ Cv(z2 + x?2) +mξT
θ Θ (17)

and the adaptive law

ξ̇θ(t) = −
[
ε1z1(t) + z2(t)

]
KθΘ(t) (18)

are bounded and (z1(t), z2(t), ξθ(t))) converges to (0, 0,−θ)
globally, uniformly and exponentially, (Khalil, 1996, Defi-
nition 3.5). In (18), we have that ξθ ∈ RNf+Nd and Kθ is
a (Nf +Nd)× (Nf +Nd) symmetric and positive definite
real matrix. In (17), instead, we have that K1 and K2 are
positive gains such that

K1 > Γ̄1 +
ε2δ3K

2
1

2ε1

K2 > Γ̄2 +
ε2δ3K

2
2

2

(19)

where

Γ̄1 :=
δ1F̄

2m
+ 2ε1ε2 ‖Kθ‖D2

0 +
ε2D1

2δ2

Γ̄2 :=
F̄

m
+ ε1

(
1 +

F̄

2δ1m

)
+ 2ε2 ‖Kθ‖D2

0 +
ε2Γ̄′2
2δ4

(20)

being Γ̄′2 := T ‖Kθ‖D3
0 + D1 +

(
ε1 + F̄

m

)
D0, F̄ > 0 a

sufficiently large constant so that (7) holds, ε1, ε2 small
and positive constants, and δi, i = 1, . . . , 4, positive
constants. The constants ε1 and δi, i = 1, . . . , 4 have to
be selected so that µ

T > Γ̄θ, where

Γ̄θ :=
1

2

(
ε1δ2D1 + δ4Γ̄′2

)
+
D2

0

δ3
, (21)

while ε2 small enough so that (19) holds.

The previous result provides the expression (17) for the
“virtual” control input x̄3(t) that assures that the me-
chanical subsystem in (13) asymptotically tracks a desired
reference trajectory x?1(t). By following the standard back-
stepping procedure, we compute now the true input u. By
letting z3(t) := x̄3(t)− ū(t), we obtain

ż1 = z2

ż2 =
1

m

[
z3 + ū− Cv(z2 + x?2)− Ff (z2 + x?2)

]
+

+ Fext(z1 + x?1) + dγ − g
ż3 = f ′1(ze, t)u− f ′2(z1, t)z2 − f ′3(z1, t)qleak−

− f ′2(z1, t)x
?
2 − ˙̄u

(22)

where (14) has been taken into account, and f ′1(ze, t),
f ′2(z1, t) and f ′3(z1, t) are the functions f1(x), f2(x1) and
f3(x1) in (13) in the new error coordinates, with ze :=
(z1, z2, z3, x4). The next proposition presents an adaptive
control law by assuming that the internal leakage takes the
form (12), and that the “leakage gain” gl(t) is constant. In
this case, global exponential stability is proved. Similarly
to Proposition 2, we make the following assumption.

Hypothesis 3. Consider qleak(t) given by (12), in which
Gl(x3, x4) is a known function and gl(t) ≡ ḡl ≥ 0, but
unknown, and the function f ′3(z1, t) introduced in (22).
Define Θl(t) := G′l(ze(t), t)f

′
3(z1(t), t), where G′l(ze, t) is

the function Gl(x3, x4) in the new error coordinates, with
ze = (z1, z2, z3, x4). Similarly to Hypothesis 1, suppose
that Θl is of class C1 and that there exists positive
constants L0 and L1 such that maxt∈R+ |Θl(t)| ≤ L0 and

maxt∈R+ |Θ̇l(t)| ≤ L1. Moreover, suppose that there exists

positive constants µl and Tl such that
∫ t
t−Tl

Θ2
l (τ) dτ ≥ µl,

for all t ≥ Tl.
Proposition 4. Consider (22) with Ff (x2) satisfying the
conditions (7) and (8), and dγ(t) defined as in (9). More-
over, suppose that Hypotheses 1 and 3 hold true. Then,
the trajectories of the closed-loop system resulting from
(22), where the control action is given by

u =
1

f ′1(ze, t)

[
− z2

m
−K3z3 + ˙̄u+

+ f ′2(z1, t)(z2 + x?2) + ξlG
′
l(ze, t)f

′
3(z1, t)

]
(23)

with ū given by (17), and with the adaptive laws (18) and

ξ̇l = −KlG
′
l(ze, t)f

′
3(z1, t)z3 (24)

are bounded and (z1(t), z2(t), z3(t), ξθ(t), ξl(t)) converges
to (0, 0, 0,−θ, ḡl) globally, uniformly and exponentially,
(Khalil, 1996, Definition 3.5). In (24), we have that ξl ∈ R,
G′l(ze, t) is the function Gl(x3, x4) introduced in (12) in
the new error coordinates, with ze = (z1, z2, z3, x4), and
Kl is a positive gain. In (23), instead, K1, K2 and K3 are
positive gains, with K1 and K2 appearing in the definition
of ū given in (17), such that

K1 > Γ̄1 +
δ5
2m

+
ε2δ3K

2
1

2ε1

K2 > Γ̄2 +
ε3L0

2mδ7
+
ε2δ3K

2
2

2

K3 >
ε1

2δ5m
+
ε2D0

2δ6m
+ ε3

(
KlL

2
0 +

Γ̄3

2δ8

)
+
ε3δ9K

2
3

2

(25)

where Γ̄1 and Γ̄2 are defined in (20), while Γ̄3 := TlKlL
3
0 +

L1. In addition, F̄ > 0 is a sufficiently large constant
so that (7) holds, εi, i = 1, . . . , 3 are small and positive
constants, and δj , j = 1, . . . , 8 are positive constants.
The constants ε1 and the δj have to be selected so that
µ
T > Γ̄θ + δ6D0

2m , and µl

Tl
> 1

2

(
L0δ7
m + Γ̄3δ8 + 1

δ9

)
, with Γ̄θ

defined in (21), while ε2 and ε3 are sufficiently small so
that (25) holds.

In the previous proposition, it is proved that when qleak(t)
is given by (12) with gl(t) = ḡl ≥ 0, then the equilibrium
(0, 0, 0,−θ, ḡl, ḡl) of the closed-loop system
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

ż1 = z2

ż2 = −K1z1 −K2z2 +
z3

m
+ (ξθ + θ)

T
Θ−

− 1

m

[
Ff (z2 + x?2)− Ff (x?2)

]
ż3 = −z2

m
−K3z3 + (ξl − gl)G′l(ze, t)f ′3(z1, t)

ξ̇θ = − [ε1z1 + z2]KθΘ

ξ̇l = −KlG
′
l(ze, t)f

′
3(z1, t)z3

ġl = 0

(26)

is exponentially stable. However, in a real-world scenario,
the “leakage gain” gl(t) is not constant, but it increases
in time. This variation is largely slower than the dynamics
associated with the single production cycle, so the overall
system presents a multi-time-scale behaviour.

To study the amount of performance degradation the
(slow) leakage dynamic causes in the controlled system,
we rely on the singular perturbations theory, see (Khalil,
1996, Chapter 9). A simple way to take into account
the variation of the “leakage gain” is to change the last
equation in (26) into ġl(t) = ε2

l . The motivation behind

this choice is that ε−1
l is associated to the time constant

of the controlled hydraulic system. As a consequence, gl is
practically constant for a large time interval, i.e. the rate
of variations of gl is of several order of magnitude lower
than the time derivatives of the signals associated with
the plant (controlled) dynamic. The question is how to
characterise the evolution of the “slow” dynamic in (26),
i.e. of (z1, z2, ξθ, ξl), when ġl(t) = ε2

l , being εl > 0 and
small, with respect to the quasi-steady-state trajectory
that corresponds to the case in which εl = 0. This problem
is investigated in the next proposition.

Proposition 5. Assume that the conditions of Proposi-
tion 4 holds true, except for the fact that qleak(t) de-
fined in (12) is such that ġl(t) = ε2

l , with gl(0) = ḡl
and εl > 0. For the closed-loop system (26), for any
t0, t1 > 0 but finite and such that t0 < t1, there
exists positive constants η and ε?l such that for all
‖(z1, z2, z3, ξθ, ξl)(0)− (0, 0, 0,−θ, ḡl)‖ < η, and 0 < εl <
ε?l , we have that

‖(z1, z2, z3, ξθ, ξl)(t)− (0, 0, 0,−θ, ḡl)‖ ≤ O(εl) (27)

uniformly for t ∈ [t0, t1], whenever εl < ε?l .

The previous result follows from (Khalil, 1996, Theo-
rem 9.1), and states that, on a finite interval, the effect of
the slow dynamic associated to the leakage is not leading
to instability. The inner / outer loops structure, together
with the pair of adaptive laws, is able to compensate such
phenomenon, and the key property that assures this is
that for constant leakage gain the closed-loop system (26)
has a globally and exponentially stable equilibrium. In a
real-world scenario, since εl ' 0, relation (27) assures that
the performance degradation is in fact neglectable. It is
worth noticing that such result is valid on a finite interval
due to the fact the the leakage dynamic is assumed to be
simply stable, i.e. it is the one of an integrator. On the
other hand, if some convergence properties are assumed,
the result can be extended on an infinite time interval. A
rigorous analysis is beyond the scopes of this paper.
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Fig. 2. Single working cycle with external force and no
leakage: position tracking achieved with the adaptive
controller of Proposition 4 with Kl = 0.
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Fig. 3. Single working cycle with external force (top) and
no leakage: contribution of the adaptive loop on the
force (bottom) introduced in Proposition 2.

5. SIMULATIONS

In this section, some simulation results, in which a Sim-
scape model of the plant has been employed, are reported.
In particular, the performances of the complete control
scheme of Proposition 4, not only in terms of the external
force compensation, but also in case of leakage in the hy-
draulic system are presented. The piston undergoes several
working cycles, i.e. different repetitions of the trajectory
presented in the top graph in Fig. 2. At the same time,
an unknown (to the controller) external force as the one
in the top graph in Fig 3 is applied to the piston, and an
unknown offset is added to the spool command in order to
simulate the leakage in the valve. Such command generates
the leakage opening profile reported in red in Fig. 5.

The controller assures quite good performances, since
both the force and leakage adaptive loops are able to
compensate for such external disturbances. In fact, as
reported in Fig. 4, position and velocity tracking errors
remain of the same magnitude as in case no leakage is
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Fig. 4. Multiple working cycles with external force and
leakage: position and velocity errors achieved with the
adaptive controller of Proposition 4.
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Fig. 5. Multiple working cycles with external force and
leakage: leakage opening and its estimate obtained
with the adaptive controller of Proposition 4.

present. More precisely, the maximum position tracking
error is now equal to 0.41 mm, while the maximum velocity
tracking error to 66.71 mm/s. On the other hand, the
estimate of the leakage opening is characterised by the
response of Fig. 5. It is important to point out that in the
real world scenario the leakage dynamic is largely slower
than the one simulated here. Such levels of internal leakage
are reached after hundred thousands of cycles, and usually
the valve is replaced when the intensity of the leakage
flow is comparable to the one associated to a (simulated)
opening of 1÷1.5 mm, which is in fact the quantity xl(t)
that appears in (11). In any case, the adaptive loop is able
to correctly estimate the leakage, and such information is
successfully employed in the control loop to let the system
to have acceptable performances even in these extreme
situations. The ripple in the estimate response is due to the
fact that the adaptive loop for the leakage is influenced also
by the force dynamic, which is generated at each working
cycle. In other words, to follow the leakage opening profile
of Fig. 5, the gain of the adaptive loop responsible for its
estimate and compensation is larger than the value that
would be necessary in reality.

6. CONCLUSIONS

In this paper, the adaptive robust control of a hydraulic
press has been presented. The design is based on classical
backstepping arguments, and the resulting control law
is characterised by an inner / outer loop structure. In

particular, the outer loop is responsible for the motion
of the press having the hydraulic pressure acting on
the piston as input, while the inner loop is in charge
of generating such pressure by acting on a servo-valve.
Beside, two adaptive laws are implemented. The first
one is associated with the outer loop and is capable
to compensate for the external forces generated during
the pressing phase or due to some unmodelled effects,
such as friction, fluid compressibility and non-idealities
in the supply system. Instead, the second adaptive law is
paired with the inner loop and is designed to compensate
for the leakage flow in the servo valve, a major source
of performance degradation in the system. The validity
and the closed-loop performances that the control scheme
provides are illustrated with the help of some simulations
in which a detailed Simscape physical model of the plant
has been employed.
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