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Abstract: Hysteresis is a commonly encountered physical phenomenon in many systems. It
results in a dependence of the state of a system to its history. This non-linearity makes it
particularly difficult to control accurately. There are many ways for compensating hysteresis,
one of them consists of building an inverse model of the hysteresis and using it as a feedforward
controller. Coupled to a feedback mechanism, the hysteresis impact can thus be minimized.
However, the performance of these controllers decreases when exposed to dispersion in the
hysteresis quantity or shape. The capacity of neural networks to model non-linear phenomena
is not to be proven and will be put at use. In this paper, an artificial neural network model was
trained to replace the conventional hysteresis inverse model. The controller performance was
evaluated on a limited-angle torque motor, which exhibits hysteresis due to the magnetization
saturation of the ferromagnetic materials. The experimental results pointed out the superior
robustness to system dispersion of the Neural Network based controller for time and frequency
response.

Keywords: Hysteresis Compensation, Neural Network, Dispersion Robustness, Hardware In
the Loop, Limited-Angle Torque Motor.

1. INTRODUCTION

Hysteresis is a non-linear phenomenon present in diverse
fields such as structural mechanics, aerodynamics, electro-
magnetics... For a single input, a hysteretic system can
have many outputs depending on the history of the input.
This phenomenon is particularly problematic when con-
trolling systems with accuracy requirement.
Dispersion in the hysteresis quantity would have as con-
sequences a wider or finer hysteresis envelop, and also
possibly a different shape. Systems from a same product
line can exhibit strong variability in their behavior due to
many parameters such as aging, materials imperfections,
manufacturing tolerance (Ramarotafika et al., 2013)... The
designed controller shall be robust to this dispersion.
The system under study is a Limited Angle Torque Mo-
tor (LATM), whose structure is similar to direct current
brushless motors (Nasiri-Zarandi et al., 2015) but with
its shaft having a small and limited angular displacement
range. With no external excitation, the flux produced by
the pair of permanent magnets produces a magnetic bridge
that stabilizes the rotor in a certain angular position. By
applying current to the LATM, its armature windings
produces a flux that perturbs the magnetic bridge, thus,
the system rotates to a new equilibrium position (Yu and
Wang, 2014). Although these systems provide accurate
positioning capabilities (Tsai et al., 2009), they exhibit
hysteresis due to the saturation of the ferromagnetic ma-
terial in the armature windings (Tebble and Craik, 1969).
One common way of compensating hysteresis is computing
a hysteresis model, being then inverted and used as a

feedforward controller. A variety of different models can
be used (Hassani et al., 2014), the most commonly encoun-
tered are mathematical models such as Prandtl-Ishlinskii
(Yi et al., 2019), Preisach (Joey et al., 2019) or Bouc-Wen
(Zhou et al., 2019) and physics-based models like Jiles-
Atherton (Chen et al., 2019).
Amongst the previously stated models, the Jiles-Atherton
model gave the best results for our study case as it de-
scribes the hysteresis behavior of the magnetization pro-
cess of ferromagnetic materials. Many global optimization
algorithms are available to identify the best Jiles-Atherton
parameters : evolutionary algorithm, Particle Swarm Op-
timization (Li and Gong, 2019) or its modified version to
avoid premature convergence (Chen et al., 2019), genetic
algorithms (Lu et al., 2015) or even chaotic optimization
methods (Rubežić et al., 2018). However, when exposed
to system variability, the performance of the control based
on this model decreases (Ramarotafika et al., 2013).
Neural Networks have shown great capacities for modelling
nonlinear and multi-valued mapping problems such as
hysteresis (Tan et al., 2019; Liang et al., 2019) but also
for processing robustness to system variability (Querlioz
et al., 2013; Patel et al., 2011). Moreover, by inverting
the system input and output during the training process,
Neural Networks have great capacities in modelling inverse
models (Zhang et al., 2018).
Two control strategies will be assessed in this work to
control the hysteresis of a highly dispersed system. Two
inverse models, Jiles-Atherton and Neural Network inte-
grated in a control scheme will be used to evaluate the
controller robustness in presence of system variability.
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2. EXPERIMENTAL SETUP

The torque motor under study is mounted on an experi-
mental test bench to identify and characterize its hysteresis
in a first time, and then to apply closed-loop control with
Hardware In the Loop (HIL) testing. The experimental
setup, Fig 1, of this test bench and the obtained experi-
mental data from the system are described in this section.

� � �

Fig. 1. Experimental test bench : Photography and func-
tionnal diagram

2.1 Test Bench Presentation

Plant The plant is a LATM, which can be described
as an electromechanical actuator whose control variable is
the input current and the controlled variable is the shaft
limited angular position. These motors exhibit hysteresis
due to the magnetization saturation of the ferromagnetic
materials.

Controller The controller is embedded in a Real Time
Machine (RTM). The RTM gathers data from the sensors
and provides the power supply unit with the command
voltage. The sampling rate is set to 0.1 ms.

Power Supply The power supply is a current amplifier,
which transforms the command voltage from the RTM to
the corresponding current command. The adjustable cut-
off frequency is set to 10 kHz.

Sensors The input, the current, and the output, the
angular position, of the hysteretic system are monitored.
Both sensors have a bandwidth far greater than the
LATM.

• A current clamp is used for the measurement of the
current applied to the LATM armature windings.
• A rotary incremental encoder is used for the mea-

surement of the angular position of the LATM shaft.
The selected incremental encoder is 6,000 counts per
revolution which corresponds to a angular resolution
of 0.06◦ . The sensor is mounted to the test bed with
the LATM and are assembled by a bellow coupling to
avoid axial misalignment.

2.2 Experimental Characterization

The frequency range of this study is limited to [0−10] Hz.
In this frequency domain, the system can be considered
rate-independent and following Al Janaideh et al. (2009),
the influence of a triangular or harmonic signal for the
characterization is neglected.
To characterize the system’s hysteresis, the LATM is open-
loop controlled with a 1 Hz sinusoidal signal. The mag-
nitude of the signal varies up to the motor’s maximum
current range, see Fig 2. Each magnitude is maintained
for five periods to avoid outliers.

As said in the introduction, the objective is to control
hysteresis of systems exhibiting dispersion. For our exper-
iment, only one motor is available, thus, the dispersion
must be emulated.
To emulate hysteresis dispersion in the system, a backlash
mathematical function is placed between the current com-
mand signal and the LATM. The backlash width emulates
the hysteresis dispersion by enlarging the hysteresis en-
velop and reducing the height as the backlash reduces the
maximum current output, see Fig 2. The dispersion range
for the study has been set to [0− 50] mA.
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Fig. 2. LATM hysteresis experimental data with emulated
dispersion

The characterization of the dispersed system was per-
formed for the whole range with a 5 mA step, 11 data
files were obtained and 3 of them are displayed in Fig 2.

A 50% dispersion in the dynamics of the system would
also be interesting to study. As the dynamic of our LATM
is fixed, the proportional gain of the controller will be
modulated, 0.5KP and 1.5KP , to emulate this system
dynamic dispersion.
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3. CONTROLLER DESIGN

The chosen architecture of the controller C is a Propor-
tional Integral (PI) feedback with Anti Wind-up (AW) in
parallel of a feedfoward inverse model of the hysteresis
Ĥ−1, see Fig 3, which is either the Jiles-Atherton inverse
model or the Neural Network inverse model.

Fig. 3. Designed controller architecture

The equivalent transfer function of the designed controller
is given Eq 1.

TF =
θ

θr
= 1− ∆H

CHĤ + Ĥ
(1)

With ∆H = Ĥ −H.
The control compensates the remaining error between the
hysteresis model Ĥ and the plant H.

3.1 Controller Gains

To determine the proportional gain KP and the integral
gain KI , an iterative process is implemented. The tempo-
ral response to a step at different operating points of the
system will be analyzed when varying the controller gains.
The final set of parameters shall minimize the Integral of
Time-weighted Absolute Error (ITAE) performance index
which penalizes errors occurring later in the response while
minimizing the initial error.
Through the iterative process, the best gains that mini-
mize the ITAE are KP = 20, KI = 3500. These gains will
be used for the above control schemes with both inverse
models.

3.2 Jiles-Atherton Inverse Models

The Jiles-Atherton model is a widely used physics based
model that describes the hysteretic magnetization process
of ferromagnetic materials when submitted to a magnetic
field (Jiles and Atherton, 1986). The direct model is based
on the following equations (Jiles, 2015) :

θ = B + ∆ (2a)

B = µ0(H +M) (2b)

H = kii (2c)

∂M

∂H
=

η

(kδ − αη)
(2d)

η = Man −M + kcδ
∂Man

∂He
(2e)

Man = Ms

(
coth

(
He

a

)
− a

He

)
(2f)

∂Man

∂He
=
Ms

a

(
1− coth2

(
He

a

)
+

(
a

He

)2
)

(2g)

He = H + αM (2h)

δ =

{
+1 if dH/dt > 0

−1 if dH/dt < 0
(2i)

The permeability of the medium µ0, the energy loss con-
stant k, the mean field α, the reversibility factor c, the
anhysteretic magnetization shape factor a, the magnetiza-
tion saturation Ms, the current gain ki and the position
offset ∆ are the eight parameters that govern the size and
the shape of the hysteresis loop.

To obtain the Jiles-Atherton inverse model, equation (2d)
needs to be replaced by the magnetization M partial
derivative regarding the magnetic induction B. Based on
the work of Sadowski et al. (2002) we have :

∂M

∂B
=

η

µ0(kδ − (α− 1)η
(3)

The conditions for the value of δ in (2i) must also change
to depend on the variation of the magnetic induction B :

δ =

{
+1 if dB/dt > 0

−1 if dB/dt < 0
(4)

By combining equations (2a), (2b), (2c), (3), (2e), (2f),
(2g), (2h) and (4) we obtain the Jiles-Atherton inverse
model.

In order to fit the hysteretic behavior of the LATM,
the Particle Swarm Optimization (PSO), which is an
evolutionary algorithm inspired on the paradigm of an-
imal swarm intelligence and developed by Eberhart and
Kennedy (1995), was used to find the optimal set of pa-
rameters for the inverse hysteresis model.
To minimize the maximum error of the inverse model, the
experimental data used for fitting the model is the mean
value of the dispersion range. As the dispersion range is
[0 − 50] mA, the fitting data for the inverse model is the
25 mA dispersion dataset.

3.3 Hysteresis Neural Network Inverse Model

At first, as the state of a hysteretic system depends on its
history, parallel architecture Deep Neural Networks with
Long-Short Term Memory (LSTM) and 1D Convolutional
layers, for time series feature extraction, were used and
gave excellent results for modelling hysteresis. Unfortu-
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nately, the final Neural Network had to be downsized and
architecture simplified due to :

• Hardware limitation : the RTM has limited memory
storage, thus, the number of cells and hidden layers
had to be reduced.
• Software limitation : the C code generation function,

to embed the controller on the RTM, does not support
every type of cells and parallel architecture networks.

Due to these constraints, the neural network has been
limited to a single feedforward hidden layer with 128
cells, see Fig 4. The modelling performance of the Neural
Network is degraded, but, as the complexity and size of the
Neural Network can be compensated with an appropriate
input vector (Kuczmannand Ivanyi, 2002), an appropriate
choice of the inputs allowed getting a model with sufficient
accuracy.
For the Neural Network to take into account the depen-
dancy of the state’s system to its history, it is fed with
position at multiple time steps. The number of time steps
was determined as the results of a trade-off : regression
performance increases with the number of time steps as
inputs but so does the Neural Network size. A compromise
between Neural Network performance and its size was
found by selecting 3 time steps which results in three
inputs (θt, θt−1, and θt−2).
Also, when the input changes direction before reaching the
maximum input value, it follows a First Order Reversal
Curve (FORC) to reattach to the major loop. The FORC
that is taken depends on the value of θ for which the signal
has changed direction, θinv. This value is fed to the Neural
Network.
Finally, the direction of the signal, θdir, is also given to
the Neural Network.
The hidden and output layers cells’ weights and bias make
a regression between the input vector (θt, θt−1, θt−2, θinv
and θdir) to determine the corresponding predicted current

ît to feed the LATM in order to achieve the desired position
θt.

θt

θt-1

θt-2

θinv

θdir

ît

Input Layer ∈ ℝ5

⋮

Hidden Layer ∈ ℝ128 Output Layer ∈ ℝ1

Fig. 4. Neural Network inverse model architecture

Neural Networks require a big amount of training data to
give good regression results and the model needs to be
efficient on any system in the dispersion range. Thus, the
Neural Network could benefit from learning for the whole
dispersion range to identify dispersion dependant features
or avoid overfitting. The Neural Network was trained on
the whole dispersion range of the hysteresis with a set of
2,750,000 data, 70% used for the training, 15% for testing
and 15% for validation.

3.4 Inverse Modelling Performance

The Jiles-Atherton inverse model after parameter opti-
mization and the Neural Network inverse model after
training are given in Fig 5. The 25 mA dispersion dataset
obtained experimentally and used for the Jiles-Atherton
fitting is displayed for comparison.
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Fig. 5. Fitting of Neural Network and Jiles-Atherton
inverse models, with local zoom

The result of the global optimization algorithm for the
Jiles-Atherton model gives good results in terms of size
and shape, see Fig 5, except on inversion points, where
the slope discontinuity due to mathematical backlash has
not be captured correctly.
Even if the Neural Network has been trained on the whole
dispersion dataset and without external help, the obtained
model fits the mean 25 mA dispersion dataset, see Fig 5.
It even reproduces more precisely than the Jiles-Atherton
inverse model the behavior of the system with a 25 mA
dispersion. The slope discontinuity has been captured by
the training.

4. CONTROL PERFORMANCE

The controller is now designed: the Jiles-Atherton inverse
model parameters are optimized, the Neural Network
inverse model is trained and the PI controller and AW
parameters have been determined. In this section, the
two controllers’ performance will be evaluated with the
following two tests : sinusoidal response, with varying
magnitude and step response.
These two tests will be repeated on the whole dispersion
range, 0 to 50 mA, every 5 mA and their reference signals
are given in Fig 6.

4.1 Sinusoidal Response

In this section, the frequency response of the closed-loop
will be tested with a varying magnitude sine wave for the
following frequencies : 0.5 Hz, 1.0 Hz, 2.5 Hz, 5.0 Hz, and
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(a) Sinusoidal test (1Hz) (b) Step test

Fig. 6. Reference signals for tests

7.5 Hz. Fig 6a gives the reference signal θr for the test at
1.0 Hz.
The closed-loop behavior under a harmonic reference sig-
nal is given Fig 7. Fig 7a corresponds to the nominal
case (a dispersion of 25 mA and a reference signal at
1.0 Hz), the linerization of the system is almost perfect.
When the system moves away from the nominal case, the
linearization is of course degraded, Fig 7b.

(a) 1.0 Hz reference signal (b) 5.0 Hz reference signal

Fig. 7. Linearization of the hysteretic system under a
harmonic reference signal

A 10Hz sine wave was tested but the experiments with the
Jiles-Atherton inverse model failed due to instability of the
closed-loop when the dispersion was above 20 mA. This
limitation was not encountered with the Neural Network
based controller.
To evaluate the performance of the closed-loop control, the
tracking error is calculated with the mean absolute error
on position during the whole test :

ε = |θr − θ| (5)

The results of the experiments are given in Fig 8. The
top chart represents the log scale error, ε, depending on
the emulated hysteresis dispersion for both models at
each frequency while the bottom chart gives the relative
error improvement, computed as the increase in accuracy
obtained by the Neural Network controller compared to
the Jiles-Atherton controller taken as reference.

Performance vs Dispersion
The dashed black line with triangle markers is the mean
relative error improvement when taking the average over
the 5 tested frequencies.
The Jiles-Atherton based controller error increases mono-
tonically with dispersion despite the model being fitted
for the 25 mA dispersion dataset. The Neural Network
based controller finds its minimum error between 25 mA
and 35 mA dispersion for low frequencies, 0.5 Hz and 1.0
Hz. At higher frequencies, 2.5 Hz, 5.0 Hz and 7.5 Hz, the
errors follow the same trend as the Jiles-Atherton based
controller, see Fig 8.
Overall, the artificial intelligence based controller improves
the mean tracking error between 8% and 21% compared
to the Jiles-Atherton based controller. This demonstrates
the better robustness of the Neural Network model as the
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Fig. 8. Sine wave tracking error for both controllers de-
pending on hysteresis dispersion

relative error improvement increases with dispersion up to
35 mA before slightly decreasing for low frequency. The
relative error improvement decreases at stronger disper-
sion because the error is dispersion-mean centered.

Performance vs Frequency
Regardless of the model used by the controller, the error
increases with frequency, see Fig 8 and Fig 7.
The Neural Network based controller has its best mean
relative control performance (see colored dotted lines) at
low frequencies 0.5Hz and 1.0Hz, respectively 26% and
31%. It is less performant when the frequency rises, 2.5Hz
and 5.0Hz, as the relative performance improvement de-
creases, respectively 10% and 5%. At 7.5Hz, the error
improvement rises again to 8% as the Jiles-Atherton model
performance falls off when getting closer to 10 Hz where
it caused instability.

4.2 Step Response

In this section, the dynamic response of the system will
be tested with steps. In addition to hysteresis variability,
dispersion in the dynamic of the system has been emulated
by changing the proportional gain of the controller. Three
proportional gains have been tested : 0.5KP , KP and
1.5KP .
To evaluate the closed-loop dynamic response relative im-
provement, two temporal criteria are considered, the 63%
rising time and the overshoot in %, displayed respectively
in Fig 9 and Fig 10.
To avoid observing the system’s dynamic response at an
unique operating point and to smooth out outliers, the
two temporal criteria of the dynamic response will be
computed as the average of the temporal criteria of the
responses to the twenty steps of the reference signal given
in Fig 6b. The different steps are maintained for 5 s to
ensure the steady-state.
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63% Rising Time
The improvement of the mean rising time of the closed-
loop system with the Neural Network based controller is
rather null when taking the nominal proportional gain
of the controller, KP (see the blue dotted line close to
zero). The improvement is more significant, around 13%,
for 0.5KP and 1.5KP , that emulate the dispersion of the
system dynamic, see Fig 9.
The overall faster rising time response of the closed-
loop system can be explained by the models dynamics.
The Neural Network converge faster to the steady state
value than the Jiles-Atherton model as it does not have
derivative and integral terms.

Fig. 9. Rising time relative improvement depending on
hysteresis dispersion

Overshoot (%)
While the improvement is not significant with the nominal
proportional gain, KP , it can be noted that the mean
overshoot is reduced by 5% and 16% with 0.5KP and
1.5KP (see the dotted lines).

Fig. 10. Overshoot relative improvement depending on
hysteresis dispersion

5. CONCLUSION

This paper has focused on modelling and controlling hys-
teresis for a highly dispersed system. System variability
cannot be suppressed and taking it into account limits the
performance of the conventional hysteresis compensation
methods.
A control scheme based on a Neural Network inverse
model of a hysteretic system has been computed and
implemented on a dispersed system. To evaluate the ro-
bustness of the proposed control strategy, its performances

were compared with a Jiles-Atherton inverse model based
controller through two HIL tests : frequency and temporal
responses.
The Neural Network based controller performed better in
both tests showing also better robustness properties over
the dispersion range. In average over the tested domain,
the tracking error was improved by 8% and 21%, the
rising time was enhanced up to 12% and the overshoot
was reduced up to 18%.
These improvements can be explained by the overall better
nonlinear fitting capabilities of artificial intelligence based
models. They contain a larger number of parameters that
gives the model a wider range of modelling capability.
In future works, the dependency of error to frequency
could be further reduced by improving the robustness to
frequency of the control algorithm.
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Stochastic jiles-atherton model accounting for soft mag-
netic material variability. COMPEL: The International
Journal for Computation and Mathematics in Electrical
and Electronic Engineering, 32(5), 1679–1691.
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