
Efficient Hardware Implementation of
Nonlinear Moving-horizon State Estimation

with Artificial Neural Networks

Rafael Koji Vatanabe Brunello ∗ Renato Coral Sampaio ∗

Carlos H Llanos ∗ Leandro dos Santos Coelho ∗∗,∗∗∗

Helon Vicente Hultmann Ayala ∗∗∗∗

∗ Department of Mechanical Engineering, UnB, 70910-900 DF Brazil
∗∗ Industrial and Systems Engineering Graduate Program, PUCPR,

80215-910 PR Brazil
∗∗∗ Department of Electrical Engineering, UFPR, 81531-980 PR Brazil
∗∗∗∗ Department of Mechanical Engineering, PUC-Rio, 22231-180 RJ

Brazil
(e-mail: rafaelkvb@gmail.com, renatocoral@unb.br, llanos@unb.br,

leandro.coelho@pucpr.br, helon@puc-rio.br)

Abstract: In this contribution we investigate the application of radial basis functions artificial
neural networks embedded in hardware for real-time moving-horizon state estimation. The
solution of the optimal moving-horizon state estimation problem may be faced as the mapping
from the inputs and outputs of the system to the state estimates according to the system model.
This mapping may be solved offline with the optimal formulation and then approximated by
any higher order function approximation algorithm, such as the ones from machine learning. An
approximate version with radial basis functions neural networks is developed and implemented
in a Field Programmable Gate Array (FPGA) showing good results in terms of accuracy and
computational time. We show that the state estimate using the approximate version of the
moving-horizon algorithm can be run using a laboratory scale kit of approximately 500 kHz for
an inverted pendulum at a clock rate of about 110 MHz. The latency to provide an estimate
can be further reduced when FPGAs with higher clocks are used as the artificial neural network
architecture is inherently parallel.

Keywords: Estimation and filtering, Nonlinear observers and filter design, Nonlinear predictive
control, Neural networks, Embedded computer architectures

1. INTRODUCTION

The state space approach has had a central role in modern
control methods (Bennett, 1996), due to, among other
reasons, its generality in dealing with complexity of system
orders and number of inputs. The state space represen-
tation was seminal for the inception of optimal control
(Lewis et al., 2012) and filtering (Kalman, 1960a) methods.
Model predictive control strategies are regarded as one
of the most important recent developments in the control
field (Raković and Levine, 2019). Frequently new methods
in nonlinear optimal control are derived according to the
model predictive control philosophy, and so we met no
decrease in computational complexity for methods that
ideally run in a deterministic clock frequency. Many meth-
ods have been devised in order to embed such control laws,
and very practical tools for C code generation, for example,
are now available with vast documentation and flexible
GPL-3 software licenses (GNU General Public License-3)
(Andersson et al., 2019).

On the other hand, state estimation has close relation
with the classical regulation problem, as it is in fact
mathematically the same (dual) problem (Kalman, 1960b;

Bennett, 1996). An analysis on the dual problem for the
model predictive control is analysed and used in (Goodwin
et al., 2005; Alessandri et al., 2008). The moving-horizon
state estimation paradigm uses a sliding window of most
recent measurements and a state prediction to infer the
state estimates (Rawlings et al., 2017). This is conceptu-
ally different than the Kalman original formulation, which
uses solely one set of measurements made at a given time
instant in order to provide an estimate of the mean and
covariance of the states of the system. The advantages
in terms of accuracy is generally recognized for moving-
horizon approaches for estimation when compared to its
Kalman-based counterparts, in spite of the greater com-
putational effort (Haseltine and Rawlings, 2005). In the
receding-horizon approach, the algorithm solves an opti-
mization problem at each sampling instant, what makes
possible to take into account many measurements and
explicitly the bounds in the states. Naturally this advanced
state estimation algorithm demands considerable amount
of computational resources to run in real-time. This hin-
ders the application of advanced control and estimation
methods to embedded solutions and systems that may
operate at high frequency rates such as piezoelectric mi-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 7911



cromanipulators (Ayala et al., 2015), (Ayala et al., 2018)
and vibration mitigation (Zorić et al., 2019).

In the present work we evaluate the real-time implemen-
tation of the approximate filter proposed in (Alessandri
et al., 2008, 2011) for the first time, to the best of our
knowledge, in FPGAs using new architectures developed
to implement an artificial neural network. To this end,
we improved a previous implementation of a radial basis
function artificial neural network made by the authors in
(Ayala et al., 2017), by minimizing the use of resources
for calculating the output of each neuron of the artificial
neural network and also adapting it to the multiple-output
case needed for the moving-horizon state estimation. In
summary, the contributions of the present work are (i)
the implementation of the moving-horizon state estimation
scheme in (Alessandri et al., 2008, 2011) using artificial
neural networks and floating-point representation in FP-
GAs, showing that it is possible to obtain very small sam-
pling times by employing this strategy using ad-hoc hard-
ware implementations and leveraging the inherent parallel
architecture of this model class; (ii) the improvement of
the hardware implementation of the radial basis function
artificial neural network detailed in (Ayala et al., 2017)
with respect to the use of resources and adaption to the
multiple output case.

The remainder of the paper is organized as follows. The
moving-horizon state estimation algorithm is depicted in
Section 2 while the design of its approximate version is
given in Section 3 together with the hardware architecture
proposed for the artificial neural network. In Section 4 we
give the results in terms of accuracy and latency obtained
for the filter. Finally, Section 5 ends the document with
conclusions and perspectives for future work.

2. MOVING-HORIZON STATE ESTIMATION

In the present paper we are concerned with the state
estimation problem for system of the type

xt+1 = f (xt, ut) + ξt (1a)

yt = h (xt) + ηt (1b)

where t ∈ Z+ , {0, 1, . . .} denotes the time sample, xt ∈
Rn describes the continuous state of the system, ut ∈ Rq
is the control input and yt ∈ Rg is the system measured
output. The quantities ξt ∈ Rn and ηt ∈ Rg are additive
disturbances affecting the system dynamic states and the
measured output, respectively. The former may represent
any uncertainty in modeling the system equations and the
later eventual disturbances affecting the measurements.
Functions f : Rn × Rq → Rn and h : Rn → Rg are in
general nonlinear. We employ the moving-horizon state
estimation algorithm as described in (Alessandri et al.,
2008). The moving-horizon approach for state estimation,
also termed receding-horizon, comprehend a set of esti-
mation algorithms in which the most distinctive feature
is the use of a sliding window containing a set of most
recent measurements. This is in contrast with the Kalman
filter-based solutions, which solely use the most recent
measurement and a state estimation propagation from one
time instant to the next.

The filter in (Alessandri et al., 2008) has asymptotic con-
vergence guarantees, given mainly that the system is state

observable according to an ad-hoc definition for the case
of moving-horizon state estimation. Briefly speaking, the
moving-horizon estimation paradigm uses the most recent
amount of information available and it is assumed that a
nonlinear state space model is available. As the estimation
problem is termed as an optimization problem to be solved
online once new measurements become available, it is
possible to explicitly take into account the constraints of
the system variables.

Consider the cost function J given by

J = µ ‖ x̂t−N,t − x̄t−N ‖2 +

t∑
i=t−N

‖ yi − h(x̂i,t) ‖2 (2)

where N + 1 is the size of the window considered for
calculating J , x̄t is the state prediction at time t, and x̂i,t
is the state estimation of the state at time i made at time
t, with N − t ≤ i ≤ t. The variable µ is used to weight the
confidence we have about the measurements with respect
to an initial estimate of the state x̄0 provided by the user.
When the cost function J is minimized having x̂t−N,t as
the decision variable, that is

x̂t−N,t = arg min J

s.t. x̂i,t ∈ Ω
(3)

where Ω denotes the closed set of admissible state esti-
mates, and It = [yt−N , . . . , yt, ut−N , . . . , ut]

ᵀ
is the infor-

mation vector with all the information within a sliding
window of the output and input vectors, we may obtain
a state estimate in the beginning of the moving-horizon
window. Note that for sake of simplicity, when solving Eq.
(3) we focus on obtaining the state estimate at t−N , that
is, at the beginning of the moving-horizon window. Great
simplification is achieved in this process by obtaining for
the rest of the state estimates within the window by
recursively iterating the dynamic state equation as

x̂i+1,t = f (x̂i,t, ut) (4)

Summing up, the moving-horizon state estimation algo-
rithm adds up to solving Eq. (3) to obtain the state esti-
mate at the beginning of the window while the rest of the
state estimates are obtained by the iterative application of
Eq. (4).

3. DESIGN OF APPROXIMATE MOVING-HORIZON
STATE ESTIMATION

The optimization problem in Eq. (3) may be performed
in order to obtain the state estimates within a sliding
window. Being so, it is necessary to solve at each sam-
pling instant an optimization problem, what in many cases
may be unpractical or demand significant computational
resources. In (Alessandri et al., 2008) the authors propose
also an approximate version of the algorithm described in
Eqs. (3) and (4), which was further analysed for the case
of artificial neural networks in (Alessandri et al., 2011).
The method for obtaining an approximate version of the
moving-horizon estimation algorithm as given in Section
2 can be obtained if the mapping from the state predic-
tion and information vector, which is performed offline
solving an optimization problem, is done by any function
approximation regression model. In other words, we want
to construct an approximate nonlinear mapping for the
mathematical operation performed in the optimization in

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7912



Eq. (3), which will be much less computational intensive
and indicated for an embedded computation platform.

In order to perform the nonlinear mapping from obser-
vations to state estimates, we may employ any nonlinear
approximation function for regression as we have many
examples from machine learning. One of the cases is the
artificial neural network, which is particularly interesting
in real-time applications due to its inherent parallel archi-
tecture.

3.1 Radial Basis Functions Artificial Neural Networks

The radial basis functions artificial neural network may be
represented as

λ̂ = F [r] = W · Φ(r, C, σ), (5)

where λ̂ ∈ Rp and r ∈ Rnr are respectively the i-th
network predicted output and the input vector, C ∈ RM,nr

and σ ∈ RM are respectively the centers and the widths
of the radial basis functions artificial neural network, M ∈
N+ is the number of neurons in the hidden layer, and the
output weights are given by W ∈ Rp,M . The outputs of
the hidden layer are given by

Φ(r, C, σ) =

 φ(r, C1, σ1)
...

φ(r, CM , σM )

 (6)

where φ(r, Cm, σm) is the output of the hidden layer for
each m-th neuron 1 . The Gaussian activation function is
more frequently used in the case of radial basis functions
artificial neural networks. They may be calculated as

φ(r, Cm, σm) = exp

[
−‖r − C

m‖2

2(σm)2

]
. (7)

The squared vector norm calculation may be summarized
as

φ(r, Cm, σm) = exp

[
− 1

2(σm)2

nr∑
i=1

(ri − Cm,i)2
]

(8)

which is more conveniently used for calculation in hard-
ware as will be seen next.

The radial basis function artificial neural network can be
employed for state estimation according to the approxi-
mate strategy devised previously. We look for constructing
a nonlinear mapping F : X × I → X which can be
constructed by employing an artificial neural network to
fit a dataset constructed offline by solving (3) in a simu-
lation environment, where I,X represent respectively the
function domains for the information vector and the state
estimate. Being so, the artificial neural network will deliver
a state estimate readily once the information vector and
the state prediction are updated. Thus if we set

λt = x̂t,t, rt =

[
x̄t−N,t
It

]
(9)

and build a dataset to train the artificial neural network
using simulation data and the results of the moving-
horizon which is rich enough to represent the system
dynamics, it is possible to construct a proxy for the op-
timal moving-horizon estimator using an artificial neural

1 We denote by Ak the vector composed by the k-th line of a matrix
A. Similarly, the k-th component of a vector v is given by vk.

r1:rn N1

N2

ɸ1

c1:cn

ɸ2

Nm
ɸm

...

!1

!2

!p

...

w1,1
w2,1
wm,1
w1,2
w2,2
wm,2

w1,p
w2,p
wm,p

...

...

...

Nout1

Nout2

Noutp

Fig. 1. Radial basis function artificial neural network
hardware architecture.

network. In the following section we devise hardware archi-
tectures to implement the radial basis functions artificial
neural network as in (5).

3.2 Approximation Residual Evaluation

It is possible to compare λt and λ̂t to evaluate the
approximation capability of the artificial neural network.

If we define the residual measure as eit = λit − λ̂it, we can
calculate the multiple correlation coefficient for each i-th
output as (Schaible et al., 1997)

R2,i = 1−
∑N
t=1

[
eit
]2∑N

t=1

[
λit − λ̄i

]2 (10)

where N is the total number of samples and the upper
bar denotes the mean of a sequence. The closer R2 is to 1,
the better is the approximation capability of the artificial
neural network. It is convenient to use this measure as
it allows the comparison of outputs of different units
and magnitudes, as we will evaluate the approximate
estimation of translation/angular positions/velocities.

3.3 Hardware Architectures for Radial Basis Function
Artificial Neural Network

The generalized neural network architecture is presented
in Fig. 2 which shows the variable inputs (r1 : rn), the
constant Gaussian centers (c1 : cn), obtained from the
training process, all as inputs of the hidden layer neurons
(N). The hidden layer neurons initiate their computations
in parallel with a start signal and when their output
values are done, yield a ready signal which initiates the
output layer (

∑
) compute process which uses the hidden

layer outputs (Φ) and constant weights (wm,p). Finally,
the output layer raises a ready all signal when the output
values are available.

The hidden neuron module described in Fig. 2 is responsi-
ble for implementing Eq. 8 and uses two FPadd, a FPmul
and a FPexp units to implement the logic. The process is
controlled by an FSM using the start and ready signals
for the FPadd, FPmul and FPexp units and synchro-
nizes them using two MUXES with their respective switch
signals (sel1, sel2) to efficiently minimize hardware area
reusing each FP unit.

The output layer neurons follow a similar architecture each
using one FPadd and one FPmul unit and is represented
in Fig. 3.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7913



r1

-
X

r2
rn

c1
c2
cn

+
CORDIC
FPexp

-1/(2!2)

sel2

FSM

sel1

start_FPmul
start_FPadd
start_FPexp

ready_FPmul
ready_FPadd
ready_FPexp

ɸ

start ready_neuron

sel1 , sel2

accum.

...

...

Fig. 2. Gaussian radial basis function neuron architecture
on hardware, denoted by N in Fig. 1.

+
Nout

accum.

ready_mult
FSM start_kernel

start ready

sel, sel2

X

w1 w2 w3
sel1

reset

wm...ɸ1
ɸ2
ɸ3

ɸm

...

Fig. 3. Radial basis function output layer neuron architec-
ture on hardware, denoted by

∑
in Fig. 1.

Fig. 4. Representation of the inverted pendulum system,
which is used as a case study for state estimation in
the present paper.

4. RESULTS

4.1 Case Study

In order to test the moving-horizon state estimation al-
gorithm implementation on hardware, we use an inverted
pendulum. See Fig. 4 for details. Let p, θ be respectively
the translation of the cart and angular position of the
pendulum, m,M be each of the concentrated masses, l and
J are respectively the length and moment of inertia of the
pendulum and F represents an exogenous force which is
the input of the system. If we set the continuous-time state
as z =

[
p θ ṗ θ̇

]
and the input as w = F , we can describe

the equations of motion in nonlinear continuous-time state
space form as (Aström and Murray, 2008)

ż = fc(z, w) =
[
ṗ θ̇ p̈ θ̈

]ᵀ
(11)

with the dynamic equations of the transition of the state
in continuous time are given by

f3c (z, w) =
−mlsθ θ̇2 +m2gl2sθcθ/Jt − cṗ−mlcθγθ̇/Jt

Mt −m2l2c2θ/Jt

f4c (z, w) =
−ml2sθcθ θ̇2 +Mtglsθ − clcθṗ− γθ̇Mt/m+ lcθu

Jt(Mt/m)−ml2c2θ
(12)

Fig. 5. Multiple correlation coefficient for the worst state
estimate obtained for the radial basis functions arti-
ficial neural networks varying the number of neurons.
We can see that there is a point which represents a
good trade-off for accuracy and complexity.

where sθ = sin θ, cθ = cos θ, Mt = m + M , and Jt = J +
ml2. We consider to measure both positions of the cart and
the pendulum, that is, y = [p θ]

ᵀ
. The inverted pendulum

and its close variants have been used in many recent
works with respect to control and state estimation (e.g.,
to cite a few recent contributions, (Dwivedi et al., 2017;
Messikh et al., 2017; Su et al., 2018), due to its switching
stable/unstable regimes. As it is a well-known case study,
it is a good choice for testing new implementations on
hardware for state estimation algorithms.

4.2 Optimal Moving-Horizon State Estimator Design

Data is generated using a 4th order Runge-Kutta solver
with sampling time of 10 ms, so that the discrete-time
model formulation as in (1) can be employed. Simulated
data is generated with a sinusoidal input of 10 rad/s
and 50 N amplitude, for 20 seconds in total, and the
measurements are corrupted by a white noise signal,
so that the mean is the true measurement and with
covariance matrix as diag(0.05, 0.1). The parameters of the
physical system used in the simulations are M = 10 kg,
m = 80 kg, c = 0.1 N s/m, J = 100 kg.m2/s2, l = 1 m,
γ = 0.01 N.m.s, g = 9.8 m/s2, all with proper units.

The optimal moving-horizon state estimator is then run in
order to establish the state estimations as required. After
some trial and error, we set N + 1 = 10 as the moving-
horizon length and µ = 0. We use thus for this example
no state prediction and a window containing the 10 most
recent measurements. The size of the window has been
set so as to guarantee constrained error as t → ∞. By
running the optimal estimator, we were able to generate
all the inputs necessary for the approximate version of
the state estimator. The required data to construct the
approximate version are, according to Eq. (9), the time
history of the information vector and the state estimate
in the beginning of the moving-horizon window, as we are
not using the state prediction for sake of simplicity as the
focus in on the comparison of execution time on different
heterogeneous platforms as we see next.

4.3 Approximate Moving-Horizon State Estimator Design

An approximate filter has been obtained for optimal
moving-horizon estimator, using a radial basis function

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7914



Table 1. Accuracy of the hardware implementation of the moving-horizon state estimation
implemented on hardware. In the table below, the state estimates of the optimal filter performed
offline, the FPGA implementation, and artificial neural network implemented on MATLAB are

described respectively as x̂optt−N,t, x̂
FPGA
t−N,t , and x̂ANN

t−N,t.

Metric
No. of neurons

10 11 12 13 14 15 16

MSEdB

(
x̂optt−N,t, x̂

FPGA
t−N,t

)
7.53 11.12 9.82 5.27 -6.87 -8.18 -9.84

MSEdB

(
x̂FPGA
t−N,t , x̂

ANN
t−N,t

)
-178.26 -170.36 -167.38 -157.00 -170.90 -183.05 -184.52

Table 2. FPGA Synthesis Results.

Neurons ALMs REGs Mult. Freq. Cycles
(251.680) (156) (MHz)

14 45,986 14,509 72 111.4 178
15 48,596 15,470 76 109.2 179
16 51,383 16,435 80 108.8 182

Table 3. FPGA Timing Results.

Neurons FPGA (µs) ARM (µs) Speed up

14 1.60 50.58 31.6 x
15 1.64 54.19 33.0 x
16 1.67 57.80 34.6 x

artificial neural network as in Eq. (5). We set the inputs of
the network as the information vector (It) containing all
inputs and outputs within the receding-horizon window,
as we have set µ = 0. We trained the network using the
data from the optimal estimation procedure using a 2-
steps procedure (Haykin, 2009), by selecting the centers
using the k-means algorithm, fine tuning the spread by
testing many different values and getting the output layer
weights with the Penrose-Moore pseudo-inverse with QR
factorization (Moody and Darken, 1989).

The training has been done for a range of 1/σ2 in [0.1, 100]
with step of 0.1 between two consecutive values. The im-
pact of the number of neurons on the estimation accuracy
was also evaluated by varying it in the range [1, 30]. As the
k-means algorithm depends on random initial solutions, we
tested all these configurations 5 times. Testing 5 times, for
the range of 1/σ2 and number of neurons set amounts to
150,000 different artificial neural networks tested. Fig. 5
depicts the multiple correlation coefficient as in (10) for
the least accurate state (among the four) evaluated for a
given number of neurons in the artificial neural network.
It can be seen that there is a point which augmenting
the number of neurons does not improve significantly the
accuracy of the artificial neural network in estimating the
states. As the hardware resource use, energy consumption
and latency are directly affected by the number of neurons,
which represent the computational complexity of the state
estimator, we favor the solution that represents the best
compromise between accuracy and complexity. We then
chose the artificial neural networks around the 14 neurons
solution, which is the inflection point of the curve with
greatest R2.

4.4 FPGA synthesis results

The radial basis function artificial neural network as
reported in Subsection 3.3 is implemented using VHDL
code. This code was simulated using ModelSim for logic
validation synthesized on Intel R© Quartus Prime 17.1 for
the FPGA implementation. The target FPGA was an Intel

Arria 10 (10AS066N3F40E2SG). The mean squared errors
(MSE) obtained by the estimation schemes implemented
are summarized by using a modified mean square error
metric for the case of state vectors, as

MSEdB

(
x
[1]
t−N,t, x

[2]
t−N,t

)
=

20 log

[
1

Nt −N

Nt∑
t=N+1

‖x̂[1]t−N,t − x̂
FPGA
t−N,t ‖2

]
(13)

where Nt is the total amount of samples and x
[1]
t−N,t, x

[2]
t−N,t

are two different state estimates at t made at t − N
one wishes to compare. Being so, the MSEdB presents
an overall metric of how well the estimates at the begin-
ning of the sliding window are made. Minimizing MSEdB

means that the difference of x
[1]
t−N,t, x

[2]
t−N,t are minimized.

For example, if we compare the optimal solution with
the approximate implemented in hardware, minimizing
MSEdB means improving the accuracy of the FPGA so-
lution. Table 1 summarizes the MSEdB for the cases in the
inflection point of the R2 curve shown in Fig 5, namely
the solutions around the 14 neurons case. In this table
we see the comparison of estimates made on the FPGA,
the artificial neural network run offline, and the optimal
moving-horizon state estimation. From the results pre-
sented in the table, we can see that (i) for a number of
neurons greater than 13 the estimates do not present great
improvements in terms of accuracy, what corroborates the
information given in Fig 5 and (ii) that the implementation
on hardware is accurate when compared to the MATLAB
offline solution, as the errror is virtually zero (please note
that the values are given in dB). Thus, we look further
for the synthesis results for number of neurons greater
than 13, as we shall analyze in the following, as they
present a good compromise in terms of accuracy, hardware
consumption.

Table 2 shows the synthesis results including the number of
Adaptive Logic Modules (ALMs), Registers (REGs), ded-
icated hardware multipliers (Mult.), maximum frequency
(Freq.) and the number of cycles needed to compute each
solution. Three architectures with a varying number of
neurons from 14 to 16 where synthesized to illustrate
the trade-offs between accuracy and hardware use. All
floating-point operations are synthesized with double pre-
cision arithmetic (64 bits) since lower precision operators
incur in high computation errors for these radial basis
function artificial neural network configurations.

In Table 3 we see the timing results of the approximate
moving-horizon state estimator. The time to process an
state estimate of the artificial neural network have been
calculated by Ti× no. of cycles, using information from the
last two columns of Table 2 (Ti is the respective period in

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7915



each artificial neural network). It is possible to see that
the approximate filter implemented on FPGAs achieves
considerably high frequency rates, in the order of 500 kHz.
The result is compared to a software solution running on
an ARM processor of a Raspberry Pi 3 to showcase the
speed up that can be achieved by the dedicated hardware
solution. A speed up rate higher than 31 times is achieved.

5. CONCLUSION

We have used the inherent parallel structure of artificial
neural networks and FPGAs, what is a synergistic combi-
nation since the FPGAs allow the ad-hoc implementation
of fast parallel computations directly on hardware. The
implications of the work herein presented confirm the ex-
pectations of the approximate filter presented in (Alessan-
dri et al., 2008, 2011), for the first time implemented in
hardware in the present work. It is possible to calculate
the estimation offline and accurately approximate the state
estimates by means of an artificial neural network online,
which performs very fast due to its inherent parallel ar-
chitecture. This has been explored in the present paper by
the implementation of the approximate filter directly on
hardware. In future work we plan to test the approximate
moving-horizon state estimator implemented in FPGAs in
real-world systems with fast dynamics (Ayala et al., 2018),
to propose a didactic test-bench with the inverted pendu-
lum (Magana and Holzapfel, 1998) for receding-horizon
estimation and control in FPGAs with approximate solu-
tions and artificial neural networks (Zoppoli et al., 2020).

ACKNOWLEDGEMENTS

The authors would like to thank National Council of
Scientific and Technologic Development of Brazil - CNPq
(Grants: 409274/2016-0-Univ, 400119/2019-6-Univ) for its
financial support of this work.

REFERENCES

Alessandri, A., Baglietto, M., Battistelli, G., and Gaggero,
M. (2011). Moving-horizon state estimation for nonlin-
ear systems using neural networks. IEEE Transactions
on Neural Networks, 22(5), 768–780.

Alessandri, A., Baglietto, M., and Battistelli, G. (2008).
Moving-horizon state estimation for nonlinear discrete-
time systems: New stability results and approximation
schemes. Automatica, 44(7), 1753–1765.

Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., and
Diehl, M. (2019). Casadi: a software framework for non-
linear optimization and optimal control. Mathematical
Programming Computation, 11(1), 1–36.

Aström, K.J. and Murray, R.M. (2008). Feedback systems:
an introduction for scientists and engineers. Princeton
university press, Princeton, New Jersey.

Ayala, H.V.H., Rakotondrahe, M., and d. S. Coelho, L.
(2018). Modeling of a 2-DOF piezoelectric microma-
nipulator at high frequency rates through nonlinear
black-box system identification. In American Control
Conference, 4354–4359. Milwaukee, Wisconsin, USA.

Ayala, H.V.H., Habineza, D., Rakotondrabe, M., Klein,
C.E., and Coelho, L.S. (2015). Nonlinear black-box
system identification through neural networks of a hys-
teretic piezoelectric robotic micromanipulator. IFAC-
PapersOnLine, 48(28), 409 – 414.

Ayala, H.V.H., Muñoz, D.M., Llanos, C.H., and Coelho,
L.S. (2017). Efficient hardware implementation of radial
basis function neural network with customized-precision
floating-point operations. Control Engineering Practice,
60, 124 – 132.

Bennett, S. (1996). A brief history of automatic control.
IEEE Control Systems Magazine, 16(3), 17–25.

Dwivedi, P., Pandey, S., and Junghare, A.S. (2017). Stabi-
lization of unstable equilibrium point of rotary inverted
pendulum using fractional controller. Journal of the
Franklin Institute, 354(17), 7732 – 7766.

Goodwin, G.C., Doná, J.A.D., Seron, M.M., and Zhuo,
X.W. (2005). Lagrangian duality between constrained
estimation and control. Automatica, 41(6), 935 – 944.

Haseltine, E.L. and Rawlings, J.B. (2005). Critical evalua-
tion of extended kalman filtering and moving-horizon es-
timation. Industrial & Engineering Chemistry Research,
44(8), 2451–2460.

Haykin, S.S. (2009). Neural networks and learning ma-
chines. Prentice Hall, Upper Saddle River, 3rd edition.

Kalman, R.E. (1960a). A new approach to linear filtering
and prediction problems. Transactions of the ASME -
Journal of Basic Engineering, 82(1), 35–45.

Kalman, R. (1960b). On the general theory of control
systems. IFAC Proceedings Volumes, 1(1), 491 – 502. 1st
International IFAC Congress on Automatic and Remote
Control, Moscow, USSR, 1960.

Lewis, F.L., Vrabie, D., and Syrmos, V.L. (2012). Optimal
control. John Wiley & Sons, Hoboken, New Jersey.

Magana, M.E. and Holzapfel, F. (1998). Fuzzy-logic
control of an inverted pendulum with vision feedback.
IEEE Transactions on Education, 41(2), 165–170.

Messikh, L., Guechi, E., and Benloucif, M. (2017). Crit-
ically damped stabilization of inverted-pendulum sys-
tems using continuous-time cascade linear model predic-
tive control. Journal of the Franklin Institute, 354(16),
7241 – 7265.

Moody, J. and Darken, C.J. (1989). Fast learning in
networks of locally-tuned processing units. Neural Com-
putation, 1(2), 281–294.

Raković, S.V. and Levine, W.S. (2019). Handbook of model
predictive control. Birkhäuser, Cham, Switzerland.

Rawlings, J.B., Mayne, D.Q., and Diehl, M. (2017). Model
predictive control: theory, computation, and design, vol-
ume 2. Nob Hill Publishing, Madison, WI.

Schaible, B., Xie, H., and Lee, Y.C. (1997). Fuzzy logic
models for ranking process effects. IEEE Transactions
on Fuzzy Systems, 5(4), 545–556.

Su, X., Xia, F., Liu, J., and Wu, L. (2018). Event-triggered
fuzzy control of nonlinear systems with its application
to inverted pendulum systems. Automatica, 94, 236 –
248.

Zoppoli, R., Parisini, T., Baglietto, M., and Sanguineti,
M. (2020). Neural Approximations for optimal control
and decision. Springer, Cham, Switzerland.

Zorić, N.D., Tomović, A.M., Obradović, A.M., Radulović,
R.D., and Petrović, G.R. (2019). Active vibration con-
trol of smart composite plates using optimized self-
tuning fuzzy logic controller with optimization of place-
ment, sizing and orientation of pfrc actuators. Journal
of Sound and Vibration, 456, 173 – 198.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7916


